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Abstract 1 

 Plants obtain soil-resident elements that support growth and metabolism via water-2 

mediated flow facilitated by transpiration and active transport processes. The availability of 3 

elements in the environment interact with the genetic capacity of organisms to modulate element 4 

uptake through plastic adaptive responses, such as homeostasis. These interactions should cause 5 

the elemental contents of plants to vary such that the effects of genetic polymorphisms 6 

influencing elemental accumulation will be dramatically dependent on the environment in which 7 

the plant is grown. To investigate genotype by environment interactions underlying elemental 8 

accumulation, we analyzed levels of elements in maize kernels of the Intermated B73 x Mo17 9 

(IBM) recombinant inbred population grown in 10 different environments spanning a total of six 10 

locations and five different years. In analyses conducted separately for each environment, we 11 

identified a total of 79 quantitative trait loci controlling seed elemental accumulation. While a set 12 

of these QTL were found in multiple environments, the majority were specific to a single 13 

environment, suggesting the presence of genetic by environment interactions. To specifically 14 

identify and quantify QTL by environment interactions (QEIs), we implemented two methods: 15 

linear modeling with environmental covariates and QTL analysis on trait differences between 16 

growouts. With these approaches, we found several instances of QEI, indicating that elemental 17 

profiles are highly heritable, interrelated, and responsive to the environment. 18 

Author Summary 19 

Plants take up elements from the soil, a process that is highly regulated by the plant’s 20 

genome. To investigate how maize alters its elemental uptake in response to different 21 

environments, we analyzed the kernel elemental content of a population derived from a cross 22 

grown 10 different times in six locations. We found that environment had a profound effect on 23 
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which genetic loci were important for elemental accumulation in the kernel. Our results suggest 24 

that to have a full understanding of elemental accumulation in maize kernels and other food 25 

crops, we will need to understand the interactions identified here at the level of the genes and the 26 

environmental variables that contribute to loading essential nutrients into seeds.  27 

Introduction 28 

 The intake, transport, and storage of elements are key processes underlying plant growth 29 

and survival. A plant must balance mineral levels to prevent accumulation of toxic 30 

concentrations of elements while taking up essential elements for growth. Food crops must strike 31 

similar balances to provide healthy nutrient contents of edible tissues. Adaptation to variation in 32 

soil, water, and temperature requires that plant genomes encode flexible regulation of mineral 33 

physiology to achieve homeostasis (1). This regulation must be responsive both to the 34 

availability of each regulated element in the environment and to the levels of these elements at 35 

the sites of use within the plant. Understanding how the genome encodes responses to element 36 

limitation or toxic excess in nutrient-poor or contaminated soils will help sustain our rapidly 37 

growing human population (2). 38 

 The concentrations of elements in a plant sample provide a useful read-out for the 39 

environmental, genetic and physiological processes important for plant adaptation. We and 40 

others developed high-throughput and inexpensive pipelines to detect and quantitate 20 different 41 

elemental concentrations by inductively coupled plasma mass spectrometry (ICP-MS). This 42 

process, termed ionomics, is the quantitative study of the complete set of mineral nutrients and 43 

trace elements in an organism (its ionome) (3). In crop plants such as maize and soybean, seed 44 

element profiles make an ideal study tissue as seeds provide a read-out of physiological status of 45 

the plant and are the food source.  46 
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 Quantitative genetics using structured recombinant inbred populations is a powerful tool 47 

for dissecting the factors underlying elemental accumulation and relationships. By breaking up 48 

linkage blocks through recombination and then fixing these new haplotypes of diverse loci into 49 

mosaic sets of lines, these populations allow similar sets of alleles to be repeatedly tested in 50 

diverse environments (4). A variety of quantitative statistical approaches can then be used to 51 

identify QTL by environment interactions (QEI).  52 

Here, we used elemental profiling of a maize recombinant inbred population grown in 53 

multiple environments to identify QTL and QEI underlying elemental accumulation. We sought 54 

both environmental and genetic determinants by implementing single-environment QTL 55 

mapping and analyses of combined data from multiple environments. Overall, we detected 79 56 

loci controlling elemental accumulation, many of which were environment-specific, and 57 

identified loci exhibiting significant QEI. 58 

Results 59 

Genetic Regulation of Elemental Traits 60 

The data used for this study is comprised of 20 elements measured in the seeds from Zea 61 

mays L. Intermated B73 x Mo17 recombinant inbred line (IBM) populations grown in 10 62 

different location/year settings. The IBM population is a widely studied maize population of 302 63 

intermated recombinant inbred lines, each of which have been genotyped with a set of 4,217 bi-64 

allelic single nucleotide polymorphism (SNP) genetic markers (5). The four rounds of 65 

intermating and subsequent inbreeding resulted in more recombination and a longer genetic map 66 

for the IBM than for typical biparental recombinant inbred line populations. The number of 67 

individuals, marker density, and greater recombination facilitates more precise QTL localization 68 

than a standard RIL population (6–11). This greater resolution reduces the number of genes 69 
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within a QTL support interval and increases the utility of QTL mapping as a hypothesis test for 70 

shared genetic regulation of multiple traits and aids in the discovery of the molecular identity of 71 

genes affecting QTL. For this study, subsets of the IBM population were grown at Homestead, 72 

