Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Emergence of increased frequency and severity of multiple infections by viruses due to spatial clustering of hosts

Bradford P Taylor, Catherine J Penington, Joshua S. Weitz
doi: https://doi.org/10.1101/048876
Bradford P Taylor
1School of Physics, Georgia Institute of Technology, Atlanta, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Catherine J Penington
2School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Joshua S. Weitz
3School of Biology and School of Physics, Georgia Institute of Technology, Atlanta, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Abstract

Multiple virus particles can infect a target host cell. Such multiple infections (MIs) have significant and varied ecological and evolutionary consequences for both virus and host populations. Yet, the in situ rates and drivers of MIs in virusmicrobe systems remain largely unknown. Here, we develop an individual-based model (IBM) of virus-microbe dynamics to probe how spatial interactions drive the frequency and nature of MIs. In our IBMs, we identify increasingly spatially correlated clusters of viruses given sufficient decreases viral movement. We also identify increasingly spatially correlated clusters of viruses and clusters of hosts given sufficient increases in viral infectivity. The emergence of clusters is associated with an increase in multiply infected hosts as compared to expectations from an analogous mean-field model. We also observe longtails in the distribution of the multiplicity of infection (MOI) in contrast to mean-field expectations that such events are exponentially rare. We show that increases in both the frequency and severity of MIs occur when viruses invade a cluster of uninfected microbes. We contend that population-scale enhancement of MI arises from an aggregate of invasion dynamics over a distribution of microbe cluster sizes. Our work highlights the need to consider spatially explicit interactions as a potentially key driver underlying the ecology and evolution of virus-microbe communities.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted April 15, 2016.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Emergence of increased frequency and severity of multiple infections by viruses due to spatial clustering of hosts
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Emergence of increased frequency and severity of multiple infections by viruses due to spatial clustering of hosts
Bradford P Taylor, Catherine J Penington, Joshua S. Weitz
bioRxiv 048876; doi: https://doi.org/10.1101/048876
Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Emergence of increased frequency and severity of multiple infections by viruses due to spatial clustering of hosts
Bradford P Taylor, Catherine J Penington, Joshua S. Weitz
bioRxiv 048876; doi: https://doi.org/10.1101/048876

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Ecology
Subject Areas
All Articles
  • Animal Behavior and Cognition (2430)
  • Biochemistry (4791)
  • Bioengineering (3333)
  • Bioinformatics (14684)
  • Biophysics (6640)
  • Cancer Biology (5172)
  • Cell Biology (7429)
  • Clinical Trials (138)
  • Developmental Biology (4367)
  • Ecology (6874)
  • Epidemiology (2057)
  • Evolutionary Biology (9926)
  • Genetics (7346)
  • Genomics (9533)
  • Immunology (4558)
  • Microbiology (12686)
  • Molecular Biology (4948)
  • Neuroscience (28348)
  • Paleontology (199)
  • Pathology (809)
  • Pharmacology and Toxicology (1392)
  • Physiology (2024)
  • Plant Biology (4504)
  • Scientific Communication and Education (977)
  • Synthetic Biology (1299)
  • Systems Biology (3917)
  • Zoology (726)