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Abstract

A new method for automated spike sorting for recordings with high density, large scale multielectrode
arrays is presented. Exploiting the dense sampling of single neurons by multiple electrodes, we obtain an
e�cient, low-dimensional representation of detected spikes consisting of estimated spatial spike locations
and dominant spike shape features, which enables fast and reliable clustering into single units. Millions of
events can be sorted in minutes, and the method is parallelized and scales better than quadratically with
the number of detected spikes. We demonstrate this method using recordings with a 4,096 channel array,
and present validation based on anatomical imaging, optogenetic stimulation and model-based quality
control. A comparison with semi-automated, shape-based spike sorting exposes signi�cant limitations of
conventional methods. Our analysis shows that it is feasible to reliably isolate the activity of hundreds to
thousands of neurons in a single recording, and that dense, multi-channel probes substantially aid reliable
spike sorting.

Introduction

Large scale, dense probes and arrays and planar multielectrode arrays enable extracellular record-
ings of thousands of neurons simultaneously (Eversmann et al., 2003; Berdondini et al., 2005;
Hutzler et al., 2006; Frey et al., 2010; Ballini et al., 2014; Maccione et al., 2014; Müller et al.,
2015; Obien et al., 2015). Exploiting such data requires the reliable isolation of extracellularly
recorded spikes generated by single neurons, spike sorting, a computationally costly task that is
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di�cult to scale up to large numbers of recording channels (Rey et al., 2015). For conventional
devices with up to tens of recording channels, a typical work�ow consists of initial event detection,
followed by semi-automated clustering based on spike waveform di�erences, and manual inspection
and re�nement of the proposed event assignments. If the recording channels are su�ciently well
separated, there is no or little overlap between their signals, and spike sorting can be performed
by clustering a low-dimensional representation of spike shapes (e.g. Lewicki, 1998; Harris et al.,
2000; Quiroga et al., 2004).

This approach, however, is inappropriate for dense, large scale recordings for two rather obvious
reasons. First, on dense arrays spike sorting becomes a very complex assignment problem, since
not only multiple neurons contribute to the compound signal recorded on individual channels,
but each neuron's spikes is also recorded by several neighboring channels simultaneously (Prentice
et al., 2011; Rossant et al., 2016). Events are thus described by multiple waveforms and their
locations, with an exponential number of potential assignments that can only be tackled using
approximate algorithms. Second, the sheer size of the data sets makes extensive manual interven-
tion impractical, hence as much of the process as possible, including quality control, should be
automated.

In addition, the measured signals in dense recordings di�er from conventional recordings in a rather
subtle way. Much of the variability in spike shapes is due to measuring them at di�erent positions
relative to the neuron. In conventional recordings, relatively small signals are measured using
large electrodes averaging currents originating from di�erent parts of the neuron. High density
MEAs with small electrode detect primarily strong currents at the axon initial segment (AIS) of
the neurons. In other words, the mechanism for generating action potentials is represented with a
higher weight in the measured signals, leading, in terms of signal power, to a lower variability in the
measured spike shapes. Existing solutions addressing these issues, which have been demonstrated
on data from hundreds of channels, are template matching methods (Prentice et al., 2011; Marre
et al., 2012), and the elimination of the e�ect of uninformative spike features such that �tting of
a mixture model becomes feasible for large data sets (Rossant et al., 2016).

Here we present a new, very fast and fully automated method for spike sorting. Dense sampling
enabled us to obtain a rough estimate of a source location for each detected event (Muthmann et al.,
2015). Spikes detected this way tend to form dense, spatially separated clusters, which, as we show
using optogenetic stimulation and confocal imaging, originate from single neurons. In addition,
for each event an average waveform is obtained, with noise reduced by signal interpolation. Shape
features extracted from this waveform are then combined with spatial locations, such that the
clustering problem is reduced to �nding local density peaks in few dimensions.

We demonstrate this method using light responses in the mouse retina and spontaneous activity
in cell cultures recorded with a 4,096 channel array. To evaluate the quality of the sorting, post
hoc analysis is performed on the clustered data, which allows largely unsupervised rejection of
poorly clustered units, and highlights potentially problematic cases for further inspection. A direct
comparison with conventional spike sorting also exposes severe, and hard to detect, limitations of
the latter. A parallelized implementation of this method, which is capable of sorting millions of
spikes within a few minutes on a fast workstation, as well as a tool for data visualization, can be
downloaded at https://github.com/martinosorb/herding-spikes.

Results

Spatial spike localization

Figure 1A illustrates a typical recording setup, with a �attened retina placed on the array. In
a �rst step, spikes were detected using threshold-based method that exploits dense sampling
to improve detection performance, and assigns each spike an estimated location based on the
barycenter of the spatial signal pro�le (Muthmann et al., 2015). This procedure yields spatio-
temporal event maps, where each event is identi�ed by a time stamp, two spatial coordinates and
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Figure 1 Spatial event localization reveals isolated spike clusters.
(A) Confocal image of a Thy1-ChR2-YFP retina expressing yellow �uorescent protein under the Thy1 promoter,
placed on the array for recording. Electrodes can be seen as small squares in areas not covered by the retina. The
active area of the array is indicated by dashed lines. Scale bar is 200µm.
(B) The activity map of a quarter of the array after spatial event localization. Spike counts shown as density
plot, spatially binned with 8.4µm resolution. This reveals distinct clusters in space, presumably originating from
individual neurons. The data in panels B-E are from the same recording acquired at 24 kHz on 32x32 channels,
panel A shows a di�erent preparation.
(C) Examples of several detected events (rectangle in B), shown at their estimated locations (colored circles), and
the corresponding episodes in the raw data (colored traces). Scale bars are 5 ms and 200 µV.
(D) Average peak signal decay for detected events as a function of distance. On average, a signi�cant signal is
detectable in an area of 100µm around the spike peak location. Note that this plot is based on signal peaks at the
spike time ± 2 recording frames, so signals beyond 200µm re�ect primarily noise.
(E) Twenty randomly selected spike shapes for events localized within the area marked by the large circle in panel
C, indicating the presence of signals from at least two di�erent neurons at this location. Scale bars are 5 ms and
200 µV.
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a single, interpolated waveform. The resulting spatial activity maps provided a higher spatial
resolution for spike locations than given by the electrode arrangement of the MEA (Figure 1B).
As expected for signals originating from distinct sources, spikes were found in dense clusters
surrounded by areas of low event density. The relationship between recorded signals and spike
locations is illustrated in Figure 1C (magni�ed part of Figure 1B). The estimated locations of
several spikes are indicated by circles, and the corresponding raw data segments highlighted in
the traces from nearby electrodes. These examples show how spike locations are related to the
spatial decay of the voltage peaks, and that the decay was su�ciently wide to estimate their peak
locations on the array (Figure 1D, cf. Pettersen & Einevoll 2008; Lindén et al. 2011; Mechler et al.
2011).

