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Abstract 12 

Background: Inexpensive high-throughput DNA sequencing has democratized access to 13 

genetic information for most organisms so that research utilizing a genome or 14 

transcriptome of an organism is not limited to model systems. However, the quality of the 15 

assemblies of sampled genomes can vary greatly which hampers utility for comparisons 16 

and meaningful interpretation. The uncertainty of the completeness of a given genome 17 

sequence can limit feasibility of asserting patterns of high rates of gene loss reported in 18 

many lineages.  19 

Results: We propose a computational framework and sequence resource for assessing 20 

completeness of fungal genomes called FGMP (Fungal Genome Mapping Project). Our 21 

approach is based on evolutionary conserved sets of proteins and DNA elements and is 22 

applicable to various types of genomic data. We present a comparison of FGMP and 23 

state-of-the-art methods for genome completeness assessment utilizing 246 genome 24 

assemblies of fungi. We discuss genome assembly improvements/degradations in 57 25 

cases where assemblies have been updated, as recorded by NCBI assembly archive.  26 

Conclusion: FGMP is an accurate tool for quantifying level of completion from fungal 27 

genomic data. It is particularly useful for non-model organisms without reference 28 

genomes and can be used directly on unassembled reads, which can help reducing 29 

genome sequencing costs.  30 

Keywords: assembly; conserved elements; gene model. 31 
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BACKGROUND 33 

The recent explosion of high-throughput sequencing methods and analytic tools has made 34 

sequencing easier and cheaper for nearly all species across the tree of life including 35 

uncultivable organisms. However, the quality and completeness of these genomes can 36 

vary due to challenges in assembling repeat rich regions and variable or insufficient 37 

sequencing coverage (1). Large-scale sequencing projects such as the microbial dark 38 

matter project (2), the Human Microbiome Project (3) or the 1000 fungal genomes 39 

project (http://1000.fungalgenomes.org) have produced thousands of microbial genome 40 

assemblies. The rapid generation and release of draft data is contributing important and 41 

useful datasets that are extensively used for studies of pathology, evolution, and 42 

discovery of enzymes or pathways. Variable quality and completeness of draft genomes 43 

can impact the inferences drawn regarding gene content, transposable element load, and 44 

genome size. There is a need to quantify a genome’s completeness to provide context of 45 

the quality of information that can be inferred from it. This work is also motivated by 46 

observations that lineage specific gene loss is an important driving force in evolution, 47 

especially in fungi (4, 5), and the accuracy of conclusions drawn about the patterns of 48 

missing genes requires comparisons among similar quality genomes.  49 

Approaches to assess the quality and completeness of a genome have been 50 

proposed using nearly 100 different metrics (6). Unfortunately, most of these metrics are 51 

generally not applicable to non-model species because they require a substantial amount 52 

of additional high-quality data (e.g. fosmids, reference genomes, optical maps) that can 53 

be expensive or infeasible to obtain for a large number of samples. Currently, few 54 

methods attempt to estimate the amount of missing data in an assembly without prior 55 
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knowledge. One of the most popular approaches, CEGMA estimates the completeness to 56 

the presence of set of 248 single copy gene markers (7, 8). Although CEGMA has been 57 

used in numerous studies, a key issue is that makers were selected from only six model 58 

eukaryotic species and the ubiquity and detections of these markers may not be consistent 59 

as more distant lineages are sampled. CEGMA has been recently discontinued and the 60 

authors recommend using alternative tools (http://www.acgt.me/blog/2015/5/18/goodbye-61 

cegma-hello-busco). The concept has been recently revisited and updated with clade-62 

focused sets of protein coding gene markers in BUSCO (9). Another set of 246 single 63 

copy fungal gene families has been proposed by FUNYBASE (10). The latter provides a 64 

set of conserved fungal genes but the tools are not explicitly developed to assess genome 65 

completeness. Furthermore, the FUNYBASE database was generated in 2010 while a 66 

broader sampling of diverse fungal genomes is now available (11).  67 

To build a dataset of independent markers to assess completeness, typically, 68 

single copy orthologous genes are chosen. Multi-copy gene families are systematically 69 

filtered out in these selections, but their utility, as well as that of alternative, non-protein 70 

coding gene markers has not been fully explored in assessing genome completeness. Two 71 

summary statistics of genome assemblies are frequently used to evaluate quality 72 

completeness. The N50 and L50 statistics (12) which describe the level of fragmentation 73 

of the assembly are computed based on the lengths of assembly scaffolds or contigs. Both 74 

statistics utilize a sorted list of largest to smallest sizes of contigs, where L50 is the length 75 

