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Abstract 
The challenges posed by large data volumes produced by high-throughput nucleotide 
sequencing technologies are well known. This document establishes ten simple rules for coping 
with these challenges. At the level of master data management, (1) data triage reduces data 
volumes; (2) some lossless data representations are much more compact than others; (3) 
careful management of data replication reduces wasted storage space. At the level of data 
analysis, (4) automated analysis pipelines obviate the need for storing work files; (5) 
virtualization reduces the need for data movement and bandwidth consumption; (6) tracking of 
data and analysis provenance will generate a paper trail to better understand how results were 
produced. At the level of data access and sharing, (7) careful modeling of data movement 
patterns reduces bandwidth consumption and haphazard copying; (8) persistent, resolvable 
identifiers for data reduce ambiguity caused by data movement; (9) sufficient metadata enables 
more effective collaboration. Finally, because of rapid developments in HTS technologies, (10) 
agile practices that combine loosely coupled modules operating on standards-compliant data 
are the best approach for avoiding lock-in. A generalized scenario is presented for data 
management from initial raw data generation to publication of result data. 
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HTS data management 2 

Introduction 
Due to technological advances in instrumentation and sensor technologies, research data 
volumes are growing at a rate that outpaces that of the growth in computer storage and 
processing capacity. At the same time, society and research funders urge preservation of data 
in the interest of reproducibility and re-purposing of outcomes gathered with public funding, and 
public-private consortia require the same in order to advance their research collaborations. As 
these developments collide, knowledge institutes and companies are forced to formulate and 
implement coherent strategies to ensure that requirements and community needs are met in a 
way that resources can sustain. This report seeks to inform the formulation and implementation 
of such strategies as applied to the management of high-throughput nucleotide sequencing 

(HTS) data and the analysis thereof by 
establishing recommendations that are 
within reach of most knowledge institutes 
and their research partners, including 
private companies.  

DATA MANAGEMENT TERMS AND 
DEFINITIONS 

Data management is the development 
and execution of architectures, policies, 
practices and procedures that properly 
manage the full data lifecycle1. Although 
the data lifecycle can be conceptualized 
in a variety of ways2, a recent report by 
the ICPSR [1] provides a suitable 
framework, reproduced in Figure 1, of the 

data lifecycle as it is commonly understood. The principal idea is that research data can 
participate in a feedback loop that promotes both re-analysis and verification as well as the 
development of novel research directions. Precondition for this virtuous cycle is that data 
management is planned and provisioned for throughout a research project. In phase 1, this 
includes the incorporation of a management plan in project development, possibly in 
collaboration with external data archiving service providers. In the case of archival of opaque 
blocks of data in essentially any format, services such as those provided by DANS3 or Dryad4 
are available. For more granular archival of data, domain-specific archives such as those 
provided by the INSDC5 may be used. Phase 2 may include pilots and tests to establish 
protocols for documentation and data collection. Phase 3 proceeds with the application of 

                                                
1Data Management International: http://www.dama.org/i4a/pages/index.cfm?pageid=3339  

2e.g. see http://blogs.princeton.edu/onpopdata/2012/03/12/data-life-cycle/  

3http://dans.knaw.nl  
4http://datadryad.org  

5http://www.insdc.org/  

Figure 1. The data lifecycle according to ICPSR. 
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practices established during project start-up. Phase 4 includes the management of master data, 
i.e. data that are common among many applications, as well as application-specific work files 
and backups in appropriate file structures. Phase 5 considers the licensing terms and data 
formats under which the data will be shared. In the final phase, the data are (re-)formatted in 
accordance with community standards for dissemination and are archived in a suitable 
permanent location. 
 