Thus, on dense MEAs event locations provide a compact summary of the spatial activity footprint
for each spike. An inspection of waveforms, however, reveals the presence of multiple units in small
areas (Figure 1E). This shows that clustering spatial locations alone is insu�cient for reliable single
unit isolation, as also shown in earlier work (Prentice et al., 2011).

Combined spatial and shape-based clustering

Next, spikes are clustered using a combination of their estimated locations and their dominant
waveform features, extracted via PCA. Together, these two feature sets provide a complementary,
compact description of the events. The location estimate is an e�ective way of summarizing the
spatial footprint each spike leaves on the array, while waveforms enable the separation of spatially
overlapping sources, and they remove ambiguities at spatial cluster boundaries.

The Mean Shift algorithm was used for clustering these data, with the number of clusters auto-
matically determined and is controlled by a single scale parameter (Comaniciu & Meer, 2002).
Clusters are formed by moving spikes along density gradients, and augmented by local di�erences
in spike waveforms. We found that including the �rst two principal components was su�cient to
successfully isolate single units. This reduces the high dimensional assignment problem to four
dimensional clustering, which can be performed in minutes for millions of events on a fast com-
puter. In addition to the scale parameter, this method only requires a mixing coe�cient for the
shape information as a second parameter.

Figure 2A-C shows the result of clustering a recording from 1,024 channels at 24 kHz sampling
rate, which had about 440,000 spikes that were separated into 1,600 units. Cluster sizes ranged
from tens of spikes to several thousands, corresponding to �ring rates ranging from 0.1 to 30Hz
(circle areas in Figure 2A indicate the �ring rate of each unit). A magni�ed view of a subset of
clusters, together with the average spike waveforms, shows that units may indeed spatially overlap,
but are separated by their waveform features (Figure 2B). Overall, units with clearly bi-phasic
and large amplitude waveforms tend to form the more spatially coherent clusters, while smaller
events are spatially more spread out (compare average waveforms for the clusters).

The units with small waveforms originate from neurons that left weak signals on the MEA, but
that were nevertheless detected as we generally used a low threshold during the detection step
to avoid false negatives. Such units may contain an incomplete spike records, or contain signals
from multiple neurons that could not be well separated. The �rst PC projection (PC1) for the
events is a good indicator of their biphasic character, and using the convention that positive values
always coincide with more biphasic waveforms, this measure can be used to (de-)select units for
subsequent analysis (Figure 2C). A similar method, which we used for all recordings performed at
lower sampling rates (7 kHz, 4,096 channels), was to train and employ a classi�er to pre-select valid
spikes prior to clustering based on salient waveform features (see Supplementary Material, Figure
S1). This method can remove noise more reliably than simply increasing the higher detection
threshold or using other pre-speci�ed criteria on spike shapes, as the classi�er is better adjusted
to the speci�c recording conditions. Importantly however, this step is not required for sampling
rates of >10 kHz.

As a �rst assessment of the clustered units, we generated electrical images for individual units (two
examples are shown in Figure 2D). These images provide a spatio-temporal representation of the
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Figure 2 Illustration of clustered spike data.
(A) Overview of all single units obtained by clustering a recording from the retina (same data as in Figure 1,
acquired at 24 kHz), shown as circles at their estimated locations in array coordinates. Circle areas are proportional
to �ring rates.
(B) Magni�ed view of a group of units (area in white rectangle in panel A), showing a subset of spikes at their
estimated locations (dots, colored by unit membership, same colors as A), and the average waveform associated
with each unit.
(C) As B, but with spike colors encoding the magnitude of the spike waveform projection along the �rst principal
component (PC1 score). Higher scores represent bi-phasic waveforms, and low scores weak de�ections without a
clear bi-phasic shape.
(D) Electrical images for two units, negative signals relative to baseline are colored in blue, and positive signals
in red. The cross indicates the centroid of the spike locations. Each square represents one electrode, 15 x 15
(0.63 x 0.63mm) electrodes are shown. Axonal propagation can be seen, moving downwards towards the optic disk.
(E) Clustered recording from a hippocampal culture. The panels show raw spike counts (left), all units obtained
during the clustering step (middle), and a magni�ed view of a small area of the MEA showing individual spikes
and average unit waveforms (right). This recording was acquired with 4,096 channels at 7 kHz sampling rate, and
a waveform classi�er was used to remove noise prior to clustering (see Supplementary Material, Figure S1).
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raw signal recorded by the MEA around the time of spiking, and is generated as a spike-triggered
average of the signal on each electrode. Out of 406 units with at least 100 spikes inspected in this
way, all but one had an estimated location within 40µm of the electrode that contained the peak
signal (less than one electrode diameter; median distance 9.7µm), indicating that units are indeed
well aligned with their spatio-temporal electrical footprint. Furthermore, the two examples shown
in Figure 2D reveal that the recordings were of su�cient detail to isolate axonal propagation. In
both cases, a separate, weak positive peak, followed by a negative peak, can be seen traveling
downwards (towards the optic disk). Since these events peak within less than 100µs of the main
signal, they are not detected as separate events, but instead introduce a small bias on the location
estimates during spike localization.

