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Abstract 1 

CO2, temperature, water availability and light intensity were all potential selective pressures to 2 

propel the initial evolution and global expansion of C4 photosynthesis over the last 30 million 3 

years. To tease apart how the primary selective pressures varied along this evolutionary 4 

trajectory, we coupled photosynthesis and hydraulics models while optimizing photosynthesis 5 

over stomatal resistance and leaf/fine-root allocation. We further examined the importance of 6 

resource (e.g. nitrogen) reallocation from the dark to the light reactions during and after the 7 

initial formation of C4 syndrome. We show here that the primary selective pressures— all acting 8 

upon photorespiration in C3 progenitors— changed through the course of C4 evolution. The 9 

higher stomatal resistance and leaf-to-root allocation ratio enabled by the C4 10 

carbon-concentrating mechanism led to a C4 advantage without any change in hydraulic 11 

properties, but selection on nitrogen reallocation varied. Water limitation was the primary driver 12 

for the initial evolution of C4 25-32 million years ago, and could positively select for C4 13 

evolution with atmospheric CO2 as high as 600 ppm. Under these high CO2 conditions, nitrogen 14 

reallocation was necessary. Low CO2 and light intensity, but not nitrogen reallocation, were the 15 

primary drivers during the global radiation of C4 5-10 MYA. Finally, our results suggest that 16 

identifying the predominate selective pressures at the time C4 first evolved within a lineage 17 

should help explain current biogeographical distributions. 18 

Keywords C4 evolution, optimal stomatal conductance, resource allocation, water limitation, 19 

selective pressure, dark/light reaction  20 

 21 

Significance Statement 22 

C4 photosynthesis pathway had evolved more than 60 times independently across the terrestrial 23 

plants through mid-Oligocene (~30 MYA) and diversified at late Miocene (5 to 10 MYA). We 24 

use an optimal physiology model to examine the primary selective pressures along the 25 

evolutionary history. Water limitation was the primary driver for C4 evolution from the initial 26 

evolutionary events 25 -32 MYA until CO2 became low enough to, along with light intensity, 27 
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drive the global radiation of C4 5-10 MYA. This modeling framework can be used to investigate 1 

evolution of other physiological traits (e.g. N reallocation, hydraulics) after the initial formation 2 

of C4 syndrome, which contributed to further increasing productivity of C4 in historical and 3 

current environmental conditions.  4 
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Introduction 1 

The evolution of the C4 photosynthetic pathway enabled the concentration of CO2 around 2 

Rubisco, the enzyme responsible for the first major step of carbon fixation in the C3 3 

photosynthetic pathway, thus eliminating photorespiration. C3 photosynthesis is present in all 4 

plants, and within C4 plants the C3 pathway is typically ensconced within specialized bundle 5 

sheath cells that surround leaf veins. CO2 that diffuses into a leaf is shuttled from adjacent 6 

mesophyll cells to the bundle sheath via a four-carbon pump, the energetic cost of which is 7 

remunerated by ATP derived from the light reactions (1, 2). As a whole, the C4 pathway 8 

eliminates photorespiration, a process that can dramatically reduce photosynthesis and begins 9 

with the assimilation of O2, instead of CO2, by Rubisco. Over the last 30 million years, the 10 

reduction in C3 photosynthesis by photorespiration was large and broad enough to select for the 11 

independent evolution of the C4 pathway more than 60 times across the terrestrial plants (3). The 12 

diversity of plant families with C4 is greatest in the eudicots (1200 species) and the Poaceae, the 13 

monocot family containing the grasses (4500 species) (2), account for nearly 25% of terrestrial 14 

plant productivity and several important agricultural species (4).  15 

 16 

While increased photorespiration in C3 progenitors was central to the evolution of the C4 carbon 17 

concentrating mechanism (CCM), the relative importance of different environmental drivers of 18 

the photorespiratory increase has been the subject of much debate (5, 6, 7, 8). Lower CO2 leads 19 

to higher rates of photorespiration, as does higher temperature. Past physiological models 20 

therefore focused on examining temperature and CO2 concentration as selective pressures for C4 21 

evolution and expansion (5, 9, 10). Under warmer temperatures and low CO2, C4 photosynthesis 22 

has greater carbon gain than C3, but under cooler temperatures and high CO2, the metabolic costs 23 

of the C4 pathway and lower photorespiration in C3 leads to greater carbon gain in C3. 24 

Alternatively, water availability has been proposed as the impetus for C4 evolution in eudicots 25 

(2), and recent phylogenetic analyses have suggested the same in grasses (7, 13). Water 26 

availability should have an impact on C4 evolution that could work independently or in concert 27 
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with changes in CO2 and temperature. First, water deficits indirectly increase photorespiration in 1 