Within the context of research that involves high-throughput instrumentation based on sensors, 
data may be further classified into raw data, i.e. that which is directly generated by the 
instrument; intermediate data, which has undergone quality control and other data cleaning as 
well as normalization; and result data, which summarizes the results in a manner that generates 
knowledge. In data management, it is typically the result data that are shared in domain-specific 
community repositories such that they can be referred to in scholarly publications (though note 
the advent of alternative models in the scholarly communication cycle, such as data publications 
[2] and micropublications [3]), while intermediate data may be shared with project collaborators. 
In both cases, metadata, i.e. formal descriptions about data, are essential to be able to 
reconstruct how experiments, both the “wet” and the in silico steps, were performed, and to be 
able to steward and curate the data. 
 
Data stewardship refers to the practice of storing data with provision for the required software 
and services to ensure its future accessibility, searching and analysis [4]. Provisioning for 
required software and services is needed because file formats and analytical workflows evolve 
rapidly, such that previously obtained results may become inaccessible or irreproducible without 
recourse to original software that may since have been deprecated. In this context, open source 
software may be preferred as the licensing terms of proprietary software may preclude such 
provisioning. Data curation is the related practice of ingesting, transforming, migrating, and, 
occasionally, disposing of data over longer timescales6, as informed by iterative (re-)appraisal of 
data, sometimes referred to as data triage. 

CURRENT TRENDS IN BIOLOGICAL SEQUENCE DATA GENERATION 

In the biological sciences, a technology that strongly drives the present growth in data volumes 
is high-throughput nucleotide sequencing (HTS). Over the last decade, massively parallel HTS 
platforms have found wide adoption as relatively affordable alternatives to Sanger sequencing, 
albeit with their own strengths and drawbacks: the common platforms optimize different, often 
complementary, combinations of read quality, read length, and data volume. For example, the 
PacBio RSII produces very long reads suitable for scaffolding, but read quality is much lower 
than that of the shorter reads produced by the Illumina HiSeq, yielding a multi-stage workflow 
where short reads are mapped against long reads to improve precision, possibly followed by de 
novo assembly and scaffolding. Ongoing technology development will continue to disrupt 
workflows with the emergence of affordable, miniaturized single molecule real time sequencing 

                                                
6e.g. see http://www.dcc.ac.uk/sites/default/files/documents/publications/DCCLifecycle.pdf  
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such as the Oxford Nanopore MinION platform promising to yield yet longer reads more 
cheaply. 
 
The relatively low and dropping cost of HTS platforms has lowered the barrier to entry for small 
research teams to bring sequencing to bear on a variety of research challenges ranging from 
“boutique” genome projects, to metagenomics, DNA barcoding, RNA sequencing, genotyping, 
phylogenetics and so on. By organizing into consortia, projects to re-sequence genomes at 
previously unimaginable scales have likewise come within broader reach. As a consequence, a 
recent study forecasts an ongoing shift in cost allocation away from raw sequencing towards 
relatively greater investment “upstream” towards experimental design and data acquisition and 
“downstream” towards analysis, with a relatively large but dropping expenditure at present 
towards data reduction and data management (Figure 2). 

Figure 2. Cost allocation outlook for nucleotide sequencing-oriented research projects [5]. The cost of sequencing 
itself is rapidly dropping and projected to continue to do so. Data management may be a bottleneck at present but 
projected to become less so in relative terms in comparison with the cost of upstream processes such as sample 
collection and experimental design, and downstream analysis. 
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The relatively high current cost of data management in HTS projects stems not only from the 
large data volumes per se but also from the more complex workflow in dealing with data 
generated on massively parallel sequencing platforms as compared to previous technologies. 
Parallel data capture on current HTS platforms yields raw results - images in pyrosequencing, 
other types of intensities on other platforms - from which the vendor platform’s algorithms call 
individual bases and homopolymers at varying confidence levels. This procedure results in very 
many short sequence fragments that are logically organized around the instrument’s 
architecture and sequencing kits (e.g. according to lanes or flow cells, adaptor sequences), not 
around experimental design. As multiple assays are often combined in a single “multiplexed” 
run, an early step in data management is to sort the sequence fragments by assay. 
Subsequently, the sequence fragments often need to be assembled into intermediate results 
either by mapping against reference data or by collating overlapping fragments into larger 
contiguous stretches, i.e. de novo assembly. These intermediate results are then enriched by 
comparison with other, well-characterized data and by statistical analysis including variation 
discovery and feature prediction. At each step of this workflow, data volumes are reduced by 
orders of magnitude, which, if storage capacity per se forms an impediment, raises questions 
about the extent to which raw and intermediate data must be retained, and for how long (Figure 
3).

