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Abstract
Given the intricacies of the retinal neural circuit, which bears a striking
resemblance to that of the brain, it is proposed that retinal function goes
beyond mere spatiotemporal prefiltering. We hypothesise that aspects
related to motion detection and discrimination, anticipation and
adaptation to environmental and contextual conditions, which have
traditionally been ascribed to the brain, may be supported by neurons in
the retina. Such early computations may be dependent on compensative
and adaptive mechanisms that stem from qualities intrinsic to the retinal
neural circuit and its interaction with the environment (neural
transduction time, connectivity patterns, regularities in the input signal,
temporal dynamics and light variations).

With a view to investigating the contribution of the photoreceptor
population to the processing performed by the retina in natural scotopic
conditions, we present a continuous model of the rod photoreceptor. Our
model permits the reproduction and exploration of a set of qualitative
features displayed in vitro, such as excitation-dependent activation level
and time-to-membrane current integration. We captured qualitative
aspects of key features selected for their presumed importance in early
visual function. Further, we subjected our model to extensive parameter
sensitivity analyses, aiming to provide a visual representation of their
contribution to the observed qualitative behavior.

Author Summary
Primate rod photoreceptor cells constitute the very first processing step in retinal
function. This layer influences most of the visual field and presents itself as a tightly
packed photosensitive array. Yet, no computational formulation of this neuron is suited
for large-scale, time continuous modeling. With a view to studying retinal function in
natural contexts, we describe a qualitative, continuous model of the rod. We subject
this model to parameter analyses against selected behavioral features. We aim to
provide a model that can integrate in further experiments, as well as in large scale
network simulation.
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Todo list 1

Introduction 2

The intricacy of neural circuits in the retina suggests that it may support quite complex 3

and powerful computations. It is proposed that retinal function goes beyond mere 4

spatio-temporal prefiltering to include aspects related to motion detection and 5

discrimination, anticipation and adaptation to environmental and contextual conditions, 6

which have traditionally been ascribed to the brain [1]. Such early computations may be 7

dependent on compensative and adaptive mechanisms that stem from qualities intrinsic 8

to the retinal neural circuit and its interaction with the environment; such as neural 9

transduction time, connectivity patterns, regularities in the input signal, temporal 10

dynamics and light variations—which can vary up to 9 log scales. These latter aspects 11

of signal processing, which reflect variations in the input signal, may rely heavily on the 12

base layer of this hierarchical network, the photoreceptors. 13

Photoreceptors are spikeless neurons that react to light by hyperpolarizing and 14

producing a corresponding electrical flow. They interface with the rest of the network 15

through gap junctions rendering a two-way communication channel. There are at least 16

four types of photoreceptors in the human eye, each of them mostly sensitive to a 17

particular range of electromagnetic radiation [2]. Amongst them, the rod photoreceptors 18

represent about 95% of the photoreceptor population [3, 4] and can detect events as 19

small as a single light quantum [5,6]—assuming complete dark adaptation, i.e. 40 to 50 20

min [7])—and convert it into an electrical signal spanning 500 ms. 21

Phototransduction, which is the process of conversion of light into neural signal, is 22

common to all human photoreceptors. Generally, when a photon of light is absorbed, a 23

cascade of events leads to the hyperpolarization of the cell, the bleaching and ensuing 24

recycling of reacting molecules. In the rod, particularly, the absorption of photons 25

kickstarts a chain of chemical reactions where the photo-activated rhodopsin starts a set 26

of two chemical loops that amplify the initial excitation and control it over time [8]. 27

Each loop relies on self-sustained processes and is able to trigger hundreds and a 28

thousand of reagents, respectively. This complex cascade of reactions supports a global 29

metabolic change from a single local event. The second loop will eventually decrease the 30

medium concentration in cyclic Guanosine Mono-Phosphate (cGMP) [7], driving the 31

gating of Na+ and Ca2+ ion channels and producing a change in neural current. 32

During this process, the time scale of the event is fundamentally altered. 33

Photoreceptors present activation and deactivation time that are function of the light 34

stimulation intensity. Unlike other photoreceptors, the rod appears to have a fairly slow 35

time course [9]. For a light event of the microsecond, for instance, it may produce a 36

mirror electric event of the order of the demi-second (5 log scales longer) and up to 37

many seconds for a saturating input (see Figure 5). This phenomenon is heavily 38

studied [7, 10–12] and, along with its intrinsic electrical properties, has been the 39

foundation to numerous models representative of subsets of behaviors expressed by the 40

rod and its internal machinery. However, the resulting models, which are generally 41

complex and dependent on an interpretation of the chemistry involved [9,11–13], mainly 42

account for exposures to isolated flashes of light or a part of the activation-recovery 43

process. These models are thus remote from the natural interaction with continuous 44

light. Those limitations make these models unfit to be used as a building block for a 45

time-continuous model of the retina. The retina and photoreceptors have indeed evolved 46

to extract, process and represent information about the natural environment as 47

effectively and as discriminatively as possible [14]. A theoretical understanding of the 48

information processing occurring within the retina thus requires a perspective that will 49

account for the natural interaction with time-continuous stimulation, as present in the 50
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interaction with natural scenes. 51

As such, the retinal neural network and its components may be optimised to work in 52

a continuous time referential, where punctual events are meaningless on their own. 53