Florida in 2005 (FL05) and 2006 (FL06), West Lafayette, Indiana in 2009 (IN09) and 2010 73 

(IN10), Clayton, North Carolina in 2006 (NC06), Poplar Ridge, New York in 2005 (NY05), 74 

2006 (NY06), and 2012 (NY12), Columbia, Missouri in 2006 (MO06), and Limpopo, South 75 

Africa in 2010 (SA10) (Table S1). While very few of the 233 unique IBM lines in the 76 

experiment were grown in all environments, 106 of the 233 lines were grown in 7 or more 77 

environments and 199 were grown in 3 or more environments. Within each growout, all samples 78 

were treated identically: seeds from all environments were stored in temperature and humidity 79 

controlled storage rooms after harvest and then shipped to the ionomics lab. We do not expect 80 

any change in ion composition from storage within a growout, however we cannot rule out that 81 

some of the differences between growouts might be due to slightly different moisture content. 82 

These differences are not likely to account for the genetic by environment interactions we 83 

observe as they should have similar effects on all lines. Single seeds were profiled for the 84 

quantities of 20 elements using ICP-MS and these measurements were normalized to seed weight 85 

and technical sources of variation using a linear model with the resulting values used as the 86 

elemental traits for all analysis (12). After outlier removal, seed element phenotypes were 87 

derived by averaging line replicates (kernels subsampled out of pooled ears from a row) within 88 

an environment. 89 

Variation in the elemental traits was affected by both environment and genotype. 90 

Elemental traits generally exhibited lower heritability among genotypes grown across multiple 91 

environments than among genotype replicates within a single environment (Table 1). The broad-92 
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sense heritability (H2) of seed weight, 15 of 21 elements in NY05, 13 of 21 elements in NC06, 93 

and 13 of 21 elements in MO06 exceeded 0.60. Elements exhibiting low heritability within 94 

environments corresponded to the elements that are prone to analytical artifacts or present near 95 

the limits of detection by our methods, such as B, Al, and As. Seven elements had a broad sense 96 

heritability of at least 0.45 in a single environment (NY05, NC06, and NY06) but less than 0.1 97 

across all environments. This decrease in heritability across the experiment, which was 98 

particularly striking for Mg, P, S, and Ni, is consistent with strong genotype by environment 99 

interactions governing the accumulation of these elements.  100 

Table 1. Broad-sense heritability (H2) of element concentrations. 101 

Trait All 
env 

NY05 NC06 MO06 

Seed 
Weight 

0.51 0.59 0.69 0.89 

B 0.02 0.35 0.51 0.06 
Na 0.11 0.34 0.23 0.19 
Mg 0.04 0.77 0.69 0.75 
Al 0.10 0.39 0.50 0.08 
P 0.04 0.62 0.69 0.33 
S 0.05 0.73 0.77 0.51 
K 0.07 0.69 0.72 0.36 
Ca 0.15 0.65 0.63 0.77 
Mn 0.16 0.80 0.80 0.75 
Fe 0.07 0.76 0.73 0.63 
Co 0.08 0.65 0.54 0.42 
Ni 0.06 0.84 0.54 0.82 
Cu 0.20 0.80 0.75 0.92 
Zn 0.07 0.68 0.73 0.86 
As 0.02 0.37 0.45 0.01 
Se 0.04 0.32 0.35 0.68 
Rb 0.03 0.49 0.45 0.69 
Sr 0.07 0.61 0.48 0.53 
Mo 0.29 0.85 0.73 0.96 
Cd 0.55 0.71 0.69 0.24 
All env: Line replicate averages from each location 102 

NY05: 50 lines with 2 reps, 199 lines with 3 reps 103 

NC06: 121 lines with 2 reps, 53 lines with 3 reps, 4 lines with 4 reps 104 

MO06: 50 lines with 2 reps, 18 lines with 3 reps 105 
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*outliers for each element calculated with outlier removal function, designated as NA 106 

*for each single environment, for each trait, only lines w/o missing data and with reps >1 used to 107 

calculate heritability 108 

 109 

A stepwise algorithm, implemented via stepwiseqtl in the R package R/qtl (13), was used 110 

to map QTL for seed weight and 20 seed elemental phenotypes. The stepwise algorithm iterates 111 

through the genome and tests for significant allelic effects for each marker on a phenotype. 112 