C3 plants by forcing stomatal closure to reduce leaf water loss; consequently decreasing the flux 2 

of CO2 into the leaf and the availability of CO2 for Rubisco. Second, the C4 carbon concentrating 3 

mechanism allows for the maintenance of lower stomatal conductance, and therefore lower water 4 

loss, for a given assimilation rate; leading to a higher water-use-efficiency (WUE) than C3 (11, 5 

12).  6 

 7 

The different environmental drivers of the photorespiratory increase in C3 plants—atmospheric 8 

CO2 concentration, temperature and water availability— have changed dramatically as C4 9 

photosynthesis has evolved over the last 30 million years. Atmospheric CO2 decreased 10 

monotonically from the mid-Oligocene (680 ± 200 ppm) to the early Miocene (357 ± 108 ppm) 11 

down to the Pleistocene minima, where CO2 oscillated between approximately 180 and 280 ppm 12 

through glacial/interglacial cycles (14). Physiological models that focused on temperature and 13 

CO2 implied that C4 evolved, in both grasses and eudicots, at the low end of this CO2 range in 14 

the mid- Miocene to the Pleistocene (2, 5, 9, 10, 15). C4 grasses did become a major component 15 

of grassland biomes— in terms of biomass, C4 lineage diversity, or herbivore dietary 16 

components— in the late Miocene (5 to 10 MYA), but molecular evidence suggests that C4 17 

photosynthesis arose in the grasses in the mid-Oligocene (~30 MYA) (16). Similarly, 18 

phylogenetic reconstructions provide evidence that eudicots of the Chenopodiaceae evolved C4 19 

as early as the monocots, but saw the greatest rate of C4 evolution and diversification in the late 20 

Miocene (17, 18, 19). Along with CO2, precipitation declined over the period of C4 evolution and 21 

diversification, leading to vast terrestrial areas where low or highly seasonal precipitation inputs 22 

led to the loss of forests and consequently, the evolution of the world’s first grasslands (20, 21). 23 

The spread of grasslands indicate a habitat change with larger surface radiation loads, higher 24 

surface temperatures and increased potential for plant water loss (6, 22). Therefore, the early 25 

evolution of C4 suggested by molecular phylogenies indicates that water availability played an 26 

important role for both C4 grasses and eudicots while CO2 was still relatively high (6, 18, 23, 24, 27 
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22, 25). The potentially interacting roles of water availability, changes in radiation and CO2 1 

along the evolutionary trajectory of C4 photosynthesis have not been fully investigated within a 2 

comprehensive physiological model. 3 

 4 

A related but largely unstudied evolutionary change during the divergence of C4 photosynthesis 5 

from C3 is the allocation of nutrients/resources (e.g. N considering enzymes and proteins) 6 

between the dark reactions and the light reactions. C4 plants might allocate a greater proportion 7 

of N to light reactions than to dark reactions as compared to C3 because of the extra ATP costs of 8 

the CCM (26, 27). We propose that the reallocation of N between dark and light reactions 9 

provides a further advantage for C4 above the CCM alone, and that different environmental 10 

conditions can select for a shift in the degree of reallocation both through evolutionary time and 11 

across species in extant plants. 12 

 13 

Changes in the environmental controls on photorespiration suggest that multiple environmental 14 

drivers interacted to differing degrees along the trajectory of C4 evolution. Our goal here is to 15 

tease apart the selective pressures that led to the evolution of C4 photosynthesis initially and the 16 

global expansion 5-10 MYA through to the current day. We use the framework of an optimality 17 

model in which the plant makes allocation “decisions” in order to maximize photosynthetic 18 

assimilation rate. Our approach advances our understanding of C4 evolution in four important 19 

ways. First, we revisit the temperature-CO2 crossover approach and integrate the effects of water 20 

limitation, light, optimal allocation decisions, and the interactions between these in a single 21 

model. Second, the hypothesis that C4 photosynthesis has a higher WUE than C3 implicitly relies 22 

on an optimality argument to balance carbon gain and water loss (28), yet the role of optimal 23 

stomatal conductance in mediating selective pressures due to water limitation during the 24 

evolution of C4 plants remains largely unexplored (but see 15). Most previous models assume a 25 

priori that C4 grasses have lower stomatal conductance. Instead, we let both stomatal 26 

conductance and leaf/fine-root allocation emerge endogenously from the model. Third, we use 27 
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the C4 model including cost of the C4 pathway in the light reactions (2 additional ATP per CO2 1 

fixed; 1, 29), which previous modeling analysis did not explicitly consider (9, 22, 30, 31). 2 