With this in mind, we hypothesize that part of the circuitry and accompanying cell 54

behaviors will mainly be understood in a time-continuous context as opposed to a single 55

stimulus event. Some observed behaviors, such as the omitted stimulus-response or 56

diverse adaptation phenomenon, are, in essence, only present as the experiment unfolds 57

over a long enough period of time [15–17]. Other illustrations of long-term phenomena 58

can be found in the adaptive sensitivity of the retina to the contrasts and patterns that 59

shape the stimulating light. When exposed to comparatively higher contrast 60

environments, for instance, the sensitivity of the retina decreases as the kinetic of its 61

response accelerates, i.e. supporting contrast adaptation [18]. This mechanism has been 62

shown to occur in two stages: A fast step (≈ 0.1sec) of kinetic acceleration and 63

sensitivity decrease and, thereafter, a longer, slow step (of the order of seconds) during 64

which only the sensitivity is affected and keep on decreasing over time. 65

Similarly, the retina also appears to slowly modulate its sensitivity to surrounding 66

patterns (pattern adaptation). A classic example may be the effect of prolonged 67

exposure to an environment composed of horizontal bars, which decreases the sensitivity 68

of the retina to horizontal features altogether, in favor of an increased sensitivity to 69

vertical features in the environment [19]. 70

In the present paper, we propose a simple, qualitative model of a rod photoreceptor, 71

as a first step towards a more complete understanding of the retina in the 72

time-continuous domain. We focus our efforts primarily on the reproduction of 73

behavioral characteristics of the rod in action, and the effects of the parameters of our 74

model. In what follows, we first review selected models of the rod, before describing our 75

model. We compare responses obtained with our model to behavioral characteristics of 76

the cell as described in the literature, and propose a thorough parameters sensitivity 77

analysis over selected effects found in the signal, namely rise time, decay time, hard 78

bump, light intensity and duration of responses. 79

Electrical properties and existing models 80

Rods have first been studied through the lens of their electrophysiological and electrical 81

properties, by means of electro-retinography [20]. Naturally, many models have been 82

proposed that review aspects of the electrical flow arising upon stimulation. Such 83

models will preferentially represent these effects as resistor-capacitor (RC) circuits, with 84

sets of resistance and capacitance values representing different morphological systems. 85

Other representations draw inspiration from cable equation theory, and treat the cell as 86

a single, long conductor with variable conductance properties. Those models, even if 87

lacking biological accuracy, have been shown to explain how neural current may emerge 88

and be transmitted throughout the cell, up to the synaptic branching [21,22]. Similar 89

approaches have been used in the study of synaptic current spreading within the retinal 90

synaptic sheet [23,24]. 91

A birds-eye view of this range of models will show a certain breadth of complexity, 92

from overlapping mechanisms (e.g. convolution filters followed by RC circuit [25]) that 93

aim to emphasise numerical accuracy, to simple models containing a single RC circuit 94

that reproduces the basic low-pass filtering behavior of the rod in response to light. In 95

contrast to models based solely on RC circuits [22, 25, 26], the least complex models will 96

typically include approximation of the electrical response to light with equations similar 97

to Hodgin-Huxley [27]. A traditional RC circuit is therefore crafted out of one [28] to 98

two [29] continuous current generators, in series, with a variable resistor [24] and with or 99

without leaking resistance. 100
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Figure 1. Schematic representation of the rod photoreceptor model. Light is
captured through a filter, using Equation 3, which will convert the incoming energy to a
number of quantum events γ associated with virtual wavelength λ0. This quantity
represents the energy captured by the rhodopsin for a given incoming light beam. The
Cell gear will then use this energy representation along with its current state to compute
the membrane potential. The details of this ODE system are discussed in the text.

A noticeable category of electrical models involve replacing the capacitor within the 101

circuit with an inductor [30–32]—dubbed RL circuits. This technique has been used to 102

study the high-pass filtering capacity that arises when rods are connected in a network; 103

see for instance, models of rods in the toad Bufo marinus [30] and the salamander 104

Ambystoma tigrinum [31]. Even though these models are based on a time-continuous 105

referential and exhibit many kinds of behavior typical of the rods, they share a critical 106

limitation as they lack multiscale-time signal integration. For a very short light event 107

(<< τ), RC models are not able to produce a biologically consistent response. In 108

contrast, RL models will efficiently react to short light impulses but will fail to 109

reproduce sustained stimulation. 110

Finally, Clark et al. [33] proposed a qualitative model of the rod based on the 111

convolution of two mono-lobed filters, dynamically combined in time. This 112

representation is simple enough to allow formal mathematical manipulation, and 113

representative of some characteristic behaviors of photoreceptors. However, the design is 114

such that the output signal is unsuitable for integration into a network of cells, with a 115

view to studying functional computation. 116

In response to the above limitations, we aim to produce a model able to account for 117

any type of activation in a time-continuous referential while being modular enough to 118

permit the explicit manipulation of its components without damaging its overall 119

properties. We thus designed a multi-step system: 1) a filter representative of the rod 120

physiology and of rhodopsin light-absorption properties, 2) an ODE echo-loop for the 121

time scale change induced by the phototransduction and 3) a RLC circuit representing 122

electrical events at the cell membrane (See Figure 1). 123

Methods 124

To construct our model, we used data from several sources, referenced where 125

appropriate. When necessary, some components of the model have been optimised using 126

CMA-ES [34] (as implemented in the Python Pybrain library [35]), as this particular 127

algorithm can both be considered as a Monte-Carlo method to avoid local minima 128

problems and an optimization method converging toward a reasonable solution. 129

Our approach is driven by the will to produce a model that permits the exploration 130

4

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 5, 2016. ; https://doi.org/10.1101/050823doi: bioRxiv preprint 

https://doi.org/10.1101/050823
http://creativecommons.org/licenses/by/4.0/


of behavioral qualities of rods upon acute as well as sustained light stimulations. We 131

further ambition that our model be useful in the investigation of visual function at both 132

cell and population levels in retinal neural networks. Consequently, we structured our 133

model in such a way as to expose parametric "handles" with enough explanatory power 134

without requiring overly expensive computations. The following gives an overview of the 135

kinds of analyses we are interesting in, and the way we have implemented them. 136

Figure 2. Representation of the relative effect of parameter variation. The
parameter variation unfolds along the horizontal axis of the Unity circle
(length =

√
1/π). According to the position on this axis, the vertical amplitude of the

colored surface represents a measure of the relative effect (See Equations 1 and 2). The
unity circle represents a circle with an area equals to 1, and serves as a baseline for
interpretation.