Forward and backward regression was used to generate final genome-wide QTL models for each 113 

trait. This QTL mapping procedure was completed for each of the IBM populations from each of 114 

the 10 environments for all 21 traits as separate analyses. QTL significance were determined 115 

using the 95th percentile threshold from 1000 scanone permutations as a penalty score for adding 116 

QTL to the stepwise model (14). 117 

 The environmental dependence on QTL detection was first estimated by identifying QTL 118 

common to multiple environments. If QTL detected in two or more growouts affected the same 119 

element and localized less than 5 cM apart they were considered to be the same locus. Across the 120 

10 environments, a total of 79 QTL were identified for seed weight and 18 of the 20 elemental 121 

traits tested (none for Al or Co) (Fig 1B &C). Of these QTL, 63 were detected in a single 122 

environment and 16 were detected in multiple environments. The 16 QTL found in multiple 123 

environments included QTL detected in nearly all of the environments and QTL detected in only 124 

two. One QTL for Mo accumulation, on chromosome 1 in the genetic region containing the 125 

maize ortholog of the Arabidopsis molybdenum transporter MOT1 (15), was found in nine 126 

environments (Fig 1A). Another QTL affecting Cd accumulation, on chromosome 2 and without 127 

a clear candidate gene, was found in eight environments. Other QTL were only present in a 128 

smaller set of environments, such as the QTL for Ni accumulation on chromosome 9, which was 129 

found in five environments (Fig 1D). The strength of association and percent variance explained 130 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 1, 2016. ; https://doi.org/10.1101/048173doi: bioRxiv preprint 

https://doi.org/10.1101/048173
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8

showed strong differences between environments even for these QTL that were detected in 131 

multiple environments (Table S2).   132 

 133 

Fig 1. Ionome QTL from 10 Environments. QTL identified for seed weight and 20 element 134 

accumulation traits using the B73 x M017 intermated RIL population grown in 10 environments. 135 

(A) QTL on chromosome 1 affecting variation in molybdenum accumulation. An interval of 136 

Chr1 is shown on the x-axis (in centi-Morgans). The LOD score for the trait-genotype 137 

association is shown on the y-axis. The horizontal line is a significance threshold from 1000 138 

random permutations (α= 0.05). The LOD profiles are plotted for all environments in which the 139 

highlighted QTL was detected. (B) Total number of QTL detected for each trait, colored by 140 

environment. (C) Significant QTL (α= 0.05) for each trait. QTL location is shown across the 10 141 

maize chromosomes (in cM) on the x-axis. Dashes indicate QTL, with environment in which 142 

QTL was found designated by color. All dashes are the same length for visibility. The two black 143 

boxes around dashes correspond to LOD profiles traces in (A) and (D). (D) Stepwise QTL 144 
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mapping output for nickel on chromosome 9. LOD profiles are plotted for all environments in 145 

which the QTL is significant. 146 

 147 

 148 

 As seen in the full-genome view of all QTL colored by environment (Fig 1C), there is a 149 

high incidence of QTL found in single locations. There are three hypotheses that could explain 150 

the large proportion of QTL found only in a single location: 1) strong QTL by environment 151 

interaction effects, 2) false positive detection of a QTL in an individual location and 3) false 152 

negatives assessment of QTL absence due to genetic action but statistical assessment below the 153 

permutation threshold in other locations. To reduce the risk of false positives in a single 154 

environment’s QTL set, the significance threshold was raised to the 99th percentile, where 31 of 155 

the 63 location-specific QTL remained significant. Despite the large number of trait/environment 156 

combinations tested (20 traits in 10 environments), the number of QTLs detected is much larger 157 

than the null expectation derived from a Bonferroni correction: 10 QTL (95th percentile 158 

threshold) and two QTL (99th percentile threshold). To account for false negatives, we scanned 159 

for QTL using a more permissive 75th percentile cutoff. Of the 63 single-environment QTL, only 160 

nine had QTL in other environments by this more permissive threshold. Thus, the majority of the 161 

63 single-environment QTL most likely result from environmentally contingent genetic effects 162 

on the ionome. 163 

QTL by Environment Interactions 164 

 That QTL detection was so strongly affected by environment suggested that the effects of 165 

allelic variation on element concentration were heavily dependent on environmental variables. 166 

These results, however, did not specifically test for QTL by environment interactions (QEI). 167 

Comparison between environments in our data is additionally complicated because different 168 

subsamples of the IBM population were grown at these different locations and years. While there 169 
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are many different approaches to identifying QEI described in the literature (summarized in El-170 

Soda et al. (16)) we focused on two previously implemented methods. The first considered 171 

location (but not year) by comparing the goodness of fit for linear models with and without an 172 

interactive covariate (17–19). The second method takes advantage of the ability to grow the same 173 