Finally, we consider reallocation of nitrogen from the dark reactions to the light reactions, which 3 

can change the tradeoffs between photosynthesis and water use by C4 grasses.  4 

 5 

Results 6 

Assimilation-based crossover temperatures, defined as the temperature at which assimilation by 7 

the C4 pathway exceeds that of the C3 pathway, decrease as water limitation increases and light 8 

intensity increases across all CO2 concentrations (Fig. 1, Fig. S1). Without water stress (solid 9 

black line in Fig 1), our model predicts a C3/C4 crossover temperature of 23°C under 380 ppm; a 10 

result similar to previous data and/or models that did not explicitly account for water stress (9, 11 

10, 32). The model results in Fig. 1 were all under saturated light and with a C4 Jmax/Vcmax ratio of 12 

4.5, which corresponds to a full reallocation of nitrogen from light to dark reactions. Model 13 

results for a C4 Jmax/Vcmax ratio of 2.1 (corresponding to no reallocation) were similar (Fig. S1a) 14 

with the primary exception being that under low CO2 and low water availability (e.g. CO2=300 15 

ppm, VPD = 3 kPa and ΨS = -1.5 MPa or all CO2 concentrations with higher VPD and lower 16 

ΨS), crossover temperatures are higher with Jmax/Vcmax= 4.5, showing that nitrogen reallocation 17 

decreases the C4 advantage under water limitation and low CO2. Under saturated soil and low 18 

VPD, crossover temperatures decrease along with increasing light intensity (Fig. S1c, d). An 19 

increase in light intensity provides a larger relative benefit for C4 at low CO2, because C3 20 

photosynthesis remains CO2 limited throughout while C4 light limitations lessen as light 21 

increases.  22 

 23 
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 1 
Fig. 1. Crossover temperatures of photosynthesis for C3 and C4 with the change of CO2 concentration 2 

under different water conditions. Light intensity was 1400 µmol photons m-2s-1 for all model runs. 3 

Jmax/Vcmax=2.1 for C3 and Jmax/Vcmax=4.5 for C4. Solid black line: VPD=0.15kPa, ΨS=0 MPa; dashed black 4 

line: VPD=1kPa, ΨS=-0.5 MPa; dot-dashed black line: VPD=2kPa, ΨS=-1 MPa; dotted black line: 5 

VPD=3 kPa, ΨS=-1.5 MPa. 6 

 7 

While crossover temperatures allow for a clear diagnostic of comparative assimilation, they do 8 

not demonstrate the degree of C4 photosynthetic advantage. To this end, we calculated the net 9 

assimilation rate difference between C4 and C3, ∆An (net assimilation of C4 minus that of C3), to 10 

comprehensively examine the whole suite of environmental conditions (Fig. 2, 3). The positive 11 

contour space (∆An > 0) means that C4 outcompetes C3 within given environmental dimensions, 12 

and the higher the ∆An, the greater the advantage of C4. Under a CO2 concentration of 200 ppm 13 
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and saturated light, ∆An is higher under moist conditions than water-limited conditions (Fig. 2a, 1 

b). In contrast, under higher CO2 concentrations (400 and 600 ppm), C4 has the greatest 2 

advantage only in water-limited conditions, which leaves a relatively small environmental 3 

envelope for C4 to evolve (areas where ∆An >0 in Fig. 2c-f). This result is due to the fact that C3 4 

photosynthesis has a greater proportional increase in assimilation from 200 to 400 and 600 ppm 5 

CO2. Across all scenarios, increasing Jmax/Vcmax increases both the ∆An and space for C4 6 

advantage (Fig. 2 b, d, f). At 200 ppm and saturated soils, ∆An is highest under saturated light, 7 

and decreases as light intensity decreases (Fig. 3a, b). At 400 ppm CO2 and higher, ∆An 8 

indicated a C4 advantage (∆An > 0) only when light intensities were above 1000 mmol m-2 s-1, 9 

temperature was above 30 °C and Jmax/Vcmax was high (Fig. 3 c, d). Finally, we calculated the 10 

photosynthesis rates of the two pathways under conditions often encountered in today’s 11 

grasslands to look at the effect of nitrogen reallocation (Fig. 4). With Jmax/Vcmax =2.1 for both C3 12 

(solid black line) and C4 (dashed line), the C4 assimilation rate is rarely higher than C3, which 13 

indicates C4 does not have an obvious advantage under current CO2 from saturated soils down to 14 