In addition to constructing a model able to reproduce parts of key behaviors of the 137

rod, we aim to provide a representation of the model parameter space as handles to 138

further behavior alteration (kinetic acceleration, light adaptation, cone model) for 139

analysis. Marder and Taylor proposed a qualitative formalism to quantify the effect of 140

the parameters of a model over a set of monitored effects [36]. For each parameter, they 141

represent a circle, the surface of which corresponds to its impact over the monitored 142

effect. In the present work, we extend this method to represent and explore the 143

neighbourhood of the best known parameter values. We map the surrounding range of 144

values along the horizontal diameter axis of a circle, and locally changed its area in 145

function of the amplitude of the effect studied. The resulting ellipse-like blob represents 146

the effect of the different values for a given parameter, while showing local variations of 147

the neighbouring parameter space (see Figure 2). This method serves in the study of 148

the model, its stability and robustness, and informs the formal analysis of our equations 149

towards improving and building new models. This representation involves three key 150

aspects: the generation of the neighbourhood values by sampling the parameter space, 151

the quantification of the effect variation and value capping. 152
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Sampling of the parameter space 153

We generate a range automatically for a given parameter, in a two-step process. First, 154

the log scale (ls) of the optimal parameter value (opv) is computed and used to generate 155

a base number (bs = 10ls−1). This number reflects the best known value for that 156

parameter in representing the data. A series of parameter values is then generated by 157

sampling a range evenly, on both sides of the parameter space [opv − bs/2; opv + bs/2]. 158

Effects comparison 159

The relative influence of each parameter variation over the observed effect has to be 160

measured in a way ensuring numerical and representation stability, as both parameter 161

value and observed effect can yield very large variations. The logarithm of the ratio of 162

the effect variation ranges over the parameter variation range as been chosen as the 163

most stable (low numerical change even in case of large effect fluctuation, no numerical 164

instability as rangeparam¬0) and most informative to display this relation. 165

ratio = log10

(rangeeffect
rangeparam

)
(1)

Capping 166

For some variables, a small change in parameter value (≈ 10−4) can lead to very big 167

fluctuations in term of measured effect (≈ 103) and conversely. Our mapping had to be 168

able to legibly represent all those variations. To achieve this, the log ratio computed in 169

Equation 1, representing the local area of the circle, has to be filtered and capped 170

between two positives values. For clarity, we chose this filter so that a linear dependence 171

between parameter value and effect would be represented as an ellipse, reflecting a 172

one-to-one dependence with a circle of area 1: 173

A = 4
e−ratio+ln(3) + 1 (2)

Our model 174

We propose a three-tier model that decomposes important functional aspects of rod in 175

human (Figure 1). Schematically, the light is first incorporated to the model through a 176

mathematical filter, representing rhodopsin absorption. Second, relying on differential 177

equations, we designed an echo-loop aimed to change the time scale of the initial data 178

flow accounting for natural chemical inertia. This echo loop finally drives a gating 179

resistance in a RLC circuit standing for the neuron membrane. This allows us to 180

replicate a wide set of natural behavior, whilst running simulations at different time 181

resolution–see complete list of parameters in Table 1. 182

Physiological properties of phototransduction: Light filtering 183

The first component is a filter representing the rod physiological properties that convert 184

the different incoming light radiations (γi photons of wavelength λi) to a virtual 185

equivalent quantity of energy λ0. To create this filter, we extracted parameters from the 186

original data by Wald and Brown [10], representing rhodopsin photoactivation rates, in 187

the form of a mixture of exponential functions (see Figure 3): 188

rrhod = 0.83522e−(λ−498.037)2/2897.540 + 0.20920e−(λ−355.397)2/12735.868 (3)
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Figure 3. Absorption rate of the rhodopsin given the wavelength. On this
graph, the red dots represent the data extracted from the graph in [10]; and the blue
line the extrapolated continuous function. As visible, the learned function does not
exactly match the experimental data: the qualitative nature or our work disregards high
numerical accuraty in favor of computation simplicity.

The quantity rrhod is then used to produce a representation γλ0 of the global number
of photon absorbed by the rhodopsin as function of the dimensions for a given cell [37]:

γλi = γi ∗ (αLF ∗ ln(10) ∗Qrhod(λi)) ∗ (πR2) (4a)
γλ0 = ΣΛ

i=1γλi (4b)

With α the specific axial pigment density of the rhodopsin (0.016 µm−1 in 189

primates [38,39]), L the length of the rod outer segment (25 µm in primates [39]), F the 190

absorption ratio of the light due its polarization, ln(10) the naperian extinction 191

coefficient [40] and R the radius of the rod (1 µm in primates [39]). F is equal to 1 in 192

case of polarized light in the optimal direction, but is here 0.5 to account for 193

unpolarized light. 194

Qrhod(λi) represents the quantum efficiency of the rhodopsin (with 195

Qrhod(λi) = rrhod(λi) ∗ q) and q the quantum efficiency. This value has been 196

determined to be wavelength-, concentration-, and temperature-independent and 197

included within the interval [0.6; 1[. Qrhod(λi) has been found to be 0.67 (as per [41,42]) 198

for a 500λ light exposure; For rrhod(500) ≈ 0.875, we chose q = 0.766). 199

The final value γλ0 gives the raw number of photon absorbed by the rhodopsin and 200

hence the number of isomerisation igniting the phototransduction process within the 201

cell. 202
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From light to signal: Cell gear 203