(in bases) of the shortest contig for which 50% of the genome can be contained within 76 

contigs of that size or larger, and N50 is the number of contigs that when summed their 77 

length is half of the assembly size (13). Note that unfortunately these two concepts are 78 
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swapped in some tools, where N50 means length and L50 means the count. Still other 79 

methods measure the number error per bases or assembly inconsistencies to prediction 80 

genome quality (14, 15).  81 

In the present study, we focused on the fungal kingdom. Fungal genome sizes 82 

vary from several megabases (Mb) to nearly 1,000 Mb (11). A primary motivation of this 83 

work is to provide a realistic estimation of assembly completeness for fungal genomes. 84 

The precision dependents on the ability to accurately identify genes, which can appear 85 

artifactually fragmented by an incomplete assembly or appear lost due to more rapidly 86 

evolving loci in some lineages. The nature, evolutionary trajectory and loss likelihood of 87 

genes need to be considered when calculating genome completeness from gene content. 88 

We propose a novel set of markers and build a pipeline to assess their presence in 89 

genome assemblies called FGMP (Fungal Genome Mapping Project). Our multistep 90 

approach extends previous approaches by integrating identifiable fungal protein and 91 

highly conserved non-coding regions. The protein markers selected include both single 92 

and multi-copy markers and have only a 50% overlap with previously published datasets 93 

providing a different dimension of sequence evolution to evaluate the completeness. 94 

Highly conserved non-coding regions of fungal genomes are a novel resource we have 95 

developed and incorporated into assessment of genome completeness in FGMP. Lastly, 96 

we use a multisampling approach coupled to a rarefaction analysis to search for markers 97 

in unassembled sequencing reads, which bypass the need for an assembly. Therefore, 98 

using FGMP, a researcher can quickly assess the quality of a set of reads in hand before 99 

attempting an assembly, which can be computationally expensive. Finally, we described a 100 

side-by-side comparison of our tool with state-of arts methods over 246 fungal species 101 
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with genome assemblies of varying ranges of quality. We captured assembly 102 

improvements/degradations in 57 fungal species with more than one released assembly, 103 

as recorded in NCBI assembly archive. The modular construction of this work can be a 104 

valuable tool for genome completion estimation that can be easily incorporated in more 105 

complex pipeline.  106 

 107 

IMPLEMENTATION 108 

A typical run of FGMP consists of three steps. First, a set of raw gene models (proteins) 109 

is generated from the queried assembly which are further filtered down to high 110 

confidence genes in subsequent steps. Second, the presence of highly conserved non-111 

coding fungal DNA elements (>200 nucleotides) is estimated. Third, the copy number of 112 

ubiquitous multi-copy protein families is determined to track possible mis-assemblies or 113 

collapsed duplicated regions. The FGMP workflow is diagrammed in Figure 1 and 114 

methodology further detailed in the following sections.  115 

 116 

Reference data preparation 117 

FGMP is primarily designed for assessment of fungal genome quality using defined sets 118 

of conserved proteins, noncoding highly conserved DNA elements (HDE) and multi-copy 119 

protein families. All the datasets are included in FGMP package and a stable released 120 

version is available at DOI: 10.5281/zenodo.1453438. Installation is available via 121 