VPD = 2 kPa and ΨS = -1 MPa. However, with Jmax/Vcmax =4.5 for C4 (dotted line), C4 does have 15 

an advantage over C3 at temperatures above 25 oC. 16 

 17 

 18 

 19 
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1 

Fig. 2. The total difference in CO2 assimilation between C4 and C3 (An(C4)-An(C3)) under various CO2 2 
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(200 ppm, 400 ppm and 600 ppm) and water conditions under saturated light intensity (1400 µmol 1 

photons m-2s-1). Jmax/Vcmax=2.1 for C3 and C4 (a, c, e) and Jmax/Vcmax=2.1 for C3 and Jmax/Vcmax=4.5 for C4 2 

(b, d, f). Water limitation intensity is: 1: VPD =0.15 kPa, ΨS=0 MPa; 2: 1.5 kPa, -0.5MPa; 3: 2kPa, -1 3 

MPa; 4: 3kPa, -1.5 MPa; 5: 4kPa, -2 MPa.  4 

 5 

 6 
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Fig. 3. The total difference in CO2 assimilation between C4 and C3 (An(C4)-An(C3)) with Jmax/Vcmax=2.1 for 1 

C3 and C4 under various CO2 (200 ppm, 400 ppm) and different light intensities (from 200 to 1400 µmol 2 

photons m-2s-1) with saturated water condition (VPD=0.15kPa, ΨS=0 MPa) (a, c) and with Jmax/Vcmax=2.1 3 

for C3 and Jmax/Vcmax=4.5 for C4 (b, d). 4 

 5 

 6 

Fig. 4. Assimilation rates of C3 with Jmax/Vcmax=2.1 (solid black line), C4 with Jmax/Vcmax=2.1 (dashed 7 

black line) and C4 with Jmax/Vcmax=4.5 (dotted black line) under light intensity of 1400 µmol photons 8 

m-2s-1, CO2 of 400 ppm and different water limitation conditions. (a) saturated soils; (b) VPD=1kPa and 9 

ΨS=-0.5 MPa; (c) VPD=2kPa and ΨS=-1 MPa.  10 

 11 

Under all environmental and nitrogen allocation scenarios, optimal stomatal resistance (rs) and 12 

leaf biomass/total biomass allocation (f) are higher in C4 plants than C3 plants. The general 13 

pattern of response was similar across CO2 concentrations, so only 400 ppm is presented with 14 

both highest and lowest water availability (Fig. 5 and Fig. S2). Optimal f and rs for C3 is always 15 

lower than that for C4 under different water availability and CO2 (Fig. 5). In addition, f decreases 16 

and rs increases as intensity of water limitation increases. Results are the consistent for C4 with a 17 

Jmax/Vcmax of 2.1 and Jmax/Vcmax of 4.5. The jumps in rs and f in Fig. 5 correspond to the transition 18 

from RuBP carboxylation limited assimilation to RuBP regeneration limited assimilation (Aj). 19 

The transition temperature decreases as CO2 increases. In the Fig. S3, the various limitation 20 

states are plotted together under multiple environmental scenarios, using both Jmax/Vcmax=2.1 and 21 

4.5 for C4. With Jmax/Vcmax=2.1, C4 is light limited in most of the environmental conditions. With 22 
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Jmax/Vcmax=4.5, C4 starts to be limited by CO2 under low temperatures and to be limited by light 1 

under high temperatures. 2 

 3 

 4 

 5 

Fig. 5. Stomatal resistance (rs) and leaf/fine-root allocation (f) as a function of temperature, with 6 

Jmax/Vcmax=2.1 for both C3 and C4 with saturated light under CO2 of 400 ppm and different water 7 

conditions. Solid black line: C3 with VPD=0.15kPa, ΨS=0 MPa; dashed black line: C4 with 8 

VPD=0.15kPa, ΨS=0; solid grey line: C3 with VPD=4 kPa, ΨS=-2 MPa; dashed grey line: C4 with VPD=4 9 

kPa, ΨS=-2 MPa. Vertical lines indicate transition from RuBP carboxylation limited condition to RuBP 10 

regeneration limited condition for C3 and C4. 11 

 12 

Discussion 13 

Our modeling results imply that the environmental selection for C4 evolution was in place during 14 

the mid-Oligocene at warm, arid sites as water limitation acted as the primary selective pressure 15 

to increase photorespiration when CO2 is above 400 ppm, and even up to 600 ppm. Under 16 

saturated water conditions, there was little room for C4 to evolve 20-30 MYA as CO2 was likely 17 

above 400 ppm (14, 33), and the ATP costs of the C4 mechanism is too high and photorespiration 18 

in C3 plants too low. As water becomes more limited, however, the C4 advantage becomes 19 
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increasingly larger. Enhanced carbon gain under water limited conditions has been believed to be 1 

the selective force behind the evolution of C4 in dicotyledonous plants (2) and more recently, in 2 

accordance with phylogenetic evidence, in grasses (7, 16). Molecular-based evidence supports a 3 

mid-Oligocene evolution of C4 in some grass and eudicot lineages, and our results suggest the 4 

same (8, 18, 34). Lineages that evolved in C4 during this period may have been predisposed to 5 

exist as arid-land, saline, or disturbed-site specialists as we see today in most C4 eudicots and the 6 

earliest known grass subfamily in which C4 evolved, the Chloridoideae (8, 35).   7 