RILs in multiple years. Trait values measured in the same IBM line for the same element at the 174 

same site but in different years were subtracted from each other and the difference between years 175 

was assigned as the trait value for that RIL genotype for QTL detection (20, 21).  176 

Linear model estimation of QTL by location effects. The most common approach to analyze 177 

QEI is to fit a linear model with environment as both a cofactor and an interactive covariate and 178 

compare results to a model with environment as an additive covariate (22). This method is most 179 

amenable when data are available for the same lines grown in every environment, which was not 180 

the case across all of our dataset. Data from the three locations with two replicate years each (FL, 181 

IN, NY) were analyzed to reduce the number of covariates and increase the power to detect 182 

variation from the environment. The data for both years in each location were combined (FL05 183 

& FL06, IN09 & IN10, NY05, NY06 & NY12), designating covariates based on location. 184 

 Two linear QTL models were fit to the combined data using the FL, IN, and NY locations 185 

as covariates. These models, as detailed in Bhatia et al., reflect the dependence of phenotypic 186 

variance on genetic variance, environmental variance, and genetic by environmental variance.  187 

�� �  � � ���� � ���� �  	���� � 
�   (1) 188 

�� �  � � ���� � ���� � 
�    (2) 189 

The first equation fit (1) is the full model considering the phenotype of individual i (yi) as 190 

controlled by genotype (gi), location (xi), and genotype by location interaction (gixi), while the 191 

reduced model (2) estimates phenotypic without considering genotype by location interaction, 192 
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using genotype and location as purely additive factors. Bg and Bx represent the additive effects of 193 

genotype and environment, respectively, while γ represents the effect of the genotype by 194 

environment interaction. These effects can be estimated through comparison of likelihood 195 

functions for each model to a null model. Subtracting the likelihood ratios of the reduced model 196 

(2) from the full model (1) will isolate the effect of genetic by environment interaction. 197 

The program R/qtl was used to fit QTL using both the full and reduced models for sample 198 

weight and 20 elements, with three locations encoded as covariates in the environment term. For 199 

each marker, LOD scores resulting from the reduced QTL model were subtracted from LOD 200 

scores determined by the full model, leaving a LOD score for each marker representing solely 201 

the significance of the genetic by location component. The significance threshold for the 202 

subtracted LOD scores was calculated by using 1000 permutations of the three step procedure 203 

(fitting the two models with randomized data and then subtracting LOD scores). Even with this 204 

underpowered dataset, 10 QTL by location interactions exceeded the threshold (α= 0.05, Table 205 

2). Interactions between QTL and location are likely to be due to a combination of soil and 206 

weather differences across different locations. In the case of Ni, our initial single-element QTL 207 

mapping conducted separately on data from each environment identified differences in QTL 208 

presence or strength between FL, IN, and NY locations for a QTL located at the beginning of 209 

chromosome 9 (Fig 2). This QTL corresponds to a locus found to have a significant QTL by 210 

location effect (Table 2). Remarkably, all elemental QTL by location interactions detected by 211 

this approach affected trace element accumulation. These elements are both low in concentration 212 

in the grain, and often variable among soils (23). Cd, an element for which we found significant 213 

QEI, has detrimental effects on both human and plant health (24) and is toxic in food at levels as 214 

low as .05 ppm. (25). The locus with the strongest QEI for Cd does not follow location averages 215 
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of Cd content in the grain (Table S3) and therefore is unlikely to be affected by crossing a 216 

detection threshold driven by higher Cd in the soils at those locations. The lack of direct 217 

correlation between QTL significance and grain content also occurs for the loci with strong by-218 

location effects for Mo and Ni. This demonstrates that reduced cadmium or enhanced 219 

micronutrient contents in grain require plant breeding selections that consider complex genetic 220 

by environment interactions rather than genotypes assessed in a single soil environment.  221 

Table 2. QTL with Significant by-Location interactions. 222 

Trait Chr Pos (cM) LOD Significance 
Threshold† 

Mn 1 232.4 7.03 4.59 
Mn 5 195.8 4.61 4.59 
Fe 5 204.6 4.50 3.94 
Ni 1 410.3 6.15 4.69 
Ni 9 7.7 28.50 4.69 
Cu 7 165.9 5.31 4.72 
Zn 4 157.4 4.44 4.13 
Rb 2 185.3 3.38 2.80 
Mo 1 378.0 48.49 4.20 
Cd 2 214.6 20.26 3.87 
†α= 0.05 223 
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 224 

Fig 2. Significant QTL-by-Location Interactions Reflect Variation in Single Environment 225 

Mapping. (A) Nickel QTL on chromosome 9 exhibits variation between FL, IN, and NY 226 

growouts in single environment QTL mapping. Scanone QTL mapping output for Ni on is 227 

plotted for FL05, FL06, IN09, IN10, NY05, and NY12. LOD score is plotted on the y-axis and 228 

cM position on the x-axis. Horizontal line corresponds to significance threshold (α= 0.05). (B) 229 