Bioconda package system as “conda install -c bioconda fgmp” (16). Alternatively, a step 122 

by step manual installation guide is provided at https://github.com/stajichlab/FGMP. 123 
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To generate the protein markers, we analyzed a phylogenomic dataset of 25 fungi 124 

with complete genomes covering from all major fungal lineages (Additional file 1). In 125 

total, 164,232 proteins were analyzed. Our goal is to capture the fungal protein diversity 126 

rather than focusing on universally conserved proteins. We focused on obtaining a set of 127 

diverse proteins to be used for initial identification of candidate regions and training sets 128 

for gene predictions. Our assumption is that irrespective to the phylogenetic classification 129 

of species under analysis, our diversified set of proteins would contain a homolog with 130 

sufficient protein similarity to generate a valid gene model. With these concepts in mind, 131 

we identified orthologous protein families using OMA (17) followed by inspection of the 132 

ortholog clusters using BLAST (18) and full-length pairwise alignments generated using 133 

needle from EMBOSS package (19). We extracted 7,773 protein families present in at 134 

least four species and use them to construct Hidden Markov Models (HMMs) using 135 

HMMER3 (20). In parallel, we selected a single most informative protein in each of these 136 

families using M-COFFEE (21), which corresponds to the sequence containing 137 

information that is lacking in other sequences of a multiple sequence alignment. We 138 

computed the significance scores as follows: each protein of each cluster was compared 139 

to its corresponding HMM and the threshold corresponds to 80% of the score of the 140 

protein with the lowest score. The use of the full set of 7,773 proteins appeared to be 141 

excessively demanding in term of computational resources, even for small sized genome 142 

assemblies (e.g. < 8 megabases; data not shown). To reduce the computational burden, 143 

we then filtered out potentially paralogous sequences using PHMMER with an E-value of 144 

10-50 as cut off (20), and applied the following rules: (i) a marker should be present in at 145 

least 99% of the species and (ii) should be unambiguously identifiable based on the 146 
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alignment score of the protein against the HMM of the family. This filtering reduces our 147 

markers dataset to 593 proteins of which 60.3% are from single copy genes contrasting 148 

other published strategies, which exclude multi-copy gene families (BUSCO and 149 

CEGMA). These 593 representative protein sequences are aligned to the queried genome 150 

assembly to identify genomic regions that encode homologous genes using tBLASTn 151 

(18). Once candidate regions are narrowed down by these translated alignment searches, 152 

fine-grain alignments of the proteins to these homologous regions in the target genome 153 

are generated using splice-site aware protein2genome alignment with EXONERATE 154 

(22). These alignments-based gene models are used as training sets for AUGUSTUS (23). 155 

The predicted proteins including both AUGUSTUS gene models and translated 156 

EXONERATE alignment matches are then searched against 593 HMMs to identify the 157 

originating genes. FGMP assigns confidence in these predictions based on pre-defined 158 

thresholds. We benchmarked FGMP using the full (7,773) and reduced set of proteins 159 

(593) on our subsequent analyses and found no significant differences in completeness 160 

estimates between the two sets of proteins.  161 

To identify highly conserved non protein-coding fungal DNA elements, we 162 

performed pairwise whole genome alignments of nine fungi using LAST (24). The 163 

phylogeny of the selected species is presented in the additional file 2. Coding regions 164 

were removed from alignments based on NCBI annotations using BEDtools (25). The 165 

filtering was carried out using a computational pipeline combining enriched motifs and 166 

alignments from MEME (26), BLASTn (18) and EMBOSS ‘needle’ (19). A total of 31 167 

non-coding highly conserved regions in each species were extracted with a requirement 168 

that loci be at least 200 nucleotides long with a minimum of 70% global identity. These 169 
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alignments were converted into HMMs using NHMMER from HMMER version 3.1b2. 170 

These genomic segments are specific to fungi because no significant hit was detected to 171 

species outside the kingdom using NHMMER with an E-value of 0.1 as cut off against a 172 

custom eukaryotic genome database containing Oomycetes, Leishmania and Plasmodium 173 

species.  174 

To identify ubiquitous multi-copy protein families within our set of 593 proteins, 175 

we surveyed 345 fungal genomes. Thirty-three protein families appear to have more than 176 

one copy in all the genomes (HMMSEARCH, E-value < 10-50). For each of these 33 177 

proteins, we consider the minimum number of copies. FGMP records the number of 178 

copies of these 33 proteins and reports when the copy number is lower than expected.  179 