 8 

As CO2 decreased through the Miocene, warm temperatures remained a strong selective force, 9 

but the main selective force for C4 evolution shifted from water limitation to low CO2 and, to a 10 

lesser extent, light intensity. Since increased light intensity alone could not lead to advantage of 11 

C4 under high CO2 (Fig. 3c), it seems likely that C4 grasses could not dominate open grasslands, 12 

except in locally arid areas, while CO2 was still high. So between the initial evolutionary events 13 

leading to the emergence of C4 and the large-scale expansion within the grasses 5-10 MYA, C4 14 

grass radiation likely idled in small pockets of selective favorability as CO2 concentrations 15 

declined through the Miocene (2, 8). As CO2 declined, the high light levels inherent to grassland 16 

systems gave C4 photosynthesis an increasing advantage, leading to broader geographic and 17 

evolutionary radiation. Our results are consistent with previous studies showing that low CO2 18 

(200-300 ppm) strongly favors C4 over C3 photosynthesis (e.g. 9, 15). And we further show that 19 

low CO2 provides a clear C4 advantage under a large range of water availability and light 20 

intensity regimes. The greatest C4 advantage occurs, however, in relatively moist and mildly 21 

water-limited conditions; opposite to that which is seen under high CO2 (Fig. 2c). The 22 

environmental conditions that lead to the largest C4 advantage within our model therefore 23 

perfectly parallels those documented in the 20th century, C4-dominated grasslands: highly 24 

seasonal precipitation that occurs chiefly within a warm growing season (36, 37, 38). These are 25 

also similar to the conditions that led to the large-scale expansion of C4 grasslands in the 26 
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Miocene, for example the onset of summer monsoons and subsequent C4 grassland expansion in 1 

the Indian subcontinent (39). 2 

 3 

The potential role of water limitation to play a central role C4 grass evolution has sparked interest 4 

in grass hydraulics and the anatomical shifts in C3 grasses that were prerequisites to C4 evolution 5 

(24, 22, 40). The modeling effort of Osborne and Sack (22) suggests a hydrological underpinning 6 

to the evolution of C4 grasses, but found a much smaller environmental window for C4 evolution 7 

than we did. At 400 ppm CO2 and soil water potential of -1 MPa— a common occurrence in 8 

grasslands (41)— they showed that C4 hydraulic conductance must be twice that of C3 grasses 9 

for C4 grasses to achieve slightly greater carbon uptake. In contrast, we find a clear C4 advantage 10 

under these, and even drier, conditions by allowing for optimal solutions of stomatal 11 

conductance and leaf/fine-root ratio to maximize photosynthesis. Plant hydraulic conductance 12 

was kept equal across C3 and C4 throughout simulations, and increasing hydraulic conductance 13 

had little impact on our major results and conclusion (Fig. S4, S5), the implication being that the 14 

C4 pathway itself is enough to result in greater carbon gain under water stress without any 15 

required increase in hydraulic conductance. These results do not necessarily contradict the idea 16 

that larger bundle sheaths and smaller interveinal distance— which were clear prerequisites for 17 

C4 evolution (24, 42) — led to greater hydraulic conductance and drought tolerance among C3 18 

grass progenitors (24), but they do suggest that greater hydraulic conductance is not necessary to 19 

give C4 plants an advantage once the carbon-concentrating mechanism evolved. In fact, we 20 

hypothesize that once C4 evolves in a lineage, selection on increased hydraulic conductance 21 

would not only lessen, but invert, leading to the development of even narrower xylem conduits 22 

and greater drought resistance. There is some empirical support for such a prediction in eudicots 23 

(43). 24 

 25 

We assumed that during the early evolution of C4, both C3 and C4 plants had a similar balance of 26 

nitrogen across the light and dark reactions, and that the allocation of nitrogen could be treated 27 
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separately from the evolution of the C4 CCM as a target of selection. We propose that different 1 

environmental conditions can select for a shift in the degree of reallocation (assessed here by a 2 

change in Jmax/Vcmax) both through evolutionary time and across species in extant plants. In 3 

general, CCMs allow for less investment in nitrogen-rich Rubisco (44), and the nitrogen not used 4 

for Rubisco could be either reinvested in light harvesting machinery, or simply not used at all; 5 

thus reducing the plant nitrogen requirement. Modeling studies have long assumed a high 6 