Scanone QTL mapping for combined Ni data from Florida (FL05 and FL06), Indiana (IN09 and 230 

IN10), and New York (NY05 and NY12) growouts. All lines within each location were included, 231 

with covariates designated based on location. QTL mapping output using model with location as 232 

an additive covariate is shown as dotted line. QTL mapping output from model with location as 233 

both an additive and interactive covariate shown as dashed line. Subtracted LOD score profile 234 

from the two models (QTL by location interactive effect only) shown as solid line. Horizontal 235 

line corresponds to significance threshold for QTL by location interaction effect, derived from 236 

1000 iterations of the three step procedure using randomized data: scanone QTL mapping with 237 

the additive model, scanone QTL mapping with the additive and interactive model, and 238 

subtraction of the two models. 239 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 1, 2016. ; https://doi.org/10.1101/048173doi: bioRxiv preprint 

https://doi.org/10.1101/048173
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14

QTL for trait differences within location. The previous method identified genotypes with 240 

interactions with location but not with year. Year to year variation will also have effects due to 241 

differences in rainfall, temperature and management practices. To examine variation that occurs 242 

within a location over different years, we examined the intra-location QEI in the three locations 243 

(FL05 & FL06, IN09 & IN10, NY05 & NY12). QTL were mapped using the stepwise algorithm 244 

on the trait differences between common lines in the two environments for sample weight and 20 245 

elements. This approach identified loci affecting phenotypic differences between the same lines 246 

grown on the same farm but in different years. Six QTL were found for FL05-FL06 differences, 247 

one QTL for IN09-IN10 differences, and two QTL for NY05-NY12 differences (Table 3). These 248 

trait-difference QTL included locations identified in our single element/environment QTL 249 

experiment where a locus was present for one year but not the other or the QTL was found in 250 

both years with differing strength (Fig 3A, B, C). Six of the difference QTL were detected at 251 

locations where no QTL were detected when the years were mapped separately, revealing novel 252 

gene by environment interactions not obvious from the single year data. These significant effects 253 

of year to year environmental variation within the same location indicated that factors beyond 254 

location are both influencing the ionome and determining the consequences of genetic variation. 255 

 256 

Table 3. Significant QTL for Trait Differences. 257 

Location Years 
Compared 

Trait Chr Pos (cM) LOD Significance 
Threshold† 

FL FL05_FL06 Mg 8 294.4 5.23 3.74 
FL FL05_FL06 P 4 130.2 3.89 3.60 
FL FL05_FL06 P 4 297.8 6.03 3.60 
FL FL05_FL06 P 8 294.6 8.43 3.60 
FL FL05_FL06 Co 1 296.3 4.36 3.69 
FL FL05_FL06 Mo 1 378.6 6.10 3.70 
IN IN09_IN10 Fe 8 140.9 4.52 3.62 
NY NY05_NY12 K 5 154.2 4.25 3.61 
NY NY05_NY12 Sr 7 193.2 4.45 3.66 
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†α= 0.05 258 

 259 

Fig 3. Comparison of QTL Mapped on Traits in Single Environments and Trait 260 

Differences Between Environments. Examples from stepwise QTL mapping on trait 261 

differences of between two years at one location, calculated between IBM lines common to both 262 

years. Scanone QTL mapping output is plotted for the same trait from each year separately. LOD 263 

score is plotted on the y-axis and cM position on the x-axis. Horizontal lines correspond to 264 

significance threshold (α= 0.05). (A) Molybdenum QTL on chromosome 1 mapped for Mo in 265 

FL05, Mo in FL06, and difference in Mo content between FL05 and FL06. (B) Iron QTL on 266 

chromosome 8 mapped for Fe in IN09, Fe in IN10, and difference in Fe content between IN09 267 

5

h 
D 
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and IN10. (C) Potassium QTL on chromosome 5 mapped for K in NY05, K in NY12, and 268 

difference in K content between NY05 and NY12. 269 

Discussion 270 

The results described here demonstrate that the concentrations of elements in the kernels 271 

of maize are strongly affected by the interaction of genetics with growth environment. 272 