The second component is responsible both for the driving force at the level of the 204

cellular membrane, and the change of time scale that occurs in the system, from 205

microseconds to second-long signal. The reproduction of this last characteristic is 206

important, as we aim to produce a model in the time-continuous domain, which is able 207

to respond to a constant flow of input. 208

Inspired by the FitzHugh-Nagumo model [43], in the way that it steers the entire 209

system by leaning on a curve (here a hyperbole), we introduce a scale change through 210

an ODE loop with positive feedback acting as an echo chamber. The incoming light 211

stimulus γλ0 is first cast to another space (Eq 5a). This casting ensures that a photon 212

quantity in the interval [0, 1[ gives a negligible amount of response while producing a 213

tonic monotonous capped response on [1,+∞[ (limγλ0→∞ Eq 5a ∈ R) ensure a stable 214

reliable input signal. The resulting quantity is then injected in the loop (Eq 5b and 5c). 215

The limits and general behavior of the system are defined by the equation 5c. Equation 216

5b drives the total duration of the echo signal from a micro/millisecond excitation to a 217

second(s) long response. We engineered this echo-loop so as to reproduce a set of 218

qualitative features: 219

• The system must react to a single flash of light by describing a complete 220

hysteresis trajectory. 221

• The system must display a constant, non null, proportional activation to a steady 222

light exposure. 223

• The system must reset to its resting point (a = 0 and v = 0) if not excited. 224

The resulting equation is composed of three sub-components that ensure the 225

stability of the system: The first sub-component (excitation) provides the system with a 226

fast reaction following a light impulse (h2). The second sub-component (normalization) 227

damps the activity to ensure that the overall system will produce the desired hysteresis 228

and equilibrium point when stimulated by a steady light. This is achieved through the 229

term
√
a that dampens the response created by the excitation, to then drive the system 230

towards a steady state. Finally, the third sub-component (inhibition) acts as a 231

refractory force that will eventually reset the whole system after a punctual activity. 232

Equation 5c expresses a parabola over which the system activation pans out. Equilibria 233

points are created either at the intersection (v, a) = (0, 0) during an absence of light or 234

on the parabola described by Equation 5c for a steady light exposure. 235

h = α1(1− eα2γλ0 ) + α3(1− eα4
√
γλ0 ) (5a)

ȧ = α5h
2︸ ︷︷ ︸

excitation

−

normalization︷ ︸︸ ︷
δh
√
a − a︸︷︷︸

inhibition

(5b)

v̇ = βv2 + ηa (5c)

This ODE system generates a trajectory function of the initial energy discharge 236

injected through γλ0 : It becomes wider as the intensity of the light grows. The 237

trajectory is also designed to be slightly wider as the lighting time increases for a given 238

light energy. We review the overall effects of these different parameters later in the 239

present paper. The value of v will eventually, drive rheostat Rs in ways similar to the 240

effects of cGPM on the ion channel gating in vivo. 241
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Figure 4. RLC filter block diagram. Circuit representing the membrane part of
the model. The potential of the capacitor C represents the rod membrane potential, the
leaking memristor Ru (see Equation 8) and the inductor L its inertia, Rs is a switch like
rheostat which value drops when exposed to light (see Eq 7).

Shape and time fine-tuning: Signal filter to membrane potential 242

The last component of the model converts the driving impulse given by the ODE loop 243

(see equation 5) to a membrane polarization (or hyperpolarization). 244

Based upon the idea that the membrane of a neuron behaves similarly as a capacitor, 245

this task is achieved through an RLC-circuit with adjustable gating and leaking 246

resistors (see figure 4). This module will essentially produce a quantity Vc, the rod 247

membrane potential, after the variable v expressed in equation 5c. 248

The mathematical expression of the membrane potential Vc is given by: 249

İc =
(
E − VcRs

Ru
− IcRs − Vc

) Ru
L(Ru +Rs)

(6a)

V̇c = Ic
C

(6b)

When hit by light, the conductance of Rs increases (see Equation 7) allowing the 250

current to flow inside the circuit and to charge the capacitor. 251

Rs(v) = Rs0e
ρ1v

ρ2 (7)
In absence of light stimulus, the value of the resistance Ru increases to account for 252

the longer recovery time displayed by the rod when exposed to high light intensities. 253

This fluctuation, which is similar to a memristor, is given by equation 8 254

s = 1
1 + eε(V̇cτ−1)

(8a)

Ṙu = 103[s(Rumin −Ru) + (1− s)(Rumax −Ru)] (8b)

Where τ is the time step of the simulation expressed in seconds (here, 10−6 sec). In 255

accordance to the hypothesis put forth by Rieke and Baylor [5], the resulting Vc signal 256

is clipped (Vc > −1) and normalized, to simulate saturation levels of the whole system. 257

