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Abstract 

A recent study investigated sperm mediated inheritance of diet induced metabolic phenotype, 

reported underlying regulation of MERVL targets and ribosomal protein genes in embryos, and 

suggested that the altered regulation observed may cause placentation defects which can 

secondarily result in abnormal metabolism. An analysis of available transcriptomic data however 

reveals a direct link between the developmentally altered genes and the offspring phenotype.  
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Accumulating evidence suggests that parental exposure of certain environmental factors can 

cause altered phenotypes in subsequent generation(s). Mechanisms underlying this 

unconventional mode of transmission however remain elusive. Importantly, Sharma et al. (1) 

demonstrated sperm mediated transfer of phenotypic information in a mouse model of paternal 

Low Protein diet induced offspring metabolic perturbation. Upon finding altered small RNA 

population including increased levels of tRF-Gly-GCC in Low Protein sperm, the authors 

examined the transcriptomic effect of antisense oligos targeting the tRF on ESCs and embryos, 

and obtained evidence suggesting tRF-Gly-GCC regulation of MERVL targets. This evidence 

was further supported by RNA-seq analysis of embryos cultured to various stages of 

development following IVF with Control or Low Protein sperm or ICSI, and embryos generated 

through zygotic injection of sperm small RNA population or synthetic tRF-Gly-GCC oligos. 

Besides, Sharma et al. also found that altered transcripts in Low Protein sperm IVF embryos are 

enriched for ribosomal protein genes. The authors, instead of examining if a correlation exists 

between embryonic gene expression changes and offspring phenotype, explained these findings 

by speculating that MERVL target and ribosomal protein gene regulation may lead to altered 

placentation which in turn can cause downstream effects on metabolism. The present analysis of 

Sharma et al.'s gene expression data however directly links gene expression alterations in 

embryos with offspring phenotype, thus providing a new interpretation of the reported findings. 

 

First, a gene ontology analysis of the previously identified MERVL targets (2) that formed the 

basis of Sharma et al.'s evidence itself shows that these targets overrepresent various processes 

relevant to the offspring phenotype described for the mouse model (1, 3) (Fig. 1A). Second, the 

genes identified by Sharma et al. as differentially expressed in embryos generated following 
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zygotic microinjection of antisense tRF-Gly-GCC oligos (table S6 of Sharma et al.) show similar 

enrichment (Fig. 1B). Third, the genes showing expression change in Low Protein sperm IVF 

embryos (table S7 of Sharma et al.) at 2-fold cut-off, a criterion used by the authors for 

analyzing differential expression in embryos (Fig. 4E of Sharma et al.), enrich several gene 

ontology categories relevant in epigenetic inheritance of metabolic phenotype (Fig. 2A). Fourth, 

similar enrichment of processes is observed in the genes showing 2-fold expression change in 

embryos generated through Low Protein sperm ICSI, and zygotic injection of sperm small RNA 

population or synthetic tRF-Gly-GCC oligos (table S8 of Sharma et al.) (Fig. 2B). Cumulatively, 

this reanalysis establishes embryonic gene expression-offspring phenotype correlation. 

 

Like Sharma et al.'s article, a recently published paper separately reported sperm tRF mediated 

inheritance of diet induced metabolic disorder (4). In this study, RNA-seq analysis of 8-cell and 

blastocyst stage embryos generated through zygotic injection of High Fat sperm tRFs identified 

differentially expressed genes that were enriched for gene ontology processes related to 

metabolic regulation, besides others. It was suggested that these embryonic transcriptional 

changes may lead to reprogrammed gene expression and result in offspring phenotype. The 

present reanalysis is consistent with this hypothesis. Besides tRFs, these studies, as also others 

reporting recently epigenetic inheritance of metabolic disorders through the male line (8, 9), also 

found altered sperm levels of other small noncoding RNAs including let-7 miRNAs. 

Interestingly, a role of miRNAs, specifically let-7 species, in epigenetic inheritance was 

predicted previously on the basis of a bioinformatic analysis (10) that tested the proposal that 

small RNAs mediate the transmission of environmental effects across generations through gene 

networks (11-13). Emerging evidence (1, 4, 8, 9) seem consistent with this model.   
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Fig. 1 

Enriched processes in (A) MERVL targets, and (B) tRF-Gly-GCC inhibition induced 

differentially expressed genes in embryos. Green and orange bars represent down- and up-

regulated genes, in that order. Nominal significance P values (y axis, -log10) for enrichment are 

shown. Gene ontology tool (5) was used for enrichment analysis. Not all enriched processes are 

shown. 

 

Fig. 2 

Heatmap clustering of enriched processes in differentially expressed genes in (A) Low 

Protein sperm IVF generated embryos at various stages, and (B) 2-cell stage embryos 

obtained using zygotic sperm small RNA or synthetic tRF-Gly-GCC injection, and T. 

sperm or C. sperm ICSI. Red, green, and black represent enriched processes in up- and down-

regulated genes, and both, in that order. Grey represents no enrichment. City-block distance was 

used as similarity metric and average linkage as hierarchical clustering method. The data was 

organized and analyzed using Cluster 3.0 (6), and the results graphically represnted using Java 

TreeView 1.1.6r2 (7). Other details as in Fig. 1. 
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