Dramatically, element concentration is highly heritable within an environment and varied 273 

between environments. The presence of a large number of single-environment QTL is consistent 274 

with the hypothesis that environment has a significant impact on genetic factors influencing the 275 

ionome. By changing the stringency of the statistical tests, we are able to discount the likelihood 276 

that that these single environment QTL are the result of a large number of false positives or false 277 

negatives. The structure of our data, with few lines measured across all locations and years, 278 

limited our ability to test for direct QTL by environment interactions. As a result, we have likely 279 

underestimated the extent of QEI. Future studies with uniform lines across environments will 280 

allow for inclusion of data from all environments and lines and increase power to detect 281 

additional genetic by environment interactions. 282 

 Nevertheless, we were able identify QEI over different locations and QEI at a single 283 

location over different years. We identified a strong nickel QTL on chromosome 9 that was 284 

found in Indiana and New York with single-environment QTL mapping, but not in Florida. This 285 

same locus also identified as a significant location-interacting QTL when using a model that 286 

included Indiana, New York, and Florida as covariates. One possible cause for this, and other 287 

location specific QTL, might be differences in element availability between local soil 288 

environments. Interestingly, the presence/absence of the QTL does not seem to correlate with the 289 

mean levels of the elements in the grains sampled from that location, suggesting that QEI are not 290 

being driven solely by altered availability of the elements in the soil. Local soil differences are 291 
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less likely to be driving the QTL found for pairwise differences between two years at one 292 

location. Soil content should remain relatively similar from year to year at the same farm, 293 

suggesting that the loci identified by comparison between years and within location will encode 294 

components of elemental regulatory processes responsive to precipitation, temperature, or other 295 

weather changes. Experiments with more extensive weather and soil data, or carefully 296 

manipulated environmental contrasts, are needed to create models with additional covariates and 297 

precisely model environmental impacts.  298 

 Although the mapping intervals do not provide gene-level resolution, several QTL 299 

overlap with known elemental regulation genes, such as the QTL on chromosome 1 at 378 cM 300 

which coincides with ZEAMMB73_045160, an ortholog of the Arabidopsis molybdenum 301 

transporter, MOT1. We observe strong effects and replication of this QTL across nearly all 302 

environments, suggesting that this MOT1 plays a role in a variety of environments. Other large 303 

effect QTL found in several environments merit further investigation, as they may recapitulate 304 

important element-associated genes that have yet to be identified.  Identification of the genes 305 

underlying these QTL and the gene/environmental variable pairs underlying the QEIs will 306 

improve our understanding of the factors controlling plant elemental uptake and productivity.  307 

Given the high levels of variability that the interaction between genotype and environmental 308 

factors can induce in these traits, conventional breeding approaches that look for common 309 

responses across many different environments for a single trait may fail to improve the overall 310 

elemental content, necessitating rational approaches that include both genetic and environmental 311 

factors.   312 

Conclusions 313 

 Here we have shown that the maize kernel ionome is determined by genetic and 314 
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environmental factors, with a large number of genetic by environment interactions. Elemental 315 

profiling of the IBM population across 10 environments allowed us to capture environmentally-316 

driven variation in the ionome. Our QTL analysis on elements found mainly single-environment 317 

QTL, indicative of substantial genetic by environment interaction in establishment of the 318 

elemental composition of the maize grain. This approach, along with identification of QEI 319 

occurring both within a single location over different years and QEI between different locations, 320 

demonstrated that gene by environment interactions underlie elemental accumulation in maize 321 

kernels. 322 

Methods 323 

Field Growth and Data Collection 324 

Population and field growth. Subsets of the intermated B73 x Mo17 recombinant inbred (IBM) 325 

population were grown in 10 different environments:  Homestead, Florida in 2005 (220 lines) 326 

and 2006 (118 lines), West Lafayette, Indiana in 2009 (193 lines) and 2010 (168 lines), Clayton, 327 

North Carolina in 2006 (197 lines), Poplar Ridge, New York in 2005 (256 lines), 2006 (82 lines), 328 

and 2012 (168 lines), Columbia, Missouri in 2006 (97 lines), and Limpopo, South Africa in 2010 329 

(87 lines). In all but three environments, NY05, NC06, and MO06, one replicate was sampled 330 

per line. In NY05, 3 replicates of 199 lines, 2 replicates of 50 lines, and 1 replicate of 7 lines 331 

were sampled. A replicate is considered pooled ears from a row. Several ears were harvested and 332 

kernels were subsampled from pooled ears from the row. After harvesting, seeds were stored in 333 

local temperature and humidity controlled seed storage rooms. Subsequently they were shipped 334 

to the ionomics lab where they were stored in temperature-controlled conditions. Because each 335 

batch of seed was treated identically, any losses in weight or increases in weight due to differing 336 

hydration should not affect the relative, weight-adjusted concentrations used for analysis. We do 337 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 1, 2016. ; https://doi.org/10.1101/048173doi: bioRxiv preprint 

https://doi.org/10.1101/048173
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19

not expect any changes in ion composition due to storage. Table S1 includes planting dates and 338 

line numbers after outlier removal and genotype matching. After outlier removal, 199 of the 233 339 

unique lines in the experiment were present in 3 or more of the 10 environments. 106 lines were 340 

present in 7 or more of the environments.  341 

Elemental Profile Analysis 342 

Elemental profile analysis is conducted as a standardized pipeline in the Baxter Lab. The 343 