 
Figure 3. Typical data reduction and management in HTS sequencing7. 

                                                
7http://www.slideshare.net/gcoates/sharing-data-sanger-experiences  
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THE ACCIDENTAL SEQUENCING CENTER 

Due to the advent of affordable HTS platforms, knowledge institutes and company R&D 
departments that heretofore outsourced DNA sequencing are now finding themselves proud 
owners of “benchtop” (and larger) sequencing platforms, in the process having to manage 
complex, voluminous data sets for a large part of the data lifecycle, and potentially having to 
publish these to research collaborators and the research community at large.  
 
Many knowledge institutes have found themselves to a greater or lesser extent in this position of 
“accidental sequencing center”. In contrast with core sequencing facilities, these institutes may 
on the one hand have less experience with managing large data streams, while on the other 
hand they are usually much more intimately involved in downstream analysis for longer 
stretches of time (and financial outlay). In addition, these institutes depend to a large extent on a 
mixture of both public funding and public/private partnerships, which each have their own 
requirements for data management and sharing. As a consequence, the challenges are quite 
formidable, and institutional policies and guidelines to cope with them are strongly called for. 
 
Naturalis Biodiversity Center (Leiden, the Netherlands), best known as the dutch natural history 
museum, is one such accidental sequencing center - but many other knowledge institutes, 
university research departments, medical centers, and companies active in the red, green and 
white life sciences find themselves in a similar situation. Naturalis is a chiefly publicly-funded 
institute with a tangential interest in HTS as applied to a broad range of research questions, 
such as the genomics of non-model organisms from a broad taxonomic spectrum (including 
collection specimens, i.e. “museomics”), taxonomic identification through (meta-)barcoding, 
phylogenetic systematics, transcriptomics, and so on. Naturalis participates in a variety of 
research networks involving both public and private collaborators.  
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Ten simple rules 
This document attempts to establish ten rules in handling HTS data streams at three levels of 
the problem. The first level is that of master data management, i.e. data as they are received 
from sequencing, which are pre-processed, converted to an interoperable format and stored in a 
library location where it can be backed up. The second level is that of data analysis, where 
careful design and deployment of analysis pipelines and usage patterns of computational 
infrastructure can reduce haphazard proliferation of intermediate files while building up a “paper 
trail” of both the data and the analysis steps. The third level concerns collaboration among 
disparate research partners, where transmission of large amounts of data over the internet may 
be prohibitive in terms of bandwidth, and where identifiability, locatability and exhaustive 
documentation of metadata are key in developing effective collaboration.  
 
The intended readership of this document is rather broad, comprising technical staff, chiefly 
bioinformaticians, computationally skilled researchers, ICT staff, and to a lesser extent lab staff; 
institutional policy makers such as R&D and ICT managers; but also cross-domain 
computational service providers seeking to support the computational requirements of HTS. As 
such, the rules are general guidelines that can be made operational in a variety of ways to fit the 
workflows of a variety of “accidental sequencing centers”. References in square brackets refer 
to endnotes (scientific literature and technical reports), superscript numbers are footnotes (links 
to useful information and tools on the web, clickable in digital form). 

MASTER DATA  

Master data are the core data that are consumed by a variety of applications. In the context of 
HTS these are sequencing reads. Because of their potential volume, these need to be managed 
carefully and reduced where possible. The heterogeneity of usage patterns and the potentially 
very large number of different applications that consume master data suggest that they must be 
represented in compact, interoperable form. 