Lastly, FGMP can estimate the level of completion directly from raw sequences 180 

using an iterative reservoir sampling approach. The process starts by splitting the set of 181 

reads by chunks of 104 sequences. Then, FGMP randomly selects 1000 chunks using a 182 

reservoir sampling approach. This parameter can be modified by the user. Chunks of 183 

sequences are iteratively screened for presence of 593 protein makers using BLASTx 184 

(24). The number of markers detected is recorded at each iteration. FGMP will stop after 185 

20 successive unsuccessful attempts to detect new markers.  186 

 187 

RESULTS  188 

Protein markers comparison 189 

To determine if there is overlap among protein markers, we compared FGMP protein 190 

markers to proteins used by other tools. Noting that CEGMA has been recently 191 

discontinued and FUNYBASE is outdated, this comparison is only for an historical 192 
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perspective. A total of 7,773 FGMP markers were originally obtained, which was 193 

reduced to 593 after the removal of ambiguous markers (see Reference data preparation). 194 

We compared the markers selected for FGMP (593 proteins) to those used in CEGMA 195 

(248 families, 1,488 proteins), BUSCO fungi (1,438 proteins) and FUNYBASE (246 196 

families, 5,166 proteins). Using reciprocal best BLASTp (E-value < 10-5), 49.5% of 197 

FGMP protein markers are not found in the other datasets whereas the proportions of 198 

unique markers using the same criterion in CEGMA, FUNYBASE and BUSCO are 199 

respectively 21.7%, 10.5% and 69.8% (see additional file 3). FGMP proteins tend to be 200 

conserved in other eukaryotes but their utility outside the fungal kingdom is not explored 201 

in the present study. Transferases and transporters are common (13%). Kinases and 202 

helicases are overrepresented in FGMP protein dataset where they represent 10% and 5% 203 

of 593 protein markers, respectively as compared to 0.8% and 2% of CEGMA makers; 204 

3.3% and 2% in FUNYBASE markers; 3.3% and 0.7% of BUSCO fungi markers. 205 

Kinases and helicases are multi-copy protein families in nearly all fungi and likely this 206 

multicopy property is why these genes are not present in other datasets, which actively 207 

restrict gene duplicates. Most FGMP kinases have homologs in bacteria and archaea, 208 

suggesting that they are ancient. Most of the helicases also have archaeal or bacterial 209 

homologs as well and are likely a mix of ancient and derived forms.  210 

 211 

Comparison with related tools 212 

To investigate the ability of different software to detect changes in genome assemblies’ 213 

quality, we analyzed the initial and subsequently updated genome assemblies of 45 fungi. 214 

As FGMP measures the genome completeness using protein and highly conserved non-215 
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coding elements, we refer these modules as FGMP_PROT and FGMP_HCE, 216 

respectively. This is because FGMP_PROT is roughly equivalent to BUSCO or CEGMA, 217 

but FGMP_HCE is unique to FGMP. FGMP_PROT and FGMP_HCE predict increases 218 

in genome completeness in 35% and 31% of the 45 species, respectively whereas 219 

BUSCO-fungi predicts increases in 53% and CEGMA in 60% of the species (Figure 2 220 

panels a to d). Overall, the compared methods agree on 16 out of 45 species (Figure 2 221 

panel e). FGMP is the most conservative method at assigning increase in completeness 222 

between versions and CEGMA is the most permissive. No statistically significant 223 

correlation between FGMP and BUSCO results and various genome statistics was 224 

observed (i.e. N50, sequencing coverage, or the sequencing technology used), which is 225 

consistent with Assemblathon results (6) showing that completeness metrics are not 226 

necessarily correlated among genome assembly statistics. However, CEGMA results 227 

appeared to be correlated to the sequencing technology used (Spearman rho = 0.2), that 228 

is, assemblies generated exclusively with short reads (e.g. Illumina) tend to have lower 229 

rates of increased completeness between versions than those built using long reads (e.g. 230 