Jmax/Vcmax for C4 photosynthesis (22, 31, 45) and measurements show lower Rubisco content and 7 

higher chlorophyll and thylakoid content, giving evidence of reallocation in extant C4 species 8 

(26, 27, 46). Empirical estimates of Jmax/Vcmax, in C4 plants paint a more variable picture, ranging 9 

from 2 to above 6, with a mean of around 4.5 (47, 48, 49, 50, 51, 52), which is higher than the 10 

mean Jmax/Vcmax estimates for C3 plants of 2.1 (53). Increasing Jmax/Vcmax almost always increases 11 

the photosynthesis rate of C4 grasses (Fig. 4, Fig. S6), and therefore could lead to a competitive 12 

advantage over C3 grasses as well as C4 grasses that do not reallocate. Assuming there is little 13 

cost or no genetic constraints for reallocation, the selection pressure to reallocate would have 14 

been strongest when CO2 was high, e.g. during the initial evolutionary events in the 15 

Oligocene/Miocene, when the CCM alone does not give C4 a large advantage (Fig. 2 c, e, Fig. 3 16 

c). When CO2 was low during the C4 radiation 5-10 MYA, however, the CCM alone would give 17 

C4 an advantage and reallocation would not change the competitive balance between C3 and C4 18 

(Fig. 2 a and Fig. 3a). As CO2 remained low through to the Pleistocene, selection for nitrogen 19 

reallocation to the light reactions would lessen further, especially during the CO2 minima of the 20 

Pleistocene glacial periods (~ 180 ppm). In this context, an interesting question is how the 21 

evolutionary picture of Jmax and Vcmax allocation was coordinated with the formation of C4 22 

pathway in response to the high CO2 in Oligocene, to the CO2 decrease through Pleistocene and, 23 

further, to the increase of CO2 in the last 150 years. 24 

 25 

C4 photosynthesis first evolved 25 – 32 MYA, and many subsequent and independent 26 

evolutionary origins occurred through to the Pleistocene 2.8 MYA. Each evolutionary origin 27 
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represents both different selective pressures and taxonomic (genetic) constraints as climate and 1 

CO2 changed. Taking the Chloridoideae as an example, we can use our model to develop 2 

hypotheses along the evolutionary trajectory of C4 in this grass subfamily. The initial evolution 3 

of C4 photosynthesis 25 – 32 MYA while CO2 was high was driven by aridity, acting to decrease 4 

stomatal conductance that increased photorespiration in C3 progenitors initially, and led to higher 5 

water use efficiency upon the evolution of the CCM. There would have been enough of a 6 

reduction in water use that selection for increased hydraulic conductance would relax, allowing 7 

for the development of more resilient— and less conductive— xylem. Also at this point, there 8 

would have been strong selection for reallocation of nitrogen from the dark reactions to the light 9 

reactions. The large radiation of C4 within the Chloridoideae that occurred 5 – 10 MYA was 10 

likely driven by low CO2 and high light, and the previously-evolved hydraulic resilience would 11 

lead to this subfamily becoming dry-site specialists observed in current-day distributions (35). 12 

There would have been much less selective pressure to reallocate N during the large radiation, 13 

but such a reorganization was likely already in place within the clade. In contrast, for the 14 

lineages that first evolved C4 in the late Miocene (e.g. Stipagrostis, Eriachne, Neurachne), CO2 15 

would have been the primary impetus for C4 evolution, but for these lineages there would have 16 

been little selection to reallocate nitrogen until the dawn of the industrial revolution. We would 17 

also expect these more recently evolved lineages to have greater hydraulic conductance than 18 

those of the Chloridoideae. By optimizing carbon gain over water loss, we developed a plausible 19 

physiological explanation for the early evolution of C4 and further proposed hypotheses about 20 

how the variety of traits that comprise the C4 syndrome developed in concert with the climate 21 

changes that occurred through the evolutionary trajectory (54). By selecting extant species within 22 

select lineages, these hypotheses can be examined empirically, ultimately providing an 23 

integrative view of the selection pressures that led to the current physiologies and distribution of 24 

C4 plants.  25 

 26 

Materials and Methods 27 
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Overview of the model 1 