methods used for elemental profile analysis are as described in Ziegler et al. (26). Descriptions 344 

taken directly are denoted by quotation marks. 345 

Sample preparation and digestion. Lines from the IBM population from each environment 346 

were analyzed for the concentrations of 20 elements. “Seeds were sorted into 48-well tissue 347 

culture plates, one seed per well. A weight for each individual seed was determined using a 348 

custom built weighing robot. The weighing robot holds six 48-well plates and maneuvers each 349 

well of the plates over a hole which opens onto a 3-place balance. After recording the weight, 350 

each seed was deposited using pressurized air into a 16×110 mm borosilicate glass test tube for 351 

digestion. The weighing robot can automatically weigh 288 seeds in approximately 1.5 hours 352 

with little user intervention.” 353 

 “Seeds were digested in 2.5 mL concentrated nitric acid (AR Select Grade, VWR) with 354 

internal standard added (20 ppb In, BDH Aristar Plus). Seeds were soaked at room temperature 355 

overnight, then heated to 105°C for two hours. After cooling, the samples were diluted to 10 mL 356 

using ultrapure 18.2 MΩ water (UPW) from a Milli-Q system (Millipore). Samples were stirred 357 

with a custom-built stirring rod assembly, which uses plastic stirring rods to stir 60 test tubes at a 358 

time. Between uses, the stirring rod assembly was soaked in a 10% HNO3 solution. A second 359 
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dilution of 0.9 mL of the 1st dilution and 4.1 mL UPW was prepared in a second set of test tubes. 360 

After stirring, 1.2 mL of the second dilution was loaded into 96 well autosampler trays.” 361 

Ion Coupled plasma mass spectrometry analysis. Elemental concentrations of B, Na, Mg, Al, 362 

P, S, K, Ca, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Mo, and Cd “were measured using an Elan 363 

6000 DRC-e mass spectrometer (Perkin-Elmer SCIEX) connected to a PFA microflow nebulizer 364 

(Elemental Scientific) and Apex HF desolvator (Elemental Scientific). Samples were introduced 365 

using a SC-FAST sample introduction system and SC4-DX autosampler (Elemental Scientific) 366 

that holds six 96-well trays (576 samples).” Measurements were taken with dynamic reaction cell 367 

(DRC) collision mode off. “Before each run, the lens voltage and nebulizer gas flow rate of the 368 

ICP-MS were optimized for maximum Indium signal intensity (>25,000 counts per second) 369 

while also maintaining low CeO+/Ce+ (<0.008) and Ba++/Ba+ (<0.1) ratios. This ensures a 370 

strong signal while also reducing the interferences caused by polyatomic and double-charged 371 

species. Before each run a calibration curve was obtained by analyzing six dilutions of a multi-372 

element stock solution made from a mixture of single-element stock standards (Ultra Scientific). 373 

In addition, to correct for machine drift both during a single run and between runs, a control 374 

solution was run every tenth sample. The control solution is a bulk mixture of the remaining 375 

sample from the second dilution. Using bulked samples ensured that our controls were perfectly 376 

matrix matched and contained the same elemental concentrations as our samples, so that any 377 

drift due to the sample matrix would be reflected in drift in our controls. The same control 378 

mixture was used for every ICP-MS run in the project so that run-to-run variation could be 379 

corrected. A run of 576 samples took approximately 33 hours with no user intervention. The time 380 

required for cleaning of the instrument and sample tubes as well as the digestions and transfers 381 

necessary to set up the run limit the throughput to three 576 sample runs per week.”  382 
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Computational Analysis 383 

Drift correction and analytical outlier removal. Analytical outliers were removed from single-384 

seed measurements using a method described in Davies and Gather (1993). Briefly, values were 385 

considered an outlier and removed from further analysis if the median absolute deviation 386 

(MAD), calculated based on the line and location where the seed was grown, was greater than 387 

6.2.  388 

 Normalization for seed weight by simply dividing each seed’s solution concentration by 389 

sample weight resulted in a bias where smaller seeds often exhibited a higher apparent elemental 390 

concentration, especially for elements whose concentration is at or near the method detection 391 

limit. This bias is likely either a result of contamination during sample processing, a systematic 392 

over or under reporting of elemental concentrations by the ICP-MS or a violation of the 393 

underlying assumption that elemental concentration in seeds scales linearly with seed weight. 394 

Instead, we developed a method whereby the residuals from the following linear model:  395 