We also tested our method on activity recorded from cultured hippocampal neurons. The example
in Figure 2E illustrates that isolation of single units is also feasible for these preparations, although
here the spike localization was less precise than in the retina. We attribute this to the e�ect of
a larger e�ective conductivity in the space above the electrodes, which is expected to reduce
recorded signal amplitudes, which in turn increases the in�uence of noise on localization (Ness
et al., 2015). In contrast, this conductivity is likely much lower for the approximately 200µm
thick retina, leading to larger and more precisely localizable signals. Ness et al. (2015) show
that in this case even small MEA-tissue gaps strongly reduce the signal recorded amplitude, a
likely explanation for the clear, sharp boundaries between areas with and without recorded spikes.
Yet as also observed for the retina, spikes in cultures were typically spatially well clustered, and
waveform di�erences had su�cient detail to allow separation of overlapping units (see Figure 2E,
right panel, for examples).

Waveform features are essential for reliable clustering

To assess the importance of including waveform features in the clustering process, and the role
of the mixing coe�cient α that determines the weight of waveform features relative to locations
during clustering, we compared the correlations between all waveforms within each unit with cross-
correlations of waveforms between this unit and its closest neighbor, or all nearby spikes within a
radius of 42µm (electrode pitch). A well sorted unit is expected to have high within-correlations,
and smaller cross-correlations. Three examples of this analysis are shown in Figure 3A-C. The
�rst illustrates a case where spatial clustering alone was su�cient to isolate a unit (Figure 3A).
The correlations after clustering spatial locations alone (α = 0) are very similar to those obtained
when waveforms are added (α = 0.3), although in the latter case a few spikes were re-assigned
based on their waveform features. In contrast, in the other two examples two clearly distinct units
were spatially overlapping, and could therefore only be separated when waveform features were
included (Figure 3B,C). In these cases, increasing α causes a substantial increase in self-correlation.
When nearby events have su�ciently distinct waveforms, this also leads to a reduction in cross-
correlations with events in other nearby units (Figure 3B), although this behavior is variable and
di�ers if, for instance, spatially well isolated nearby units have similar waveforms (Figure 3C).

To quantify the separability of these distributions, we computed, for each unit, the area under
the receiver operating characteristic (ROC) curves (AUC), constructed from the distributions of
self-correlations and correlations with events in the nearest unit (Figure 3E), or all neighboring
events (Figure 3F). The area was calculated as the integral of the area spanned by the probability
of �ndings a self-correlation above a sliding threshold, as a function of the probability of �nding
a cross-correlation above this threshold (true positives versus false positives), such that a value of
1 corresponds to perfectly separated distributions, while zero indicates full overlap.

The median AUC for all units in one recording increases as α is increased, before plateauing at
values about α ≈ 0.4 (Figure 3D). This indicates the combined features yield an overall improved
separation of single units. The AUC distributions show that this e�ect is indeed substantial (Figure
3E,F). While spatial clustering alone only yielded three (out of 788 units with >100 spikes) units
with AUC>0.9 when compared to events from its closest neighbor, this increases to 130 (out of
956 units with >100 spikes) for α = 0.32. This number rapidly increases when α ≈ 0.25, and
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Figure 3 Waveform correlations demonstrate improved clustering for combined event locations and waveform
features. All data is from the same experiment as in Figure 1, acquired at 24 kHz.
(A-C) Three examples comparing the same unit obtained using spatial clustering alone (with mixing coe�cient
α = 0) with combined clustering based on combined event locations and waveform features (α = 0.3). Each panel
shows event locations (left), example (thin lines) and average (thick lines) waveforms (middle, scale bars indicate
0.2ms and 100 µV ), and normalized distributions of waveform correlations (right, dashed lines: α = 0, solid lines:
α = 0.3). The selected unit is colored in blue (within), the nearest unit in orange, and the remaining events within
a radius of 42µm of the target unit location in green (nearby spikes, these also include the spikes of the nearest
unit).
(D) Median area under ROC curves (AUC) for all units, quantifying the overlap between the normalized distri-
butions of waveform correlations for each unit and with spatially neighboring events, as a function of the mixing
coe�cient α. The comparison was either done with the spatially closest unit (orange), or with all neighboring spikes
(green).
(D-E) Full distributions of AUC values for all units for di�erent values of α.
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plateaus for larger values, indicating that the precise choice of this parameter is not critical. It
is important to note that while high AUC values indicate a well isolated unit based on waveform
features alone, hence units with small AUC should not be rejected as they may still be spatially
well isolated.

In summary, waveform features help both to re�ne existing units found by spatial clustering, and
to separate spatially overlapping units. The analysis further shows that event locations and wave-
forms indeed provide complementary information, and provide an e�ective way of summarizing
the key features of the spatio-temporal footprint left by spikes on the array.

Validation with optogenetics and anatomical imaging

To test whether the detected units indeed correspond to single neurons, we used Thy1-ChR2-YFP
retinas (see Methods) expressing Channelrhodopsin-2 (ChR2), a light-gated cation channel, under
the Thy1 promoter in about half of all RGCs (Raymond et al., 2008). This allowed us to stimulate
spiking exclusively in a subset of visually identi�able RGCs, to clearly establish correlates between
single spike-sorted units and individual RGCs.

We �rst compared the photoreceptor-driven activity recorded during normal light stimulation
(irradiance 4µW/cm2, full �eld �ashes at 0.5Hz) with recordings obtained when light responses
originating from the photoreceptor-bipolar-ganglion cell pathway are blocked with 20µM DNQX
and L-AP4, and at a maximum irradiance of 0.87mW/cm2 to selectively evoke ChR2 mediated
spikes (Figure 4A). The activity maps show that only a subset of all RGCs responded to optogenetic
stimulation (Figure 4A, compare top and middle plots). For these data, we found 375 units with
a �ring rate of at least 0.5Hz during photoreceptor-driven light stimulation, but only 254 units
during direct stimulation of ChR2-expressing RGCs. In addition, 77 units were signi�cantly less
active during light stimulation than during ChR2 stimulation, presumably neurons unresponsive
to our light stimulus but nevertheless expressing ChR2. To assess the responsiveness of each unit
to ChR2 activation, which was triggered by a random sequence of light �ashes, we determined
the correlation of an individual unit's activity with the overall population activity (Figure 4A,
bottom). Most, but not all highly active units during ChR2 stimulation also showed higher
correlation, hence in some cases intrinsic spontaneous activity, which could not be blocked, was
also present. About 40% of all detected units had a correlation larger than 40%, indicating that
they were well activated.