We used different modeling scenarios to examine the advantage of C4 photosynthesis for the 2 

initial origin, expansion and current distribution. Initially, we assume that the CCM is the only 3 

difference between C3 and C4. This comparison corresponds to two closely related species whose 4 

other traits have not had time to diverge in response to differential selection pressures. We then 5 

examine shifts in N allocation between the light and dark reactions of C4, which may have 6 

happened in subsequent divergence of C3 and C4 after the CCM evolved. 7 

 8 

The soil-plant-air water continuum was incorporated in C3 photosynthesis models (55) and C4 9 

models (29) to examine interactions of CO2, water availability, light and temperature. We used 10 

the optimality approach of Givnish (1986) (56), where C3 and C4 plants optimize stomatal 11 

resistance and leaf/fine-root allocation to balance carbon gain and water loss. A full model 12 

description is in SI in supporting information with Table S1 for parameter abbreviation and 13 

Table S2 for input parameters. The model derivation using Mathematica (Wolfram Research, 14 

Inc.) and methods for numerical solutions are in SII.  15 

 16 

Photosynthesis model 17 

We are using the traditional C3 photosynthesis models (55) and C4 models (29) for the 18 

photosynthesis modeling (SI in supporting information). 19 

 20 

Hydraulic system 21 

At equilibrium, the rate of water loss through transpiration equals the rate of water absorption by 22 

the roots (56): 23 
𝐸𝑓𝑁
𝜌 = 𝑘 1 − 𝑓 𝑁 𝛹+ − 𝛹, 																				(1) 24 

where Ψs is soil water potential, k is the effective root hydraulic conductivity, N is the total 25 

biomass of fine root and leaves, ρ is the leaf mass density (gcm-2) and E is the transpiration rate 26 

per leaf area. E could be written as δ/rs, where δ is the water partial pressure deficit between 27 
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saturated leaf surface and the atmosphere. Thus, leaf water potential (Ψl) is a function of rs and 1 

leaf/fine-root allocation (f, defined as investment into leaves/total investment in leaves and fine 2 

root)). 3 

𝛹+ = 𝛹, −
𝑓𝛿

𝜌𝑘𝑟, 1 − 𝑓
																													(2) 4 

 5 

Inhibition of photosynthesis by water stress  6 

Reduced leaf water potential inhibits photosynthesis (57, 58, 59). We model this cost of 7 

transpiration as Weibull-type vulnerability curves relating leaf Ψl and photosynthetic parameters 8 

(45):  9 

𝑉4567,9: = 	𝑉4567𝑒
<(9:=>

)?> 																							(3) 10 

𝐽567,9: = 	 𝐽567𝑒
<(9:=B

)?B
																											(4) 11 

𝑉D567,9: = 	𝑉D567𝑒
<(9:=E

)?E
,																					(5) 12 

where b and d are curve fitting parameters. Since Ψl is a function of rs and f, all those parameters 13 

are functions of rs and f.  14 

 15 

Optimal stomatal resistance and optimal allocation of energy between leaves and fine roots 16 

We assume that the plant adjusts the rs and f to optimize the total carbon gain by 17 

𝐴HIH6+ =
𝑓𝑁𝐴J
𝜌 																																							(6) 18 

where ρ is the leaf mass density (g cm-2). As a simplifying assumption, we assume N and ρ are 19 

fixed (similar to 56). Effectively, we consider the optimization problem faced by the plant in a 20 

given instance during its growth, where its size (of which N is a proxy) can be regarded as a 21 

constant. Clearly, during plant growth, the assimilate will be turned into plant biomass, but the 22 

instantaneous optimization problem will still yield the optimal growth path as the growth rate is 23 

maximized at any given time. Finally, we regard ρ as a species-specific trait that changes at a 24 

slower time-scale than rs and f. The first order optimality conditions for rs and f are given by (56): 25 
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𝜕(𝑓𝐴J)
𝜕𝑟,

= 𝑓
𝜕𝐴J
𝜕𝑟,

= 0																														(7) 1 

𝜕(𝑓𝐴J)
𝜕𝑓 = 𝐴J + 𝑓

𝜕𝐴J
𝜕𝑓 = 0.																			(8) 2 

We checked the second order derivative to ensure that the numerical solutions to the first order 3 

conditions were maxima. 4 

 5 

Allocation of nitrogen 6 

We examine how nitrogen allocation between RuBP carboxylation and RuBP regeneration in C4 7 

grasses affect competitive advantage over C3 grasses. Despite great variation in Vcmax and Jmax 8 

based on the total leaf nitrogen content within C3 plants, Wullschleger (1993) (53) found a mean 9 

of Jmax/Vcmax =2.1 across 109 C3 species, which we use as a baseline for C3 and C4 pathways in 10 

analyzing the initial evolution of C4. Then, we used Jmax/Vcmax =4.5 for C4 (22, 45) to analyze the 11 

role that nitrogen reallocation played in the evolutionary trajectory of C4 plants. In determining 12 

the values of Jmax and Vcmax, we used a simplified stoichiometry: we consider the total of Jmax and 13 