 396 

� � �� � ���� � ���� � 
 

 397 

where Y is the non-weight normalized measure of elemental concentration for each seed after 398 

digestion, β0 is the population mean, X1 is the seed weight, X2 is the analytical experiment the 399 

seed was run in (to further correct for run-to-run variation between analytical experiments), and e 400 

is the residual (error) term. The residuals in this linear model represent how far each data point 401 

departs from our assumption that analyte concentration will scale linearly with sample weight. If 402 

all samples have the same analyte concentration then the linear model will be able to perfectly 403 

predict analyte concentration from weight and the residuals will all equal zero. However, if a 404 
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sample has a higher or lower concentration of an analyte then the general population being 405 

measured, then it will have a residual whose value represents the estimated concentration 406 

difference from the population mean. For this reason, we have termed this value the estimated 407 

concentration difference from the mean (ECDM). 408 

Heritability calculation. Broad-sense heritability was calculated for seed weight and 20 409 

elements across environments and within three environments for which we had substantial 410 

replicate data. To calculate the broad-sense heritability across 10 environments, the total 411 

phenotypic variance was partitioned into genetic and environmental variance, with the broad-412 

sense heritability being the fraction of phenotypic variance that is genetic. This was done using 413 

an unbalanced, type II analysis of variance (ANOVA) in order to account for the unbalanced 414 

common line combinations across environments. Two models were fit using the lmfit function in 415 

R. The first model included genetic variance as the first term and environmental variance as the 416 

second. The second model had the opposite form. The sum of squares for genetic or 417 

environmental components was obtained using the anova function on the model in which that 418 

component was the second term. Broad-sense heritability was calculated by dividing the genetic 419 

sum of squares by the total (genetic plus environmental) sum of squares. Heritability was 420 

calculated within environments for NY05, NC06, and MO06. Data with outliers designated as 421 

NA was used for each environment. For each element within an environment, lines with NA 422 

were removed and lines with only 1 replicate were removed, leaving only lines with 2 or more 423 

replicates. The heritability was then calculated for seed weight and each element using lmfit 424 

followed by anova functions to obtain the sum of squares for the genetic component and the 425 

residuals. Broad-sense heritability was calculated as the proportion of total variance (genetic plus 426 

residuals) explained by the genetic component. 427 
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QTL mapping: elemental traits. The R package R/qtl was used for QTL mapping. For each of 428 

the 10 environments, elemental trait line averages and genotypes for all lines, 4,217 biallelic 429 

single nucleotide polymorphisms (SNPs) distributed across all 10 maize chromosomes, were 430 

formatted into an R/qtl cross object. The stepwiseqtl function was used to implement the 431 

stepwise method of QTL model selection for 21 phenotypes (seed weight, 20 elements). The max 432 

number of QTL allowed for each trait was set at 10 and the penalty for addition of QTL was set 433 

as the 95th percentile LOD score from 1000 scanone permutations, with imputation as the 434 

selected model for scanone. A solely additive model was used; epistatic and interaction effects 435 

were not considered and thus heavy and light interaction penalties were set at 0. QTL positions 436 

were optimized using refineqtl, which considers each QTL one at a time, in random order, 437 

iteratively scanning in order to move the QTL to the highest likelihood position. QTL models for 438 

each trait in each environment were obtained using this procedure. QTL within 5 cM of each 439 

other were designated as the same QTL.  440 

QTL by environment analysis: linear model comparison. Linear modeling was used 441 

determine instances and strength of QEI using all data from two years within three locations (FL, 442 

IN, NY). The specific growouts analyzed together were FL05, FL06, IN09, IN10, NY05, and 443 

NY12. FL, IN, and NY were then used as covariates in QTL analysis. Two QTL models, one 444 

with location as an additive and interactive covariate and one with location as only an additive 445 

covariate, were fit for each phenotype (sample weight, 20 elements) using the scanone function 446 

in R/qtl,  447 

�� �  � � ���� � ���� �  	���� � 
�   (1) 448 

�� �  � � ���� � ���� � 
�    (2) 449 

where yi is the phenotype of individual i, gi is the genotype of individual i, and xi is the location 450 
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of individual i. Bg and Bx are additive effects of genotype and environment, respectively, and γ is 451 

the effect of genotype by environmental interaction. LOD scores for each marker using model 452 

(2) were subtracted from LOD scores for each marker using model (1) to the isolate genetic by 453 

location effect. QTL by location interaction was determined as QTL with a significant LOD 454 

score after subtraction. The significance threshold was calculated from 1000 permutations of the 455 

three step procedure (fitting the two models and then subtracting LOD scores) and taking the 95th 456 

percentile of the highest LOD score.  457 

QTL by environment analysis: mapping on within-location differences. QTL were mapped 458 

on phenotypic differences between common lines grown over two years at a single location. This 459 

procedure was used to compare FL05 and FL06, IN09 and IN10, and NY05 and NY12 by 460 

calculating the differences for each trait value between common lines in location pairs (FL05-461 

FL06, IN09-IN10, NY05-NY12) and using these differences for analysis using the previously 462 

described stepwiseqtl mapping and permutation procedure.  463 
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