Next we co-localized the activity with confocal micrographs showing the YFP labeled neurons
(Figure 4B). In total, we analyzed an area of 0.78mm2, where 195 somata were manually anno-
tated, and 211 units were detected (note that the spike sorting was performed on all recordings
together). An example of the alignment of activity and anatomical image is shown in Figure 4B,
for activity obtained during light stimulation (left) and ChR2 activation (right). While some units
were clearly active for both stimuli, others had more spikes in only one condition. Importantly,
all units with signi�cant activity during ChR2 stimulation were closely co-localized with a soma.
Similarly, a tight co-localization between the neurons and electrical images generated from the
raw traces was observed (Figure 4C).

We now asked whether labelled somas and localised units where close to each other in a statistically
signi�cant way. For every unit, we computed the distance to the closest soma. If units and somata
were randomly distributed, the probability of a distance r would be 2πnre−πnr

2

, where n is the
density of somata (Chandrasekhar, 1943). We compared the distribution of 198 distances to
this null model using a one-tailed Kolmogorov-Smirnov test (Figure 4D), which con�rmed that
the distances are signi�cantly smaller than predicted by the random model. Next, to account
for spontaneously active neurons, we applied the test after separating the units in two groups
according to their activity level or population correlation, varying the threshold that separates the
two sets. This showed that the locations of the less active and less correlated units locations are
compatible with a random distribution, while the more active and more highly correlated units
are signi�cantly closer to their anatomical counterparts.
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Figure 4 Comparison of optogenetically evoked spikes with anatomical imaging.
(A) Activity maps obtained during light photoreceptor stimulation (top) and ChR2-expressing RGC stimulation
under blockade of the glutamatergic pathway from photoreceptors to RGCs (middle). The bottom graph shows
the correlation of the activity of each unit with the overall ChR2-driven population activity, which quanti�es the
responsiveness to optogenetic stimulation.
(B) Alignment of neural activity with a confocal image. Individual spikes are shown as dots, colored according to
unit membership (note only a subset of all recorded spikes are shown for clarity). Annotated somata are highlighted
by circles, and unit's centroids as colored circles, with areas proportional to the spike rate.
(C) A di�erent imaged area, with superimposed electrical images of four selected units. Cluster centroids are
indicated a red circles.
(D) The distribution of spatial distances between each unit and its closest soma is signi�cantly di�erent from
randomness. The one-tailed Kolmogorov-Smirnov test shows incompatibility with the distribution obtained by
assuming somata and units are unrelated (p=0.001, green line). When the units are separated into two sets
according to activity level (top) and population correlation (bottom), the e�ect is strongest for highly active/highly
correlated units (blue), while weakly active/correlated units are randomly distributed (yellow). The gray line
indicates the threshold value for which the two sets have the same number of units. Data in these graphs summarize
an imaged area of 0.78mm2.
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Model based validation and quality control

The list of units provided by the clustering step contained assignments for all putative spike events
detected in the raw data, regardless of their signal quality. As pointed out above, detection was
performed with a low threshold to minimize false negatives. Hence a certain fraction of the units
is expected to contain ambiguities the clustering algorithm cannot fully resolve. For instance, the
localization error is typically larger for spikes with small amplitudes (Muthmann et al., 2015),
hence it may not be possible to spatially cluster these events reliably.

To assess the quality of the cluster assignments, and to automatically reject poorly separated units,
we followed an approach proposed by Hill et al. (2011). Under the assumption that the features
of a unit (the spike locations and waveform features) can be described by a multivariate normal
distribution, a comparison of the clusters assignments with those predicted by a Gaussian mixture
model provides an estimate of the classi�cation performance. This was done by investigating
each unit in turn, including all nearby units which could interfere with the unit in question, and
�tting a six-dimensional mixture model with the number of Gaussian given by the number of units
(see Methods). We included four PCA dimensions to ensure the model best exploits all available
waveform features, while ensuring convergence, which was impaired when more dimensions were
included that typically had little or no structure that could be exploited to improve the �t. To
evaluate the relevance of spatial locations and waveform features for clustering, the model was
also �t to each of these features separately.

The model comparison produces a confusion matrix with the estimated number of false positives
and negatives for each unit, which is then summarized into a single measure (F-score). Two
typical outcomes of this procedure are illustrated in Figure 5A and B, for relatively crowded
areas on the array. The �rst example was a unit with a distinct waveform (blue), which had
four neighbors within one electrode radius (Figure 5A). In this case, the blue unit was already
well isolated based on waveform features alone (PCA, F-score= 0.97), but not when only spike
locations were considered (X/Y, F-score= 0.68). The combination of locations and waveforms did
not yield further improvement, but somewhat helped to isolate its neighbors, primarily based on
their spike locations. Note that separate F-scores were also computed for the neighboring units,
using di�erent sets of nearby units. The second example shows �ve spatially well separated units,
which had smaller, and very similar waveforms (Figure 5B). Here waveform based clustering alone
yields a very poor result, with a substantial improvement when spike locations are included. This
situation is quite typical in recordings from the retina, and, as will be shown below, can lead to
wrong assignments even when more advanced methods for waveform-based spike sorting are used.

The results of an analysis performed on a data set with 7.6 million spikes are summarized in
Figure 5C-F. Each of the 2,234 units with a spike rate of at least 0.3Hz took, in turn, the role
of the blue unit in the examples above, for which all units within a radius of 42µm (or at least
the nearest unit) were combined into mixture models. When location and waveform features
were used for quality control, 55% of the units (1230) had an F-score>0.95, and 15% (334 units)
an F-score>0.99 (Figure 5C, X/Y+PCA). These fractions decreased only slightly when locations
(X/Y) were used on their own, but they decreased substantially for waveforms (PCA) alone. A
comparison of the F-scores for waveforms and the combined features shows that adding locations
improve �ts in virtually all cases, but poor scores for waveforms are also more likely to result
in lower combined scores (Figure 5D). An inspection of the waveform �ts for di�erent mixing
coe�cients shows there is an optimal value of about α=0.28 (for recordings at 7 kHz), where the
number of reliably distinguishable units based on waveforms is maximized (Figure 5E). A spatial
overview of these results showed that, as expected, units with low F-scores are primarily found in
areas with dense activity (Figure 5F).

