Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

On the origins and evolution of trans-splicing of bursicon in mosquitos

Scott William Roy
doi: https://doi.org/10.1101/050625
Scott William Roy
Department of Biology, San Francisco state University, 1600 Holloway Ave, San Francisco, CA 94132
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Broad transcriptomic sequencing of eukaryotes has revealed the ubiquity of splicing of nuclear genes. While the vast majority of splicing events join segments of the same RNA transcript, various studies have found a few intriguing cases of trans-splicing of introns, in which splicing events within protein coding regions join segments of different RNA transcripts. The most structurally intricate case known involves the bursicon gene in mosquitos, in which an internal exon is encoded at a distinct locus, requiring multiple trans-splicing events form the mature mRNA. This arrangement is known to be ancestral to mosquitos, however the exact timing of the origin of trans-splicing and the history of the bursicon gene within mosquitos is unknown. Taking advantage of the recent availability of genomes from various Anopheles mosquitos and from relatives of mosquitos, I determined trans versus cis encoding of bursicon across Culicomorpha. I conclude that trans-splicing emerged in the last common ancestor of mosquitos, and that trans-splicing has been retained in all 19 studied Anopheles species. The retention of trans-splicing could indicate functional importance of this arrangement, or could alternatively reflect the rarity of mutations giving rise to viable allelic alternatives.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted April 28, 2016.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
On the origins and evolution of trans-splicing of bursicon in mosquitos
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
On the origins and evolution of trans-splicing of bursicon in mosquitos
Scott William Roy
bioRxiv 050625; doi: https://doi.org/10.1101/050625
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
On the origins and evolution of trans-splicing of bursicon in mosquitos
Scott William Roy
bioRxiv 050625; doi: https://doi.org/10.1101/050625

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Genetics
Subject Areas
All Articles
  • Animal Behavior and Cognition (4672)
  • Biochemistry (10336)
  • Bioengineering (7655)
  • Bioinformatics (26283)
  • Biophysics (13497)
  • Cancer Biology (10664)
  • Cell Biology (15408)
  • Clinical Trials (138)
  • Developmental Biology (8485)
  • Ecology (12802)
  • Epidemiology (2067)
  • Evolutionary Biology (16819)
  • Genetics (11380)
  • Genomics (15458)
  • Immunology (10593)
  • Microbiology (25164)
  • Molecular Biology (10196)
  • Neuroscience (54377)
  • Paleontology (399)
  • Pathology (1664)
  • Pharmacology and Toxicology (2889)
  • Physiology (4332)
  • Plant Biology (9223)
  • Scientific Communication and Education (1585)
  • Synthetic Biology (2554)
  • Systems Biology (6769)
  • Zoology (1459)