PacBio). FGMP_PROT and FGMP_HCE results are correlated (Spearman rho = 0.39) 231 

but clearly independent, which further highlights the utility of interrogating different 232 

genomic regions to assess completeness.  233 

To further assess the ability of FGMP to detect missing genes and gene loss, we 234 

evaluated the impacts of randomly removing ~10% of genomic sequence using 57 fungal 235 

genome assemblies (completeness estimates are provided in additional file 4). 236 

FGMP_PROT successfully captures the degradations in all assemblies, the average loss 237 

rate was estimated at 5% instead of the original 10%, which means the full extent of the 238 
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simulated loss is not recovered. FGMP_HDE detected the loss of genomic regions in 54 239 

assemblies with an average loss rate of 5.2%. A search with BUSCO (fungi models) 240 

captures degradations in 55 assemblies with an average loss rate of 4.3%. The removal of 241 

genomic regions prevented CEGMA pipeline from completing in many cases without 242 

apparent reasons. Therefore, we have concluded that CEGMA could only be run on the 243 

original genome assemblies. Examination of CEGMA completeness estimates found they 244 

are not statistically different from BUSCO (fungi models) estimations (Wilcoxon test, p-245 

value 0.73), but differ significantly from FGMP results (p-value = 0.01). These findings 246 

indicate FGMP and BUSCO perform relatively well on genome assemblies of varying 247 

degrees of completeness and are similar in estimations detecting degradations in genomes 248 

(Figure 3). 249 

 250 

Genome completion and ecological or lifestyle traits 251 

We estimated the genome completeness of 166 fungal genomes (species details are 252 

described in additional file 7). Only one version of the genome assembly was considered 253 

for each species. Each species was classified according to its lifestyle based on published 254 

literature (e.g. saprotroph, parasite; references are presented in additional file 7). Parasites 255 

are typically characterized by a reduced genome size usually attributed their reliance, 256 

either partially or obligately, on nutrients scavenged from hosts. Their genomes are often 257 

enriched with transposable and repetitive elements, which in some extreme case 258 

composed more than 80% of the genomes (27). Our dataset includes 34 pathogenic 259 

species which genome sizes range from 177.6 Mb for the ectomycorrhizal fungus 260 

Cenococcum geophilum to 2.1 Mb for the microsporidia Encephalitozoon romaleae. The 261 
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remaining 132 fungi were classified as saprotopic and their genome sizes vary from 177 262 

Mb for the ectomycorrhizal fungus Cenococcum geophilum to 9.8 Mb for the xerophilic 263 

fungus Wallemia sebi. Taking the whole set of genomes, the average N50 is 126.7 Mb for 264 

an average number of scaffolds per genome of 1,029; an average genome size of 38 Mb 265 

and the average fraction of Ns per genome is 3.2%.  266 

Analysis of our set of 166 genome assemblies found that 92% have a CEGMA 267 

value > 95% whilst only 58.7% of these assemblies have a 95% completeness with 268 

BUSCO fungi, 40% with FGMP_HDE and 54.2% with FGMP_PROT. Genomes labeled 269 

as incomplete are typically parasites, which suggest that gene losses from genome 270 

streamlining and missing sequence in assemblies might be confounded. Overall 271 

completeness predictions correlated with the N50: CEGMA (Spearman rho = 0.35, P-272 

value = 1.3 x 10-8), BUSCO fungi (R = 0.40; P = 2.1 x 10-11), FGMP_HDE (R = 0.17; P 273 