Functional assessment of single unit activity

Our recordings re�ect RGC responses to a series of full �eld �ashes. We therefore evaluated
whether individual sorted units also exhibit the typical On, O� or On-O� responses to light of
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Figure 5 Quantitative assessment of sorting quality with Gaussian mixture models (GMM).
(A, B) Two examples of GMMs �t to groups of neighboring units. In both cases, all units within a radius of 42µm
around the unit colored blue were included in the model. The model was then �t to combined spike locations
and waveforms (X/Y+PCA), waveforms alone (PCA) or locations alone (X/Y). Spikes are colored to indicate the
original cluster assignments. Numbers in each panel are the F-scores for each unit, indicating the average number
of false positives and negatives between the two assignments. Each panel also shows examples of spike waveforms
and the unit average (thick line), using the same color scheme.
(C) Histogram of F-scores of all units in one recording, computed as in A,B.
(D) Relationship between F-scores evaluated from waveforms alone and the combined features.
(E) Number of units with an F-score>0.95, evaluated from waveforms alone, for di�erent values of the shape mixing
parameter α. The best overlap is obtained for α=0.28, the value used in the other examples in this paper.
(F) Spatial distribution of F-scores for all units.
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Figure 6 Functional characterization of spike sorted retinal ganglion cells.
(A) Spatial locations of individual spikes within a small area on the MEA. Only a subset of spikes are shown for
clarity. This area contained 18 units, and unit membership is indicated by color. Spikes of units centered outside
the visible area are shown as black dots. Coordinates are in units of electrode distance (42 µm).
(B) Overview of the units highlighted in part A, using the same color scheme. Each panel shows example waveforms,
the average spike waveform (black line), and the raster and PSTH for full �eld stimulation (2 s bright, 2 dark, red
lines indicate stimulus o�set time). The unit number and cluster F-score are given above the spike waveforms.
(C) Spikes in the circled area in part A, with identical color coding, shown in the space of waveform principal
components (PCA space). The same data as in Figure 1 are shown, acquisition rate was 24 kHz.
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RGCs. Spike locations, spike waveforms, raster plots and peri-stimulus time histograms of all
units in a small patch of retina are shown in Figure 6A,B. These examples demonstrate a clean
separation into fast and slow On and O� cells, and neurons with On-O� responses. Importantly,
nearby or spatially overlapping neurons generally exhibit unique, di�erent responses, as expected
from the mosaic functional organization of RGCs, and there was no apparent mixing of functional
properties as would be expected for poorly isolated units.

Notably, this area contained units with vastly di�erent signal strengths. The fact that the majority
of these units, also those with very small waveforms, exhibit consistent light responses, shows that
much of the signal variance is due to physiological events, and not electrical noise (Muthmann
et al., 2015). Yet, as suggested above, units with weak signals may have an incomplete spike record
of a neuron, and their clustering may be more ambiguous. Units with well de�ned waveforms are
typically also well separated in their PCA projections, while small waveforms are mainly clustered
based on spatial locations (compare units 1-3 with units 5-7 in Figure 6C). As a result, the cluster
F-scores (shown above waveforms in Figure 6B) are indeed lower for units with small waveforms,
hence a selection of units based on this measure is a reliable way to restrict further analysis to
well isolated neurons.

Comparison with conventional spike sorting

Conventional spike sorting relies entirely on di�erences in spike waveforms. Our results indicate
that this may not be su�cient to obtain good isolation in many cases, yet we only used a two-
dimensional representation of the waveforms, which may be too compact to cluster spikes reliably.
To evaluate in more detail how the two approaches di�er, we compared our method with the
outcome of manually curated spike sorting, done on each MEA channel separately. Conventional
spike sorting was performed using T-Distribution E-M clustering (Shoham et al., 2003), followed
by manual inspection and correction (Plexon O�ine Sorter, Dallas, TX).

The data used for this comparison was recorded with 1,024 electrodes at 24 kHz sampling rate
(cf. Figure 1), and 538 cluster with at least 200 spikes each were included in the comparison. For
each cluster, we located the most similar sorted unit using spike count cross-correlation following
binning (each unit is typically found on multiple electrodes), and obtained the number of spikes
in the sorted unit that were not part of the cluster (false negatives), and the number of spikes in
the cluster not present in the sorted unit (false positives). As for the mixture model above, we
then computed precision, recall, and the F-score for each cluster (see Methods).

The three examples in Figure 7A illustrate two common cases we encountered. The �rst example
shows an almost identical assignment for the two methods. This was found for about 18% of
the clusters (96 clusters), for which the comparison gave an F-score larger than 0.95 (Figure 7B).
Such pairs had very small numbers of false positives and negatives, likely comfortably within the
expected variance of the classi�er. The pair in Figure 7A, top panel, for instance had 9 false
negatives, and no false positives, out of 1818 spikes.

For many of the remaining clusters, the F-score was dominated by a sizable fraction of false
negatives, spikes in the sorted unit that were not included in the corresponding cluster (units with
low recall in Figure 7C). An inspection of the spatial locations of these events showed that false
negatives were often located far away from the cluster centroid, and visually appear to be part of
another unit (Figure 7A, middle and bottom panels, orange events). The two examples in Figure
7A (middle and bottom panels) show cases where the erroneous assignment by conventional spike
sorting has the rather severe consequence of classifying these cells as On-O� rather than On cells.