The resulting overall behavior displays features comparable to a real rod 258

photoreceptor, albeit not numerically accurately (see Figure 4b). From the literature, 259

we identified a number of behavioral features, which may be desirable in such a model, 260
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which aims to explore functional effects of neural networks of the retina. In the next 261

section, we review these behaviors, and describe the parameter sensitivity analysis we 262

used to evaluate our model. 263

Behavioral similarities with rod cell 264

The rod photoreceptor is stage for a series of complex chemical mechanisms leading to 265

key characteristics that we are trying to model. For instance, the stronger the light 266

excitation, the faster the reaction and the slower the recovery; or, higher and longer 267

levels of activations leads to more intense responses. For our model, we selected a set of 268

parameters capable of qualitatively reproducing those behaviors (see Table 1), which we 269

take as initial conditions for our parameter sensitivity analysis. 270

Better results could be achieved with numerical optimization algorithms over the 271

entire parameter set. Unfortunately, this implies a large enough set of data 272

(>> nbrparameters) to be to able avoid common problems such as over-fitting or the 273

destruction of stability and behaviors. The amount of data available, however, gathered 274

from the literature, is not suited for a black box learning algorithm to perform 275

appropriately. When applied on the entire ODE loop, the stability of the system over 276

long periods of activation appeared to be highly compromised. 277

Table 1. Parameter values. Table showing the selected parameter values for the
different parts of the model. Subtable (a) refers to the equation 5, subtable (b) to the
equation 7 and subtable (c) to the equation 6 and 8. Note that the results obtained by
numerical optimization (Subtable (c)) have only been allowed 4 decimal numbers. τ is
here the time constant of the model expressed in seconds.

(a) ODE loop

Parameters Values
α1 1000.0
α2 -10.0
α3 900.0
α4 -0.05
α5 -4×10-4/τ
δ 0.02/τ
η 130.0
β -0.1

(b) Transition

Parameters Values
ρ1 -1.25×10-5

ρ2 1.8
Rs0 106

(c) RLC filter

Parameters Values
L 40.2110
C 1.1038×10-4

E -70.4778
ε 5.4124

Rumin 600.1369
Rumax 2500.2675

Activation and refractory speed 278

Repeatedly observed in empirical setups, the rod cell response to light appears to have a 279

faster rising curve as the intensity of the light grows. An opposite phenomenon can be 280

observed during the decay time, which becomes longer as the intensity of the 281

stimulation increases. Figure 5 shows the reaction of both a real rat rod recorded in 282

vitro and our model to short stimuli (2 µsec flashes) at four different light intensities 283

(1.7γ, 29γ, 300γ and 4000γ). 284

Those two phenomena seem to suggest an emphasis on the high intensity events, as 285

if labelled as potentially interesting for the visual system. When a high response 286

intensity arises, it tends to mask the low intensity event for a period of time function of 287

the causal light excitation. It is important to note that this temporary damping is not 288

total, as the rod displays a multiple phase behavior that enables it to sustain a small 289
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activation for new information and to process it in background until the current level of 290

overall activation finds itself low enough to display them (See section Phase behavior).

Figure 5. Rod and model reaction to brief light flashes. Comparison of both a
real rod and our model reaction to short light stimuli. In both cases, the activation levels
before the 0 point of the abscissa axis (flash income) represents the resting potential
labelled as 0. (a): Four responses of rat photoreceptor to 2 µsec flashes at 36◦C in vitro.
The intensity of the flash F is expressed as the number of photon absorbed per rod
(1.7γ, 29γ, 300γ and 4000γ). The circle plots on the F = 29 γ curve are produced
through Fuortes and Hodgkin’s [26] model and perfectly follow the low light response.
(Figure modified from [22]). (b): Output responses produced by our model given the
same number of absorbed photon. As visible here, the activation curves present similar
characteristics in activation levels, duration and - for small light intensities - shapes.

(a) In vitro rat recording (b) Model reaction to light
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Level of activation 292

Another important aspect of the rod response, the reaction level, appears to depend 293

both on the intensity and duration of the incoming signal. Each of these factors seems 294

to have its own degree of saturation. An activation level induced by a long stimulus can 295

find its steady state higher than the response maximum response to a short stimulus 296

(See Figure 7 - last 200 ms). Note that the opposite is not true. 297

In an attempt to reproduce this behavioral feature, we designed the ODE amplifying 298

loop in such a way that the system is both sensitive to time and to intensity (see 299

Equation 5). For a fixed intensity, the system will create a manifold of trajectories (See 300

Figure 6 - dashed lines) within the range of reaction of the initial intensity based system 301

(Figure 6 - plain lines) but with a slightly different dynamic accounting for the difference 302

in the activation duration. Here, the difference in dynamic is expressed in the shape of 303

the activation plateau within the state space of the ODE loop: the dynamical system 304

phase state is flatter and becomes closer from being perpendicular to the ordinate axis. 305

Constant light response 306

We aim our model to be sensitive to time-continuous, steady light stimulation. Like 307

purely electrical models, our membrane representation is capable of such a behavior. 308

However, the ODE system has to deliver a constant driving force for the membrane to 309

mirror the steady excitation. This is achieved through the couple 310

excitation-normalization terms of Equation 5b that stands for the equilibrium found in 311

the rod photoreceptor between rhodopsin photoactivation and its deactivation through 312
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Figure 6. State space of the ODE amplifying loop. Representation of the phase
state of the ODE amplifying loop when exposed to light flashes of different intensities
for a fixed duration (plain lines) and different durations for a fixed intensity (dashed
line). We can distinguish two separated parts: the rising phase whenever v increases
(ȧ > 0, v̇ > 0 and following the parabola trajectory) and the recovery phase whenever v
decreases (ȧ ≈ 0, v̇ < 0). The system equilibrium in case of steady light stimulation
appears at the separation point of the trajectory from the parabola induced by the
Equation 5c. The phase state displays clear wider refractory orbits as the intensity of
the light grows until it reaches a saturating level, here in red, defining the absolute
range of possible reaction towards light intensities. However, for each light exposure, a
new orbital manifold is created by the model as the excitation duration extends until
the plateau of the rise phase (aka: a neat diverging angle from the parabola curve as
opposed to a smooth separation curve) becomes parallel to the abscissa axis (magenta
and black dashed lines).