= 0.005) but FGMP_PROT (R = -0.05; P = 0.4). FGMP_PROT predictions are not 274 

correlated with N50 as this metric incorporates gene fragments, which allow the partial 275 

detection of markers even when reliable gene models cannot be built. To avoid 276 

overcounting false positives and inflating the estimate, gene fragment sequences are 277 

required to score above a predetermined threshold to be accepted as valid hit. However, 278 

because short fragments are still required to display a significant similarity versus FGMP 279 

protein markers (scores), the likelihood of inflated completeness estimates is expected to 280 

be negligible.  281 

 282 

 283 

 284 
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Runtimes 285 

We tracked the running times for 90 fungal genome assemblies (additional file 6). Using 286 

six CPU cores each with 8 GB memory (AMD Opteron clock speed 2.1Ggz), FGMP 287 

runtimes are proportional to the size and the levels of fragmentation of the genomes 288 

under analysis. Runtimes are more influenced by the level of fragmentation of the 289 

assembly than its size (additional file 5). For example, FGMP analysis is completed in 39 290 

minutes for the 118 Mb genome size of B. graminis (N50 = 2,030. 3 kb) whereas the 291 

analysis of the 41 Mb genome of Magnaporthe oryzae (N50 = 153 kb) requires three 292 

hours (additional file 6). The fastest runtime observed was that of Cryptococcus gattii 293 

(assembly version 1, size 17.1 Mb, N50 = 44 kb) completed in 22 minutes and the longest 294 

with the genome of analysis of the 49.9 Mb genome of Hortea werneckii (N50 153 kb) 295 

which required four hours.  296 

 297 

DISCUSSION 298 

FGMP is a useful tool for automated assessment of genome assembly completeness of 299 

fungal genomes that incorporates measures of gene content covering both protein coding 300 

and noncoding regions. The tool combines multilevel analysis by scanning of both coding 301 

and non-coding regions of a given genome and provides a detailed reported describing 302 

the recovery of multiple types of genomic features in a genome assembly. Compared to 303 

existing methods BUSCO and CEGMA, FGMP fills a unique niche by assessing non-304 

coding highly conserved segments and collapsed gene family’s content in addition to 305 

measure of protein coding gene conservation. Additionally, FGMP does not rely 306 

exclusively on ab inito gene predictions with tools like AUGUSTUS which require 307 
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parameter training. FGMP reports complete, partial and aberrant gene models. FGMP 308 

also includes an experimental module, which allow a user to query raw reads using a 309 

reservoir sampling approach. This module is currently optimized for low input long reads 310 

similar to PacBio or Nanopore sequences. Future versions will include support for 311 

estimation from Illumina reads. FGMP has a modular architecture and thus can be easily 312 

incorporated into existing genome annotation pipelines.  313 

 314 

CONCLUSION 315 

A realistic estimation of level of genome completeness is a critical metric for accurate 316 

comparative genomics studies. This is particularly relevant as the sequencing costs 317 

decrease and whole genome assembly is attempted as daily routine for many purposes. 318 

BUSCO is currently the only maintained tool for such purpose. FGMP fills a unique 319 

niche in the sense that it has modules that assay additional feature types in genomes with 320 

no equivalent in existing methods. By applying FGMP to real and simulated datasets, we 321 

show that FGMP predictions are reliable and extended that of other software. The tool 322 

allows a deeper analysis in the context of evolutionary biology by quickly providing key 323 

metrics such the presence of potentially collapsed regions or can be used to screen reads 324 

before computationally costly genome assembly is attempted.  325 

 326 

Availability and requirements 327 

Project name: FGMP 328 

Project home page: https://github.com/stajichlab/FGMP 329 

Operating system(s):  Linux, Mac OS 330 
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Programming language: Perl 5 331 

License: MIT Open Source License 332 

Archived release: DOI: 10.5281/zenodo.1453438 333 

Package system availability: Bioconda 334 

 335 

Availability of data and materials' 336 

Additional file 1: List of fungal species used for phylogenomic analysis.  337 

Additional file 2: Phylogeny of nine fungal species used for the detection of highly 338 

conserved nucleotide elements. The divergence times were obtained from 339 

http://www.timetree.org (28) 340 

Additional file 3: Comparison of protein markers used for genome completeness 341 

estimation. 342 

Additional file 4: Assessment of genome completeness in 57 fungal genome assemblies. 343 