We found that the inclusion of distant spikes happened frequently, with an average distance of false
negatives from the cluster centroid typically around 30µm (Figure 7D). This suggested they were
wrongly included in a sorted unit based on waveform similarities. To see whether these failures
are associated with speci�c waveform features, we compared the F-scores for the comparison
with the average projections of the waveforms along their �rst principal component (PC1, Figure
7E). The PC1 projection provides an indicator of signal quality for each unit (Figure 2B), and
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Figure 7 Failure of conventional spike sorting in isolating single units.
(A) Examples of three units clustered with our method, compared with corresponding units obtained from con-
ventional, spike-shape based sorting. Raster plots show responses to full �eld �ashes (left; 2 s bright, 2 s dark),
principal component projections of all spikes found in the area within a radius of 78µm around the cluster center
(middle) and all spikes plotted at their locations (right). Spikes colored green were found in both units, those in
orange only in the sorted unit, and those in blue only in the clustered unit.
(B) Histograms of F-scores for the comparison (blue) and for mixture model �ts for the sorted units (orange).
(C) Precision and recall for the comparison, illustrating that low F-scores are primarily due to spikes missing in
the clustered unit (orange events in A).
(D) Average distance of spikes not included in the clustered unit, measured from the cluster centroid.
(E) Comparison of F-scores with the average projection of the waveforms along the �rst principal component, shown
for the comparison of sorting method (blue), and for the mixture model �ts of clustered units (orange). The same
data as in Figure 1 was used.

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 5, 2016. ; https://doi.org/10.1101/048645doi: bioRxiv preprint 

https://doi.org/10.1101/048645
http://creativecommons.org/licenses/by-nd/4.0/


15

indeed lower F-scores were observed almost exclusively for low-scoring units. Hence we conclude
that conventional spike sorting only allows reliably isolation of units with strong, very prominent
waveform features, while smaller, less distinct waveforms cannot be separated reliably on the
exclusive basis of their shape.

Discussion

Spike sorting is a critical step in the analysis of extracellular electrophysiological recordings. The
erroneous assignment of spikes can have rather severe implications for the interpretation of multi
neuron activity, so much so that it has been suggested joint models of spike waveforms and neural
activity may be required to avoid spurious or biased correlation estimates (Ventura & Gerkin,
2012). In high density recordings, which are increasingly used both for in vitro and in vivo

studies, an additional complication is that the assignment of spikes to single units is a problem with
exponential complexity in the number of events, hence requires approximate solutions. Moreover,
the sheer size of the data prevents detailed manual inspection and quality control.

Here we solve this task by creating a very e�cient data representation, based on spatial spike
locations and the most prominent waveform features, which yields a low-dimensional event de-
scription and can be clustered e�ciently. We developed and tested the algorithm on data acquired
with a 4,096 channel MEA with 42µm electrode pitch, which is su�cient to obtain signals from
single neurons in multiple channels. In all examples shown here, we performed clustering in four
dimensions, with two dimensions representing waveform features. Adding further features, or
using alternative methods for feature extraction, did not yield an increase in performance (not
illustrated), which is due to a limited waveform variability in our recordings. This is likely due
to the fact that the signals reliably measured with a dense MEA mainly originate from strong
currents at the AIS of each neuron, with limited variability between neuron. This, in turn, makes
it possible to resolve their spatial origin, but limits the additional amount of information that
can be gathered from waveforms. Comparison of optogenetically evoked spikes with anatomical
images indeed indicate that detected spikes appear to cluster near the AIS, and that localization
alone is su�ciently precise to reliably isolate some units neurons even without using additional
waveform features.

Out method can be adjusted to work with other arrays, and potentially also to other probe
geometries, as long as a quantity that serves as a location estimate can be obtained reliably. The
dimensionality of the clustering step can then be adjusted to exploit higher waveform variability,
for instance in in vivo recordings. The complexity of the clustering algorithm scales quadratic with
the number of spikes, and the highly optimized version used here has a much better performance in
situations with prominent spatial clustering. We developed a parallelized implementation, which
allows sorting of millions of spikes in minutes (10 million spikes are sorted in about 8 minutes
on a 12 core 2.6GHz Xeon workstation). Together with a method for quality control, this makes
it possible to perform parameter sweeps to identify the optimal parameters of the clustering
algorithm. Clustering is followed by an automated assessment of clustering quality, based on an
ideal (under some assumptions) model of these data. This permits the automated rejection of
poorly isolated units, manual inspection of borderline cases. Finally, the data can be inspected
using a visualization tool, where further annotation can be performed.

The complete work�ow consists of �rst performing event detection, followed by spatial localization,
clustering, quality control, and �nally an optional manual inspection. The former two are described
in detail in Muthmann et al. (2015), and currently constitute the main bottleneck of the analysis
chain. Detection currently performs about 1/4x real time, and scales linearly with recording
duration. The complexity of the spike localization scales linearly with the number of detected
events, and runs roughly in real time for recordings with normal spike rates. Both methods are
parallelizable, and implementations are under development.

Importantly, working with high density recordings during this study has revealed signi�cant limi-
tations of purely shape-based spike sorting. A major issue is that it can be hard or even impossible
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to decide how many units the signal from a single electrode contains. If an electrode is positioned
close to a group of neurons, one or perhaps two units with strong signals may have su�ciently dis-
tinct waveforms to be separable. Yet comparison with spike locations showed that weaker signals
with di�erent spatial origin are generally not distinguishable based on shape alone. As illustrated,
we frequently found cases where spikes of neurons with entirely di�erent physiological signatures
were mixed by shape-based sorting, a problem that cannot be avoided even by careful manual
inspection. In contrast, our method can cope well with such situations because spatial location
estimates are su�ciently precise to disambiguate such cases. A main factor a�ecting sorting per-
formance is thus the noise and bias in spatial localization, which both depend on the signal quality
(Muthmann et al., 2015).

To achieve good sorting quality, we found that a four-dimensional representation of spikes, which
includes the two main principal components of the averaged waveforms, was su�cient to obtain
highly satisfactory results, even at low acquisition rates of 7 kHz. Adding more dimensions could
yield further improvements, but also a�ected the performance of the clustering algorithm. Fu-
ture work could thus focus on an improved representation of the most important spike waveform
features.

A di�erent strategy for high density recordings, outlined by Marre et al. (2012), is to estimate
spatio-temporal templates, which are then used to identify spikes from each neuron (see also
Dragas et al., 2014). This shifts the computational burden from spatial interpolation and source
localization in our method to the deconvolution of spikes from raw data. We found that adding
additional shape criteria in the detection stage could lead to false negatives, suggesting that
templates will only yield reliable results if the �ring rate of the neurons is high enough so they
can be estimated well enough. A third method, recently developed by Rossant et al. (2016) for
high density in vivo probes, achieves to reduce complexity by masking out irrelevant parts of the
data based on geometric constraints, before �tting a mixture model and clustering the data. This
avoids an early discarding of potentially useful information, which our method does by using signal
interpolation, and Marre et al. (2012) by creating templates. On the other hand, this method is,
while potentially more precise, computationally more demanding, and hence only preferable for
data from hundreds of channels.