rhodopsin kinase and arrestin [11]. This same ODE loop (Equation 5) ensures a slow 313

increase of the response as the exposure time grows, until an equilibrium point is 314

reached [37] (See Figure 4b - dashed lines). For long and high enough steady light 315

inputs, in vitro recordings of the rod photoreceptor reveal an initial bump preceding a 316

fixed level activation [37,44](see Figure 7). Finely tuned capacitance and inductance 317

values enable our membrane representation to display such a feature (see Figure 4b - 318

dashed black line). 319
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Figure 7. In vitro reaction to steady light. In vitro normalized recording of a
mouse rod photoreceptor reaction to a steady light illumination eliciting half steady
saturating response (1.2 sc cd m−2). Empty circles represent the average rod response
and standard deviation (vertical bars) over 6 recording. Black full curve is the result of
the author’s model. The black circle represent the final activation state achieved by the
cell after 2 mn of exposure (extracted from Silva & al. [44]).

Parameter space 320

A functional model over a set of parameters is not enough. Having the ability to tweak 321

those parameters and to make the model behave differentially can be as interesting as 322

having an accurate representation of the studied system. Inspired by Marder & 323

Taylor [36], who advocate the need to go beyond the single study of a generic behavior, 324

we monitored a set of behaviors characterizing the rod reaction to light after a brief or 325

constant illumination: Rise time, Decay time, Hard Bump (see Figure 8 for a graphical 326

representation of the monitored behaviours, and respectively Figures 9, 10 and 11 for 327

the results. See Section Result representation for further details concerning the chosen 328

visual presentation and Figure 2 for explanations of the data presentation method), 329

Duration-dependent response and Excitation-dependent response (respectively Figures 330

12 and 13). 331

Rise, decay time and hard bump 332

Rise, decay time and hard bumps are features characteristic of the kinetic of the rod 333

response due to a flash of light. As their name implies, we record the onset time of the 334

cell response (see Figure 9) along with its time of decay (see Figure 10). However, in an 335

attempt to obtain an indicator of both slopes we also record the time separating the 336

half-rise level of the half-decay points (hard bump, see Figure 11). This indicator, even 337

if mirroring non unique solutions for a single recording, is enough to give an insight on 338

the shape of the curve assuming two constraints: 339

• The time to activation is always shorter than the recovery period, assuming the 340

best set of parameters. 341

• The sampling of the parameter space is performed while making sure new 342
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Figure 8. Visualisation of the Rise time, Hard bump and Decay time.
Visualisation of three of the five qualitative behaviours studied in this work. The Rise
time is the time it takes for our model to reach full hyper-polarisation consecutively to a
flash of light, the Hard-bump is the time needed by the model to go from half its rising
curve (here t ≈ 1000ms) to the same membrane potential on its recovery phase (here
t ≈ 6500ms). Finally the Decay time denotes the entirety of the time needed to move
from the apex of the reaction curve to the resting state. The curve here has been
extracted from Figure 5 and subjected to a different scaling for the sake of visibility.

parameters stay close enough from the best known set of parameters (see section 343

Methods) to avoid heavy behavior alteration. 344

Duration, Excitation-dependent responses and damped oscillation 345

As previously mentioned, the response of our model is sensitive to both the strength of 346

the input signal and its duration. Here, over a fixed signal intensity (150γ absorbed), 347

we vary the duration to range between a single time quantum and 500 ms. Figure 12 348

presents the evolution of the average response level (left panel) along with its standard 349

deviation (right panel). A similar method is applied to measure the intensity-dependent 350

response level (see Figure 13). Here, many single millisecond signal events are sent 351

ranging from 1 to 1000γ absorbed. 352

We use these mappings to represent the basic elements of a realistic light 353

stimulation, including intensity and duration covariation, and study our model under 354

punctual, yet continuous data flow. 355

Depending on the parameter values, a damped oscillation can also be visible in the 356

early response, consecutive to any new steady excitation level. We, however, choose not 357

to study this phenomenon in details here, as its origin can easily be imputed to the 358

inductor of the RLC filter in the absence of feedback from the membrane model to the 359

internal cell gear (ODE loop, see Equation 5). The ODE loop has indeed been designed 360

to produce an hysteresis. The only element capable of expressing an oscillation appears 361

to be equation 5. However, its activation level has been normalized on purpose 362
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Figure 9. Parameters variation effect over the rise time. For each simulation,
the rod has been exposed to a single 1µsec flash causing the equivalent of 150 rhodopsin
photoactivation. This diagram displays 4 non-impacting (E,α2, δ and Rumax), 2 low
impacting (ε and Rs0 - the red mass on the right of the blob denotes a very small yet
present impact) and 11 strongly impacting parameters. We can notice that among this
last group only three of the parameters display a highly non linear parameter-value to
effect-intensity relation (α1, α3 and η) suggesting a plain regular parameter space.

(normalization term in Equation 5b) so that its early response cannot overshoot the 363

steady state. 364

We have chosen parameter values for which any damped oscillation disappears after 365

a demi-period helping the filter to create a solid bump of activity, in response to a flash 366

excitation, but not allowing it to alter the full response shape. 367

Result representation 368

The studied behaviors suppose the general shape of the curve to be close enough to the 369

response produced using the best known set of parameters. To ensure so, the range of 370

sampling is chosen after the log scale of the best known parameters. Each of them vary 371

over a range of values one log unit lower than its own log scale (see subsection Effects 372

comparison). That way, we explore the parameter space neighbourhood of the best 373

known values while remaining in a valid numerical space. 374

The measured effects are transformed (subsection Capping) and used as an area (A - 375

see Equation 2) value for an ellipse of demi-major axis (or semi-minor axis, depending of 376