1. Exercise data triage 
At a low level, HTS platforms produce raw data files that are specific to the underlying 
technology. For example, pyrosequencing platforms produce digital images, while pH 
sensor platforms produce raw voltage data. Signal processing algorithms process these 
files to call nucleotide bases at varying quality levels and write the results in one of a 
variety of (nominally) platform-independent, community standards-compliant file formats. 
Typical data triage at this level, if not already implemented in the instrument, may 
include purging of the underlying platform-specific raw intensities data once 
correct functioning of the instrument during the run has been verified. Rough time 
windows cited for this include within “weeks or less”8 or “one month”9. In many cases, the 

                                                
8http://www.slideshare.net/gcoates/nextgeneration-sequencing-data-mangement  
9http://www.genengnews.com/gen-articles/managing-data-from-next-gen-sequencing/2449/  
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next step then is to “de-multiplex” the data, for example by sorting the reads on adaptor 
barcode and/or primer. 
 
The sequence and quality data that then remain contain a lot of noise whose trimming and 
purging may appreciably reduce data volume. For example, short HTS reads often 
include stretches of very low base calling quality at the trailing end of the read, 
which may be truncated and discarded. Likewise, depending on the research context, 
duplicate reads may be considered redundant and therefore removed or clustered. Once 
assembled, the sequence data may reveal yet other types of “noise”, for example as a 
result of contamination of the sample. Although some types of sequence contamination - 
such as from pathogens - might be of interest, other contaminants such as human DNA 
might be considered safe to discard. Careful consideration of these issues in the 
formulation of data triage policies (that are perhaps enforced automatically) may reduce 
data volume and noise considerably. 

2. Optimize data representation 
HTS platform vendors are increasingly consolidating around well-described data 
standards to represent sequencing reads and their qualities, as well as alignments of 
sequencing reads against reference genomes. One of the common denominators is the 
FASTQ format [6], which is a simple flat text format that combines bases and qualities in a 
record-oriented layout. FASTQ may be considered convenient as, due to its simplicity, 
data processing scripts can quickly be developed. However, it has several drawbacks.  
 
Firstly, plain text is relatively verbose, although a cottage industry of compression 
algorithms has sprung up around FASTQ to remedy this [7–9]. Secondly, FASTQ files can 
typically only be read sequentially, not by random access, which means that locating 
specific reads (e.g. mate pairs) requires scanning through files. Thirdly, a number of 
different FASTQ “dialects” have emerged that differ in crucial ways, including the encoding 
scheme for quality scores, repetition (or not) of the read identifier, and whether base and 
quality sequences may span multiple lines [6]. For these reasons, the binary 
alignment/map (BAM) format [10] may be preferred. BAM files are a binary 
representation of reads and qualities, optionally mapped against a reference. Binary 
representations are typically more compact, and this is also true for BAM, for 
example in comparison with FASTQ or with the textual representation of the same 
BAM data as SAM, which is about four times as voluminous as BAM, on average. 
Indexed, sorted BAM files can be accessed randomly like a database, which can have 
great advantages when processing. Also, fewer data syntax dialects exist, as many tools 
use the same underlying application programming interface - usually either the samtools C 
API, [10] or the HTSJDK Java API10 -, though there may be some variation in optional 
headers. Finally, the BAM format is one of the “container file” formats preferred by the 
short read archiving services provided by INSDC collaborators11.  

                                                
10http://samtools.github.io/htsjdk/  
11http://www.ncbi.nlm.nih.gov/books/NBK47537/#File_Format_Guide_B.Overview_of_Input_Fo  
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A downside of BAM and other binary formats, such as the Standard Flowgram Format, 
SFF12, or the reference-based compression format CRAM [11] (which paves the way for 
“compressive genomics”[12]), is that their structure is more difficult to infer than flat text 
and that corruption such as due to truncation during network transfers may be more 
difficult to detect. To manage these risks, careful data stewardship (preserving the version 
of the API that was used) and good quality metadata, including file format descriptions 
and checksums, are necessary. 