Large-scale, high-density electrophysiological recording approaches are relatively new, but they
are rapidly becoming more widespread, o�ering unique opportunities to investigate small scale
neuronal networks at an exquisite level of details, unraveling important networks properties that
could not be detected with fewer and more distant recording probes. However, these exciting
developments in network neuroscience come at the expense of new challenges in terms of reliable
isolation of signals from single cells that are densely packed with each other. The method we have
presented in this study will greatly help alleviating these problems, providing reliable and fast
separation of signals originating from thousands of neurons communicating with each other.

Experimental Procedures

Electrophysiology

Experimental procedures were approved and carried out in accordance to the guidance provided
by the UK Home O�ce, Animals (Scienti�c procedures) Act 1986 for experiments on retinas
performed at Newcastle University, UK, and by the institutional IIT Ethic Committee and by
the Italian Ministry of Health and Animal Care (Authorization ID 227, Prot. 4127 March 25,
2008) for experiments on neural cultures performed at IIT, Genova. Previously acquired data
from hippocampal cultures were used, for a detailed description see Panas et al. (2015).

Experiments on the retina were performed on adult wild type mice (C57Bl/6, aged postnatal
day (P) 27-39) or on B6.Cg-Tg(Thy1-COP4/EYFP)9Gfng/J mice (Thy1-ChR2-YFP; Jackson
Laboratories, Bar Harbor, USA; RRID:IMSR_JAX:007615) aged P69-96. In these mice, thy1-
expressing RGCs coexpress ChR2 and yellow �uorescent protein, allowing visualization under
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�uorescence microscopy. High density recordings from the RGC layer were performed using the
BioCam4096 platform with APS MEA chips type BioChip 4096S (3Brain GmbH, Switzerland),
providing 4096 square microelectrodes (21µm x 21µm) on an active area of 2.67mm x 2.67mm,
aligned in a square grid with 42µm spacing. The platform records at a sampling rate of about
7 kHz/electrode when measuring from the full 64 x 64 electrode array, and was also recon�gured
to sample at 24 kHz when recording from one quarter of all electrodes. Raw data were visualized
and recorded with the BrainWave software provided with the BioCam4096 platform. Activity was
recorded at 12 bits resolution per electrode, low-pass �ltered at 5 kHz with the on-chip �lter and
high-pass �ltered by setting the digital high-pass �lter of the platform at 0.1Hz.

Mice were killed by cervical dislocation and enucleated prior to retinal isolation. The isolated
retina was placed, RGC layer facing down, onto the MEA. Coupling between the tissue and the
electrodes was achieved by �attening the retina on the array under a small piece of polyester
membrane �lter (Sterlitech, Kent, WA) maintained in place by a stainless steel ring. The retina
was kept at 32 °C with an in-line heather (Warner Instruments) and continuously perfused using a
peristaltic pump (∼1ml/min) with arti�cial cerebrospinal �uid (aCSF) containing the following (in
mM): 118 NaCl, 25 NaHCO3, 1 NaH2 PO4, 3 KCl, 1 MgCl2, 2 CaCl2, and 10 glucose, equilibrated
with 95% O2 and 5% CO2. All preparations were performed under dim red light and the room
was maintained in darkness throughout the experiment.

Visual and optogenetic stimulation

Visual stimuli (664x664 pixel images for a total area of 2.67x2.67mm) were presented using a cus-
tom built high-resolution photostimulation system based on a DLP video projector (lightCrafter,
Texas Instruments, USA) combined with a custom made photostimulation software and synchro-
nized with the recording system (Portelli et al., 2016). Neutral density �lters (4.5 - 1.9) were used
to control the amount of light falling on the retina.

Photoreceptor-driven responses were acquired at a maximum irradiance of 4µW/cm2 (ND 4.5), low
enough to avoid eliciting ChR2-driven responses in the ChR2 retinas. To isolate ChR2 responses
from photoreceptor-driven responses in these same retinas, we decreased synaptic transmission
by increasing the MgCl2 concentration to 2.5mM and by decreasing the CaCl2 concentration to
0.5mM in the aCSF solution, and used 20µm DNQX, and 20µm L-AP4 (Tocris Bioscience, UK)
to respectively block metabotropic ionotropic and activate metabotropic (MGLUR6) glutamate
receptors, to block all responses to light in bipolar cells and their postsynaptic RGC partners. We
used the broad RGB spectrum of the DLP projector with a maximum irradiance of 0.87mW/cm2

(ND 2.2) to evoke ChR2 responses. A battery of conventional stimuli (full �eld �ashes, moving
gratings) and spatio-temporal white noise were used, and responses to used repetitive (30x) full
�eld stimuli (0.5Hz) were analyzed in Figures 6 and 7.

Spike detection, localization and selection

The procedures for spike detection and current source localization were described in detail else-
where (Muthmann et al., 2015). First, weighted interpolated signals were generated using two
spatial templates to capture both spikes originating either close to or between electrodes. A �ve
channel template with a strong relative weight for the central electrode and weaker weights for
the four surrounding electrodes emphasized current sources close to electrodes. Sources between
electrodes were captured by a four channel template, which generated a signal that was added to
the data as a virtual channel. A running estimate of the signal baseline and noise level was com-
puted from percentiles for each signal, and putative spikes were detected as threshold crossings.
This procedure ensures that temporally overlapping spikes are detected as long as they leave a
distinct spatial footprint. Next, source locations were estimated for each event by considering the
spatial signal spread over neighboring electrodes. Brie�y, all signals were baseline-subtracted and
inverted, then the median signal was subtracted to minimize bias due to noise, the signal clipped
to positive values, and the center of mass determined.
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To �lter out noise and poorly detected neurons in recordings at low sampling rates (7 kHz), we
implemented an automated post hoc rejection of events for recordings at lower sampling rates. To
this end, noise events were sampled from areas on the MEA where no activity was recorded, such
as at incisions or uncovered areas (identi�able by low spike counts). Up to 1000 of such events,
as well as up to 1000 events with large amplitudes were used to train a Support Vector Machine
with radial basis functions. This model was then used to classify events as true spikes or noise
(see Supplemental Information, Figure S1).