the inferred size of its conjugate)
√

1/π (the ray of a circle or unitary area). The 377

horizontal axis stands for the space of parameter sampling and, as for, each point on 378

this axis let appear its corresponding elliptical image for the computed A. 379

The elliptical blobs of Figures 9 - 10, 11, 12 and 13 built after this method are 380

concatenation of elliptic fragments representing the variation of the effect according to 381

the values of a particular parameter projected on a circular/elliptical referential. Colors 382
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Figure 10. Parameters variation effect over the decay time. For each
simulation, the rod has been exposed to a single 1µsec flash causing the equivalent of
150 rhodopsin photoactivation. This diagram displays 2 non-impacting (α2 and δ), two
low impacting (Rumax and Rs0) and 13 strongly impacting parameters. Two
parameters (L and C) display non-linear and non-regular parameter-value to
effect-intensity. As expected, the inductance value is here at stake. When modified, it
can induce current oscillations through the RLC filter circuit and therefore slightly
change the moment the algorithm detects the end of the recovery time: even if not
stabilized, the voltage derivative used to detect the momentum of the current will
appear null by numerical approximation.

indicate a positive (red) or negative (blue) correlation between the variation of the 383

effect and each parameter value. A sudden interruption of the blob reveals either an 384

absence of effect variation or data (model divergence). 385

With that method, an effect linearly correlated to a parameter will display a regular 386

ellipse; and, if their variations appear to be equal with respect to their initial values, a 387

red circle of area 1 exactly fitting the dotted black circle present on each figure (see 388

Figure 2). 389

Interpretation 390

By taking into consideration the effect on different parameters over the set of chosen 391

features, it is possible to derive potential instability sources. Considering Figures 9, 10, 392

11, 12 and 13, it is clear that ρ2 is a parameter to carefully manipulate: As its value 393

changes, the model appears to diverge with respect to hard bump time recordings. 394

Additionally, the selected best known value seems to be an extremum when looking at 395

the effect of this parameter over duration and level-dependent responses. As the value 396

increases, the standard deviation of those effects quickly fluctuates suggesting a highly 397

nonlinear parameter space. 398

Another potential instability point can be seen in the inductance value L. Along the 399
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Figure 11. Parameters variation effect over the hard bump time. For each
simulation, the rod has been exposed to a single 1µsec flash causing the equivalent of
150 rhodopsin photoactivation. This diagram displays 2 non-impacting (α2 and δ), one
low impacting (Rs0) and 14 strongly impacting parameters. Two interesting phenomena
are here represented. First, we observe the result of opposite parameter-value to
effect-intensity relation between rise and decay times (see Figure 9 and 10) for η, ρ1 and
α1 (bleu slice on the left hand side of the circle). Hence, even if only informative, this
parameter-analysis technique seem to efficiently show a part of the topology of the
parameter space. Second, the inductor (L) appears, when excited, to introduce noise in
the system as its inductance value changes. This might be something to be careful
about: in a network, the concurrent light activation and synaptic current feedbacks may
amplify the latent instability.

range of alternative parameter values, its effect over the hard bump time appears to be 400

non linear, and, when exposed to higher voltage or additional current sources (synaptic 401

current), this phenomenon may spread towards higher values of the parameter and 402

cause unseen aberration. 403

Another goal of our analysis was to give an insight into the topology of the 404

parameter space. When looking at the parameter α1 over the rise and decay times, an 405

opposite correlation can be identified. However, if the hard bump-time is taken in 406

consideration, if appears that the negatively correlated effect visible on the rise time 407

study is slightly stronger than its positively correlated component present of the decay 408

time study; as a blue slice appears on the left hand side of the circle. This effect is also 409

present on the same three experiments, in a noisier version, for the parameter L. 410

This method is of course perfectible, as the sample-range is solely determined from 411

the log scale of the parameters best known value, without regard to its position within 412

the log range. In other words, a value of 999 will be sampled as a second order of 413

magnitude, whereas 1000 as a third order of magnitude, even though separated by a 414

single unit. Additionally, we do not address the question of cross parameter variation 415

when monitoring effects. Although of interest for an exhaustive description of behaviour, 416
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Figure 12. Parameters variation effect over the duration dependent
response. For each simulation, the rod has been exposed to flashes of 1 to 500µsec
long with an energy causing the equivalent of 150 rhodopsin photoactivation. The figure
here displays for each variable the evolution of the average and standard deviation of
the higher level of activation reached by the model over the different flash durations.
Surprisingly enough, only six parameters (C; rho1,α4, α5, δ and β) display a high effect
over the monitored feature. When taken in consideration with Figure 13, it appears
that both effects can be decorrelated by modifying parameters α4 or δ as they present a
stronger effect on the duration-dependent response than on the level-dependent
activation.

we chose to focus on the manipulation of single parameters and to reserve more complex 417

manipulation for the future. 418

Discussion 419

We described a qualitative model of the rod photoreceptor. Our modular representation 420

includes a wide portion of the original cell behavioral panel and, unlike other models 421

available in the literature, is able to perform when exposed to continuous input light 422

signal. This aspect makes it fit to study the time-dependent mechanisms that can 423
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Figure 13. Parameters variation effect over the excitation level dependent
response. For each simulation, the rod has been exposed to 1µsec flashes causing the
equivalent of 1 to 1000 rhodopsin photo-activations. The figure here displays for each
variable the evolution of the average and standard deviation of the higher level of
activation reached by the model over the different flash intensities. Surprisingly enough,
only four parameters (C, ρ1, α5 and β) display an high effect over the monitored
feature. When taken in consideration Figure 12, it appears that both effects can be
decorrelated by modifying parameters α4 or δ as they present a stronger effect on the
duration-dependent response than on the level-dependent activation.