3. Manage data replication 
Unmanaged, haphazard copying of data across user home directories on workstations 
and compute nodes must be avoided for two reasons. Firstly, data unnecessarily strewn 
about multiple locations consumes space, which may be at a premium on compute nodes 
with expensive, fast read I/O (e.g. on solid state drives). Secondly, such proliferation 
creates a complex provenance trail that may be hard to reconstruct down the road. On the 
other hand, storage hardware will unpredictably fail, and files can become corrupted for a 
variety of reasons (e.g. incomplete file transfers, user errors, computer viruses), which 
does necessitate managed replication, including backups. The simplest approach is to 
ingest master data into centralized storage that is backed up and from where 
temporary, ephemeral copies can be made to HPC resources and workstations as 
needed (but see recommendation 4, below).  
 
However, more scalable (but more complex) solutions that incorporate abstraction layers 
to manage metadata and access rights are gaining adoption. For example, the iRODS13 
system is currently being used by iPlant [13], the Swedish national HTS infrastructure 
UPPNEX [14], the Broad Institute, the Wellcome Trust Sanger Institute, the U.S. National 
Center for Microscopy and Imaging Research, and the Genome Biology Unit at the 
University of Helsinki (for an illuminating report on iRODS deployment at these institutions, 
see [15]). The key appeal of this system lies in the integration of data management with 
arbitrary metadata, though this can be approximated to some extent by specialized 
analysis and data management platforms that provide more facilities for queryable 
annotations than the file system can (e.g. Galaxy14 data libraries), some LIMS systems 
and generic object store solutions (e.g. Amazon S315 or Ceph16). 

ANALYSIS 

Raw sequencing data need to be analyzed in many steps in order to gain new insights. In the 
first instance, a number of these steps are essentially data cleaning and data organization, 

                                                
12http://www.ncbi.nlm.nih.gov/Traces/trace.cgi?cmd=show&f=formats&m=doc&s=format#sff  
13http://irods.org/  
14 https://usegalaxy.org/  
15 https://aws.amazon.com/s3/  

16 http://ceph.com/ceph-storage/object-storage/  
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which produces intermediate data. Among these steps are basic quality control, e.g. to trim 
bases of poor quality and to filter out contamination, and assembly, either to a reference 
genome or de novo. In a dwindling number of cases this may be “enough”, but usually a large 
number of additional steps are performed, among which might be genome annotation, variant 
calling, comparisons with other samples and sequences, and a large number of statistical 
analyses, to arrive at the final result data. Without a planned strategy for managing these 
analyses a proliferation of intermediate data with unclear provenance will occur. Sensible 
strategies exist to manage reproducible research, to minimize movement of large data sets, and 
to keep a “paper trail” of the provenance of both data and analysis. 

4. Make analysis reproducible 
During the course of a research project the same analysis steps will be executed multiple 
times, for example to explore a parameter space, to iterate over a set of samples, or to 
incorporate newly acquired data: “everything you do, you will probably have to do over 
again”  [16]. This raises a number of challenges when this is done “by hand”. Firstly, 
people make mistakes and so without automation it is hard to ensure that exactly the 
same steps are followed for each iteration. Secondly, no automatic record exists of what 
was done. Thirdly, every time an analysis step is performed, new intermediate and result 
data are generated, thereby contributing to the explosion in data volumes.  
 
To address these challenges and to make research more reproducible, broadly applicable 
guidelines for organizing and automating analyses have been formulated by a number of 
data scientists (e.g. see [16,17]). Apart from the virtues of reproducible science per 
se, automation of analyses also aids in coping with large amounts of intermediate 
and result data: if the analysis can be re-run, not all intermediate steps need to be 
retained. To make this possible, all the components that might influence the results of an 
automated analysis down to the operating system and its libraries, where relevant, should 
be fully specified and provisioned. In cloud computing, supporting tools to manage17 and 
provision18 virtual machines have become available. Moreover, recent advances in 
“container virtualization”19 and the virtualization of programming environments20 have 
resulted in a more lightweight approach to virtualization that delegates more functionality 
to the host operating system, thereby lowering the demands of virtualization in terms of 
computing power and disk space.  
 