Spike clustering

Data points were clustered together using an implementation of the Mean Shift algorithm (Comani-
ciu & Meer, 2002) available in the scikit-learn open source machine learning library (Pedregosa
et al., 2011). Importantly, this algorithm did not require the knowledge of the desired number
of clusters; it depended, instead, on a single parameter, the bandwidth h, which determined the
expected cluster size. This size can be estimated from a typical spatial cluster size in an activity
plot (Figure 1B), and was here set to 12.6µm (the average width of clusters). To combine spatial
and waveform information, the clustering process was run on a four-dimensional space consisting
of two dimensions indicating the location of each event on the chip, x and y, and two dimensions
representing the �rst two principal components of the event's waveform. The latter were multi-
plied by an additional dimensional constant α that tuned the relative importance of the waveform
components compared to the spatial coordinates. The optimal value of α varies slightly for dif-
ferent data sets, and is typically in the range 0.28-0.34 (Figure 5). To parallelize this algorithm,
we exploited the fact that all points follow a local density gradient until they converge to a local
maximum, the center of a cluster. Because every data point does so independently of the others,
this process is run in parallel, which improved performance roughly proportionally to the number
of available CPUs. The relevant code has been merged into the scikit-learn Python library.

Quality metric

Following Hill et al. (2011), we �tted a multivariate Gaussian mixture model to a set of N clusters,
then estimated cluster overlap using posterior probabilities to obtain the probability of incorrect
assignments under the assumption of a Gaussian cluster shape. The model is �t in six dimensions,
with the two spatial coordinates and the projections of the spike waveform along the �rst four
principal components. For each cluster, we assume that only spikes in nearby clusters interfere
with the sorting. Therefore, all clusters within a radius of 42µm (electrode pitch) are included
in the model, or at least the closest neighbor if no cluster was found within this area. To obtain
meaningful �ts for sets of clusters with a very unbalanced number of spikes, �rst a Gaussian is �t
to each cluster individually, which are then combined into a mixture model.

The quality of the assignment is then evaluated as follows. Let the probability that spike s is in
cluster c be P (C = c|S = s): the estimated fraction of spikes in cluster k that could belong to
cluster i is given by fp(k, i) = 1

Nk

∑
s∈k P (C = i|S = s); by generalizing to all other clusters we

obtained the number of false positives in k:

fpk =
∑
i 6=k

fp(k; i)

=
∑
i 6=k

∑
s∈k

P (C = i|S = s).

Correspondingly, we could estimate the fraction of spikes in cluster c that was expected to be
assigned to other (i.e. wrong) clusters and obtained the number of false negatives as:
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fnk =
∑
i 6=k

fn(k; i)

=
∑
i 6=k

∑
s∈i

P (C = k|S = s)

The probabilities P (C = c, S = s) were given by mixture model. To obtain a single quality
measure, we compute precision (Pk) and recall (Rk):

Pk =
nk − fpk
nk

Rk =
nk − fpk

nk − fpk + fnk

The harmonic mean of these quanti�es yields the F-score:

Fk = 2
PkRk
Pk +Rk

Confocal imaging and image analysis

To achieve a precise alignment of RGCs with recording electrodes, the retina had to be imaged on
chip with photoreceptors facing upwards. As reported before, we found that photoreceptors appear
to act as microlenses guiding and scattering the incident excitation light (Denk & Detwiler, 1999).
We circumvented this problem by embedding the �xed tissue in a mounting medium with matching
refractive index. After the recording, the retina was immediately �xed with 4% paraformaldehyde
(in 0.1M PBS, 200mM sucrose) on the MEA chip for 1 hour. In preliminary experiments we
determined that tissue shrinkage, which may interfere with activity alignment, is negligible for
this protocol. The retina was then rinsed several times with 0.1M PBS and embedded with
Vectashield (Vector Laboratories, UK) and sealed with a coverslip (Menzel Glaeser, Germany).
Imaging was performed with a Leica SP5 confocal upright microscope supplied with a 25x / 0.95NA
WD 2.5 mm water immersion objective for an optimal signal collection focusing on 8x8 electrode
arrays in 300x300µm �eld of view. In each �eld, images (2048x2048 pixels) were acquired in
z-stacks in tissue thickness 60-100µm with optical slicing that corresponded to 30-50 image planes
in each tissue volume. Acquisition parameter optimization revealed that a lateral resolution of
200 nm per pixel, just above the di�raction limit, and optical slicing of 550 nm provided an
adequate trade-o� between the level of image detail for morphological analysis and the acquisition
time minimizing the risk of photo damage for long exposure. Microscope parameter optimization
was performed using tools to increase the signal-to-noise ratio, including high number of frame
averaging with an upper limit determined by safe levels of laser power to protect the tissue,
and post image processing methods using deconvolution. The degree of image blurring of the
microscope can be characterized by the point spread function (PSF) in image formation theory.
When the explicit knowledge of the experimental PSF is unknown, which is quite challenging to
determine in thick volume of tissues with high inhomogeneities in di�erent depth locations for
3D reconstruction, blind deconvolution algorithms are extensively used in image restoration. The
Richardson-Lucy (RL) (Richardson, 1972; Lucy, 1974) was used, with the number of iterations
optimized for maximum image sharpness, maximum contrast and minimum image distortion,
depending on the noise level and image blur, usually in the range from 3 to 10. In addition to
the �uorescence signals in speci�c �elds, large-�eld images including images of the electrode array
were also acquired in order to enable the co-localization of images with RGC spiking activity.

In one Thy1 YFP/ChR2 retina, RGC somata were manually annotated in selected sub�elds where
activity was recorded, and the confocal images of the RGC layer were spatially aligned with
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the estimated locations of detected events. To this end, the active area of one electrode was
determined, and the remaining electrode locations were computed generating a regular grid using
the 42µm electrode spacing. The images and soma locations were then transformed into array
coordinates, and spike locations were overlaid with the retinal image.
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