emerge within the retina when exposed to natural light streams. 424

With a view to studying retinal function, creating a model of rods is not useful on its 425

own. One must be able to use it as a building block for a more complete representation 426

of the visual processing stream. To do so, it is important to be able to modify expected 427

behaviors of the model, and adapt the model to other needs [36], such as interacting 428

with models of other types of cells, representing information transfer in damaged tissue, 429

or in changing conditions, like room temperature and background luminance, etc. 430

This requirement, however, force modellers to favor fewer functional parameters over 431

numerous biologically accurate variables. It is therefore all the more important to 432

understand and predict behavior for the entire parameter set, over and beyond best 433
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known values. 434

This is the case for a lot of purely mathematical models (e.g., Fitzhugh-Nagumo 435

model [43], Hindmarsh-Rose model [45]) as their parameters are abstract representation 436

of chemical processes. To relax this constraint, we divided the model into three logical 437

blocks (chemical light absorption, temporal loop, membrane) to facilitate the 438

interpretation of results and manipulation of sets of parameters, whilst limiting systemic 439

side effects. This deliberate choice is also representative of the fact that, even though 440

the internal processes constitutive of the rod are relatively well understood, modelling a 441

fully functional network of such cells is extremely costly [46]. 442

One can also point out the absence of numerical accuracy in the model activation 443

response. Biological neural networks are well known for their resilience, it has been also 444

shown that for some networks, having a high enough number of components tends to 445

fade out the irregularities between them (resistor, [47]). Hence, we hypothesize that 446

having a super-accurate model might be irrelevant as the rods are, as any living cell in 447

vivo, very different from each other. This might push the system towards a 448

self-consistent referential based upon a limited set of features present within the neural 449

response, rather than upon its absolute level of activation. Such models would not be 450

very informative as artificially prescribed to a given situation. 451

The photoreceptive representation proposed by Clark et al. [33] is the closest model 452

to what we propose. Their model is simple enough to allow formal mathematical 453

analysis. In contrast, our model provides greater modularity, at the cost of 454

mathematical simplicity, permitting the integration of additional mechanisms displayed 455

by the real cell (slow dark adaptation, noise process, etc...). Our model focuses on the 456

spread of electrical signal, and its interface with a network of cells is therefore as simple 457

as it can be, based a proper membrane electrical representation. 458

In our case the coupling could be done by modifying the RLC filter as the synaptic 459

current does not act on the phototransduction mechanism. A second variable generator 460

could be added to the one present (E), standing for the current flowing though the 461

particular gap junction synapse linking a photoreceptor to the rest of the retina in 462

mammals [14]. 463

Using the same idea, the system could be driven by two generator instead of one (a 464

positive current source and a negative both gated by a respective resistor). Following 465

Baylor, Nunn and Schnapf [39], by taking in account the Johnson-Nyquist noise in the 466

positive gating resistor R using the Nyquist equation. 467

σ2
J = 4kTb

R
(9)

Where σ2
J is the noise variance, k the Boltzmann constant, T the temperature in Kelvin 468

and b the recording bandwidth. Upon light activation, the value of R would increase 469

allowing the membrane to hyperpolarize (and consequently decrease the noise variance). 470

This would be coherent with the phenomenon observed in vitro assuming dark 471

adaptation: dark noise displays a high variance in the dark but decreases when the cell 472

is stimulated [39]. This naturally leads to the question of light sensitivity. The quantum 473

nature of light quantic interaction with the photopigment molecule induces a stochastic 474

detection process. It this work, we positioned ourselves downstream to this process 475

assuming that all absorbed photons went through the quantum induced uncertainty [5]. 476

Further, the visual system itself appears to be a dynamic machinery able to modify its 477

light detection capabilities according to the external light history. This process can be 478

incorporated with an additional differential equation acting on the transition function 479

from v into Rs (See Equation 7). This equation would present a slower dynamic than 480

displayed by the current ODE loop; of note, a total dark adaptation of the retina is 481

typically achieved after 40 to 50 min [48]. 482
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Our model constitutes the first step towards a time-continuous, behavior-focused 483

model of the retina. Our next step will be to create a representation of the horizontal 484

cell layer aiming to interconnect artificial rods together before building higher retinal 485

layers. At this stage, all our simulations have been ran at the scale of the micro-second, 486

and, even-though the differential equations used here are fit to different time scales, we 487

do not think that having a thinner temporal granularity would significantly improve the 488

quality of the analysis but will surely increase the simulation time by a scale. A coarser 489

time resolution, on the other end, would prevent consideration of the really brief flashes 490

of light used in the empirical literature. The final model might thus be accurate and 491

light enough to embark a reasonably large amount of neurons while enabling population 492

activity study underlying early vision processes. 493

Our observation of this first layer of cells leads us to hypothesize that the first 494

logical layer, comprising rods and horizontal cells, may have several functional roles. We 495

observed a time and spatial high-pass filtering process consequent to both the horizontal 496

cell negative feedback and the rod shape response. This first observation is, however, 497

still to be studied. The band pass filtering property of our photoreceptor model could 498

be reduced depending on the type of feedback and the sizes and shapes of receptive 499

fields in the horizontal-cell layer. We expect this study to be the opportunity to refine 500

our parameter sensitivity analysis by addressing the above mentioned limitations. 501

To conclude, our work stems from the hypothesis that there is more to the retina 502

than the simple transduction of photonic energy, for transmission and processing by 503

early visual areas of the cortex. Despite having been one of the most studied organs of 504

perception, the retina is still primarily perceived as a gateway to the brain. Its 505

computational powers are yet to be unravelled, and when empirical study may fall short, 506

we hope that computational efforts will shed light on new avenues of research. 507
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