One level up from the operating system, analysis pipelines can be made reproducible 
either using specialized workflow environments21, declarative workflow scripting 
languages22, domain-specific languages23 or general purpose procedural languages24. 

                                                
17http://www.vagrantup.com/  
18https://puppetlabs.com/  
19https://www.docker.com/  
20https://virtualenv.pypa.io  

21For example: Galaxy (http://galaxyproject.org/), Taverna (http://www.taverna.org.uk/), eHive 
(http://www.ensembl.org/info/docs/eHive/index.html) 

22For example, make-like tools such as SnakeMake (https://bitbucket.org/johanneskoester/snakemake/wiki/Home) 

23For example the statistics language R (http://www.r-project.org/) 
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Using these tools, analysis steps should be made easily (re-)runnable so that derived data 
can be re-generated from source. 

5. Bring analysis to the data 
A typical workflow in bioinformatics might start by downloading data from a server to 
perform calculations locally on a workstation. Due to the growth in data volumes this 
approach does not scale well, and it is at odds with the recommendation against 
haphazard copying of data (recommendation 3). Instead, the analysis workflow might 
be inverted: rather than bringing data to the analysis, bring the analysis to the data 
[18].  
 
Up till recently, this may have meant the provisioning and configuration of a one-size-fits-
all analysis cluster or server with co-located data storage. Due to the rapid evolution of 
analysis tools, library dependencies and operating systems, maintenance of such systems 
is complex. However, recent advances in “cloud computing” have made it possible 
to launch virtual machines, complete with installed analysis pipelines, on 
commodity hardware with co-located data storage [19]. Analysis pipelines, even as 
entire virtual machines bundled with operating systems, are often much smaller in size 
than many types of HTS data sets, and can be tailored to a specific data set or analysis 
without having to modify a shared cluster or server. Even more compact ways of 
packaging pipelines (e.g. in “containers”25 or using language-specific packaging 
systems26) are available that reduce the size of analysis pipelines further. 

6. Track data and analysis provenance 
In the course of a research project, data and analysis (e.g. custom-written scripts, 
workflows, configurations) undergo iterative changes. In order to make this process 
fully reproducible as well as understandable this evolution needs to be recorded. In 
the case of small text files such as source code, summarized result data, metadata, 
and configuration files, version control systems such as git27 and subversion28 are 
strongly recommended (e.g. see [16]), for example in combination with free cloud-based 
hosts29 that provide remote storage of the project repository.  
 
Version control systems store incremental snapshots of the line-by-line differences 
between files in a repository from one revision to the next, with each revision 
accompanied by metadata about when, by whom, and why changes were made, i.e. a 
good record of the provenance of these files. However, because of this granularity, 
storage capacity can quickly be swamped especially in the case of large binary data such 
as BAM files, for which line-by-line differences can not be computed, which typically 
means that instead the entire file would be stored at each change. This suggests that the 

                                                                                                                                                       
24For example, Python (https://www.python.org/), Ruby (https://www.ruby-lang.org/en/) or Perl (http://www.perl.org/) 
25https://www.docker.com/ 
26https://virtualenv.pypa.io/en/latest/ 
27http://www.git-scm.com/  

28https://subversion.apache.org/  
29e.g. http://bitbucket.org, http://github.com, http://sourceforge.net  
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provenance of such files should be tracked separately. To keep this manageable, raw 
master data files should be considered immutable, while reproduction of 
intermediate and result data should be automated (as per the previous section). 
This means that relatively few data versions need to be stored. Visual workflow 
environments such as galaxy30, which build up an annotatable, re-runnable history of an 
entire analysis31, may be all that is needed. Alternatively, command-line driven data 
management tools may be used. For example, git-annex32 for data integrates well with git-
based analysis provenance management and can use a variety of scalable storage 
“remotes”33, while the previously-discussed iRODS system provides the flexibility to define 
structured metadata terms with which to record data provenance. 