Vcmax as a constant to hold nitrogen concentration constant (22, 45). Two assumptions are 14 

underlying this simplified stoichiometry: (1) investing one molecule of nitrogen to the dark 15 

reactions will increase of Vcmax equal to the increase of Jmax by investing one molecule of 16 

nitrogen to the light reactions; (2) nitrogen allocation to enzymes involved in photorespiration 17 

and the CCM balanced each other.  18 

 19 

Modeling scenarios 20 

We modeled the photosynthesis rates of C3 and C4 under temperature range from 10 °C to 40 °C 21 

with an interval of 5 °C, under CO2 mixing ratios ranging from 200 ppm to 600 ppm with an 22 

interval of 50 ppm, under different water conditions (VPD=0.001, 1, 2, 3, 4kPa corresponding to 23 

soil water potential (ΨS) =0, -0.5, -1, -1.5, -2 MPa) and under different light intensities (1400, 24 

1000, 600, 200, 100 µmol photons m-2s-1). We consider VPD=0.001 kPa and ΨS =0 MPa as 25 

saturated water condition and light intensity of 1400 µmol photons m-2 s-1 as an average saturated 26 

light intensity of a day.  27 
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Figure Legends 1 

Fig. 1. Crossover temperatures of photosynthesis for C3 and C4 with the change of CO2 2 

concentration under different water conditions. Light intensity was 1400 µmol photons m-2s-1 for 3 

all model runs. Jmax/Vcmax=2.1 for C3 and Jmax/Vcmax=4.5 for C4. Solid black line: VPD=0.15kPa, 4 

ΨS=0 MPa; dashed black line: VPD=1kPa, ΨS=-0.5 MPa; dot-dashed black line: VPD=2kPa, 5 

ΨS=-1 MPa; dotted black line: VPD=3 kPa, ΨS=-1.5 MPa.  6 

 7 

Fig. 2. The total difference in CO2 assimilation between C4 and C3 (An(C4)-An(C3)) under various 8 

CO2 (200 ppm, 400 ppm and 600 ppm) and water conditions under saturated light intensity (1400 9 

µmol photons m-2s-1). Jmax/Vcmax=2.1 for C3 and C4 (a, c, e) and Jmax/Vcmax=2.1 for C3 and 10 

Jmax/Vcmax=4.5 for C4 (b, d, f). Water limitation intensity is: 1: VPD =0.15 kPa, ΨS=0 MPa; 2: 1.5 11 

kPa, -0.5MPa; 3: 2kPa, -1 MPa; 4: 3kPa, -1.5 MPa; 5: 4kPa, -2 MPa.  12 

 13 

Fig. 3. The total difference in CO2 assimilation between C4 and C3 (An(C4)-An(C3)) with 14 

Jmax/Vcmax=2.1 for C3 and C4 under various CO2 (200 ppm, 400 ppm) and different light 15 

intensities (from 200 to 1400 µmol photons m-2s-1) with saturated water condition 16 

(VPD=0.15kPa, ΨS=0 MPa) (a, c) and with Jmax/Vcmax=2.1 for C3 and Jmax/Vcmax=4.5 for C4 (b, 17 

d).  18 

 19 

Fig. 4. Assimilation rates of C3 with Jmax/Vcmax=2.1 (solid black line), C4 with Jmax/Vcmax=2.1 20 

(dashed black line) and C4 with Jmax/Vcmax=4.5 (dotted black line) under light intensity of 1400 21 

µmol photons m-2s-1, CO2 of 400 ppm and different water limitation conditions. (a) saturated 22 

soils; (b) VPD=1kPa and ΨS=-0.5 MPa; (c) VPD=2kPa and ΨS=-1 MPa.  23 

 24 

Fig. 5. Stomatal resistance (rs) and leaf/fine-root allocation (f) as a function of temperature, with 25 

Jmax/Vcmax=2.1 for both C3 and C4 with saturated light under CO2 of 400 ppm and different water 26 

conditions. Solid black line: C3 with VPD=0.15kPa, ΨS=0 MPa; dashed black line: C4 with 27 
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VPD=0.15kPa, ΨS=0; solid grey line: C3 with VPD=4 kPa, ΨS=-2 MPa; dashed grey line: C4 1 

with VPD=4 kPa, ΨS=-2 MPa. Vertical lines indicate transition from RuBP carboxylation 2 

limited condition to RuBP regeneration limited condition for C3 and C4. 3 
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