Additional file 5: Scatterplot showing the relationship between FGMP running times and 344 

the level of fragmentation for different genome assemblies expressed as N50.  345 

Additional file 6: Genome characteristics, completeness estimates and run times of 90 346 

fungal genomes. 347 

Additional file 7: Lifestyle, genome characteristics and completeness estimates of 166 348 

fungi. 349 

Competing interests 350 

The authors declare that they have no competing interests. 351 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 23, 2018. ; https://doi.org/10.1101/049619doi: bioRxiv preprint 

https://doi.org/10.1101/049619
http://creativecommons.org/licenses/by-nc/4.0/


 17

METHODS 352 

FGMP is written in Perl 5, and is designed for a command line interface. The code is 353 

organized into five distinct modules, which are stored in the main library “FGMP.pm”.  354 

1. Identify candidate regions: this module scans the genome assembly using 593 355 

fungal proteins with TBLASTn (18). In parallel, the assembly is translated using 356 

SIXPACK (19) and compared to 593 Hidden Markov models of the 593 protein 357 

markers using HMMER3 (20). Long FASTA headers are discouraged.  358 

2. Process alignments: aligns 593 protein makers to candidate regions using 359 

EXONERATE (22). Alignments are converted in protein sequences and training 360 

sets for AUGUSTUS (23).   361 

3. Annotation of candidate regions: uses AUGUSTUS to annotate the candidate 362 

regions. The module merges AUGUSTUS predictions with translated proteins 363 

from module 2 into a single FASTA file. The module compares raw predictions 364 

(proteins or peptides) to 593 HMMs using HMMSEARCH. Lastly, FGMP scans 365 

the original assembly for 31 universally conserved fungal elements using 366 

NHMMER.  367 

4. Check the status of multi-copy protein families: scans the raw predictions and 368 

identify markers that are expected to be in multiple copies. Markers with a lower 369 

number of copies than expected are tagged as potentially collapsed regions.  370 

5. Generate final report: gather all raw predictions, filter aberrant predictions (at 371 

least twice the average length of the reference makers) and choose the longest 372 

gene model for each protein markers.   373 

6. Infer genome completeness from long reads: is triggered when reads are provided. 374 
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FGMP uses a reservoir sampling approach and BLASTx (18) to search for the 375 

593 proteins markers in the reads.  376 
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Figure legends 394 

Figure 1 | The FGMP workflow. A typical workflow consists of three sequential modules 395 

(indicated by the boxes). The first module (FGMP_PROT) automates the use of different 396 

programs to evaluate the genome completeness based on pre-defined protein and 397 

nucleotide markers. Additional modules evaluate the patterns of conservation fungal 398 

multi-copy protein families. FGMP protein and nucleotide datasets are derived from 25 399 

and nine fungal species, respectively (indicated as dotted arrows).  400 

Figure 2 | Estimation of genome completeness in fungal genomes. A comparison of 401 

genome completeness by multiple software tools using initial and latest genome assembly 402 

versions of 45 fungi. Genome completeness expressed as a percentage of expected 403 

markers (y-axis) is plotted against assembly size in megabases (x-axis). (A) FGMP 404 

completeness estimates based exclusively on protein markers are shown; (B) FGMP 405 

estimation based exclusively on highly conserved nucleotide segments; (C,D) BUSCO 406 

fungi and CEGMA completeness estimates respectively. In each plot, the dots represent 407 

distinct assemblies and color represents their status (red for the initial version and light 408 

blue for the latest version), and the diameters are proportional to the N50, a measure of 409 

assembly contiguity. Three representative species are highlighted in all panels (ellipses) 410 

to show the evolution of genome completeness between assembly versions. (E) Heat map 411 

of FGMP, BUSCO and CEGMA completeness estimates.  412 

Figure 3 | Genomic loss simulations. The genomes of 57 fungal species were randomly 413 

truncated to evaluate accuracy of FGMP, BUSCO and CEGMA. The density plots 414 

represent the differences (expressed as percentages) between completeness estimates 415 

from the full and truncated assemblies.   416 
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