ACCESS AND SHARING 

Data must be accessible to internal collaborators, and (eventually) to the outside world, whether 
to privileged outsiders (e.g. consortium partners) or the community at large. This poses several 
challenges. Firstly, HTS intermediate data file sizes can be on the order of tens of gigabytes, 
which can be problematic if bandwidth is limited or unreliable. Secondly, once data start moving 
around, context may be lost and references to the data (e.g. different versions) become 
ambiguous. Thirdly, access may have to be controlled, e.g. for reasons of privacy or competitive 
advantage. 

7. Model data movement  
Data inevitably moves between locations, even within a research institute. Without a 
coherent strategy for managing this movement, problems can occur. For example, 
sequencing instruments typically have their own limited disk space separate from 
institution-wide data management. If this is used for permanent raw data storage this 
space quickly fills up. If sequencing data are generated elsewhere, these typically arrive 
on physical storage media such as USB drives, which may be inaccessible to 
collaborators (i.e. sitting on a shelf) and may become corrupted. If the only copy of a data 
set is stored on a compute node, expensive storage intended as “scratch space” becomes 
unavailable. To prevent such problems, data movement should be modeled and 
ensuing practices should be adhered to (ideally through automation).  
 
A typical model might consist of the following steps: i) data are generated on an 
instrument or arrive on a physical medium; ii) data are ingested into cheap, networked 
storage; iii) checksums are computed, stored with the data, and compared with the source 
to ensure ingestion succeeded; iv) data and analysis are staged (see recommendation 5); 
v) result data are ingested and shared. 

 

                                                
30http://galaxyproject.org  
31for a good example of this, see https://usegalaxy.org/u/aun1/p/windshield-splatter  

32http://git-annex.branchable.com/  
33http://git-annex.branchable.com/special_remotes/  
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Automated management of data movement can have big benefits. For example, by 
implementing automated data movement at the Sanger institute, a 50% reduction in disk 
utilisation (out of 2PB) was achieved34. The movement pattern that was implemented is 
reproduced as the gray shaded area in figure 4. 
 

 
Figure 4. Typical data movement pattern35. Raw data are automatically pulled from the sequencing platform to 
a staging area where quality control and analysis is performed before the data are deposited in the local, 
“final” repository. Data from the staging area and the repository can additionally be ingested into remote 
compute farms where the data are combined with that of others to perform additional analysis. 

8. Make data persistently identifiable and locatable 
“The” master data cannot solely be a file in a folder in someone’s home directory, or an 
email attachment sent “a few weeks ago”, or even “the dropbox folder” (which one?). In 
collaborating and communicating with others, data needs to be uniquely, 
persistently identifiable and locatable, or collaborators will have problems identifying 
and accessing the relevant data. For most purposes, URLs that can be referenced by 
metadata such as timestamps and checksums may be enough during the course of a 
research project, as URLs are both globally unique identifiers by virtue of the domain 
name system as well as locators.  
 
Alternatively, data hosting and sharing technologies that can be queried and traversed, 
such as FTP servers or object stores, can be used. For result data, identifiers and 

                                                
34http://www.slideshare.net/gcoates/nextgeneration-sequencing-data-mangement 
35http://www.slideshare.net/gcoates/nextgeneration-sequencing-data-mangement  
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locations are often indirectly linked, e.g. using DOIs that resolve to data sets, such as 
provided by Dryad and FigShare or domain-specific identifiers such as NCBI SRA project 
numbers. 

9. Provide enough metadata 
In the course of a research project, data changes hands repeatedly and any additional 
information about it that is not explicitly recorded somewhere may be lost in the process. 
Metadata, i.e. data about data that captures the who, what, where, when, why and 
how of a data set, may start to come into existence long before a sequencing 
experiment takes place yet may be needed long after the experiment has concluded 
and the results have been deposited in long-term repositories. Careful recording of 
metadata may prevent many unforeseen problems along this lifecycle. Recent years 
have seen the development of checklists for the minimal amount of information required to 
describe a sequencing experiment, resulting in the guidelines MIxS [20], used in 
submissions to the European Nucleotide Archive and the European Genome-Phenome 
Archive, and MINSEQE [21], used in submissions to the INSDC’s Short Read Archive and 
ArrayExpress. However, these guidelines specify so few details that compliance to them 
by themselves does not suffice.  
 
Among the metadata that may be required might be information for validating the project 
data per se, e.g. by identifying the data locations, their data formats (and dialects!), the 
provenance trail that resulted in the data - such the logging output of analysis pipelines - 
and file checksums. One step up from that, metadata should also capture the parameters 
of the assay (e.g. lab protocols, insert sizes, read lengths, primers, adaptors) to be able to 
perform meaningful analysis on the data. Then, across assays, the metadata about the 
study (e.g. the study subjects, their source(s), sampling methodologies, any treatments or 
manipulations) and the overarching investigative project (e.g. contact details of persons 
and labs involved, their access rights) should be recorded. The Investigation-Study-Assay 
tab-separated format, ISA-TAB [22], provides a convenient framework for capturing all of 
this information in spreadsheets that require no bioinformatics expertise yet are flexible 
enough to be able to incorporate the semantics, i.e. the explicit definition of meaning, of a 
lot of metadata by way of formal ontologies, whose adoption is growing rapidly [23]. 

FUTURE PROOFING 

10. Be agile 
High-throughput sequencing technologies (chemistry, sensors) are rapidly evolving, and 
analyses are becoming more complex, moving the field from essentially exploratory to 
hypothesis testing on multimodal data. In the process, multiple sequencing platforms are 
routinely combined (e.g. long reads for scaffolding with short reads for error correction). In 
light of these developments, the pragmatic approach is to be agile: although sequencer 
vendors provide their own data management and analysis platforms, avoid vendor lock-
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in in proprietary file formats, databases, analysis tools, data access patterns or 
LIMSs.  
 
The advent of lightweight virtualization and “container” technologies give the flexibility to 
bring a multitude of complex analysis workflows to data libraries, provided common data 
standards are adhered to and the data infrastructure does not unduly limit the ways in 
which data can be accessed. “Containerized” deployment of analysis workflows on 
distributed compute nodes may allow large analyses to be parallelized more easily.  

Conclusions 
Industry outlooks for the next five years suggest that the relative cost of HTS data management 
and data reduction will drop, but that the relative cost of downstream analysis will rise (Figure 
2). To realize the relatively lower cost of data management and data reduction, sensible policies 
need to be established in order to cope effectively with the fact that HTS data generation 
outpaces innovation in data storage. This document attempts to establish some simple rules to 
guide the development of these policies at the levels of master data management, data 
analysis, and data sharing. Hard and fast rules are impossible to establish given the 
heterogeneity in technologies and institutional infrastructure and requirements, but this 
document does suggest some aspects of a generalized scenario, which is visualized as a 
flowchart in Figure 5. 

   
Figure 5. Scenario for managing HTS data. Numbers between parenthese refer to discussed rules. 
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In the scenario depicted in Figure 5, data undergo a planned series of movements and 
processes resulting in well-documented outcomes that can be shared among collaborators. The 
first steps in this process concern the generation of quality controlled, reduced and compressed 
intermediate data (e.g. BAM files) whose provenance and metadata are made available with the 
data through a publishing platform in which all persistently identifiable and locatable.  
 
An arbitrary number of subsequent analysis steps is performed by processing these 
intermediate data with automated analysis workflows, ideally minimizing the movement and 
copying of the intermediate data (i.e. bringing the analysis to the data rather than vice versa). 
Each of these processes generates result data which again are ingested into a publishing 
platform. In the process, a paper trail of provenance is generated that extends the trail initiated 
during the earliest stages of data processing. 
 
The scenario given here is necessarily very generic because the HTS field is evolving very 
rapidly, and specific use cases differ greatly among (and within) “accidental sequencing 
centers”. As such, perhaps the most important recommendation that can be made is to be agile 
in developing workflows, to think in terms of loosely-coupled modules that can be swapped in 
and out as needed, by avoiding proprietary platforms and technologies and pragmatically 
choosing interoperable standards instead. 
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