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Abstract 

To fully understand the mechanisms giving rise to behavior, we need to be able to precisely measure it. When 
coupled with large behavioral data sets, unsupervised clustering methods offer the potential of unbiased mapping of 
behavioral spaces. However, unsupervised techniques to map behavioral spaces are in their infancy, and there have 
been few systematic considerations of all the methodological options. We compared the performance of seven 
distinct mapping methods in clustering a data set consisting of the x- and y-positions of the six legs of individual 
flies. Legs were automatically tracked by small pieces of fluorescent dye, while the fly was tethered and walking on 
an air-suspended ball. We find that there is considerable variation in the performance of these mapping methods, and 
that better performance is attained when clustering is done in higher dimensional spaces (which are otherwise less 
preferable because they are hard to visualize). High dimensionality means that some algorithms, including the non-
parametric watershed cluster assignment algorithm, cannot be used. We developed an alternative watershed 
algorithm which can be used in high-dimensional spaces when the probability density estimate can be computed 
directly. With these tools in hand, we examined the behavioral space of fly leg postural dynamics and locomotion. 
We find a striking division of behavior into modes involving the fore legs and modes involving the hind legs, with 
few direct transitions between them. By computing behavioral clusters using the data from all flies simultaneously, 
we show that this division appears to be common to all flies. We also identify individual-to-individual differences in 
behavior and behavioral transitions. Lastly, we suggest a computational pipeline that can achieve satisfactory levels 
of performance without the taxing computational demands of a systematic combinatorial approach. 

Keywords: behavioral space, classification, unsupervised, t-SNE, gaussian mixture model, Drosophila 
melanogaster, automation, proprioception, nanchung 

Abbreviations: GMM: Gaussian mixture model; PCA: principal components analysis; SW: sparse watershed; t-
SNE: t-distributed stochastic neighbor embedding	
  

INTRODUCTION 

Understanding how nervous systems integrate information from 
the environment, past experience and internal states to produce 
useful behaviors is a key goal of behavioral neuroscience. Rapid 
progress is being made toward this goal, especially using animal 

models with relatively simple brains. Large quantities of neural 
activity data have been acquired simultaneously with behavioral 
data in larval zebrafish Danio rerio (Dunn et al 2016), the 
nematode Caenorhabditis elegans (Nguyen et al 2016, 
Venkatachalam et al 2016), and the fruit fly Drosophila 
melanogaster (Lemon et al 2015, Harris et al 2015, Seelig and 
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Jayaraman 2015). These organisms are also the focus of past 
(White et al 1986) or ongoing (Takemura et al 2013) 
connectomic efforts to map the synapse-level connectivity 
between all neurons in the brain. While analyses of neural 
activity and connectivity have been quantitative and richly 
multidimensional since their inception, the quantification of 
behavior is comparatively depauperate. For a full accounting of 
the neural basis of behavior, rich, detailed and unbiased 
descriptions are needed. 
 Manual annotation simply cannot produce data sets 
large enough to be analyzed in conjunction with gigabytes to 
petabytes of neural activity and connectomic data. Approaches to 
automated behavioral classification can be roughly sorted into 
supervised methods, in which an investigator-labeled training set 
is used to train classifiers that can then assign those labels to 
behavioral instances not included in the training set. By contrast, 
unsupervised methods seek to describe axes of variation or 
clusters of behavioral patterns with as few a priori assumptions 
as possible. The principal limitations of supervised methods are 
manually building up a large enough training set to achieve high 
classifier performance and not being able to detect behavioral 
patterns beyond the categories stipulated a priori. On the other 
hand, it is hard to evaluate the performance of unsupervised 
methods because to the extent they impose very few 
assumptions, they have no internal benchmarks of success. 
Instead, overall success is normally assessed by manual, 
qualitative inspection of the clustered behavioral instances. 
 Unsupervised methods have been applied successfully 
to diverse questions in neuroscience. These include clustering 
modules of genes by their association with behavioral states in 
social insects (Chandrasekaran et al 2011), the identification of 
types of subtypes of retinal cells based on molecular diversity 
(Marc and Jones 2002, Macosko et al 2015) and cortical cells by 
expression profiles (Tasic et al 2016), sorting of action potential 
recordings (Quiroga et al 2004), and the sorting of neurons by 
the three-dimensional morphology of their axonal and dendritic 
processes (Costa et al 2014). Particular progress has been made 
in the analysis of the behavior of C. elegans, in part because its 
posture can be faithfully compressed into a low four-dimensional 
representation, termed “eigenworms” (Stephens et al 2008). This 
discovery led to rapid progress in the unsupervised classification 
of C. elegans postural trajectories and their defects in mutant 
animals (Yemini et al 2013, Brown et al 2013, Schwarz et al 
2015), as well as the biophysical basis of postural dynamics 
(Stephens et al 2011). 
 In Drosophila melanogaster, a long ethological history 
(e.g. Waddington et al 1954, Hirsch and Erlenmeyer-Kimling 
1961, Chen et al 2002) predates methods for automated 
behavioral analysis. Early efforts to automate fly behavioral 
analysis naturally sought to facilitate what would otherwise be 
manual efforts, in particular the classification of video data. 
These approaches produced widely used tools for tracking adult 
flies freely behaving in an arena at relatively high density 
(Branson et al 2009, Dankert et al 2009) and larvae at lower 
densities for exhibiting non-social behaviors (Luo et al 2010). 
This trend has culminated in the release of versatile turn-key 
tools for quickly collecting training set data and automatically 
training classifiers (Kabra et al 2013). The sophistication of 
supervised methods continues to increase with the added 

estimation of underlying behavioral transition models (Saeedi et 
al 2016). 
 Applications of unsupervised methods to map fly 
behavior are rare by comparison. Geurten et al (2010) used 
cluster analysis to identify discrete components of hoverfly 
flight trajectories. In 2014, two impressive papers employed 
unsupervised behavioral clustering in Drosophila. Berman et al., 
reported the first unsupervised mapping of adult Drosophila 
behavior from video data using probability density estimation to 
identify modes in time-frequency transformed data, thereby 
identifying stereotyped postural dynamics. Vogelstein et al 
(2014) used unsupervised structure learning to infer a 
hierarchical organization of larval behaviors based on eight time 
varying measures of posture and motion. Most recently an 
“eigenlarva” analysis revealed that many behavioral events defy 
easy assignment to discrete clusters, suggesting that, at least in 
larvae, behavior may vary rather continuously (Szigeti et al 
2015). 
 Here, our goals are two-fold. First we want to begin the 
systematic comparison of alternative approaches for 
unsupervised clustering. Despite the lack of a built-in 
performance metric (e.g. % correct classification), we believe 
that head-to-head comparison of unsupervised methods is 
possible using measurable qualities we expect from successful 
behavioral clusterings. Second, we want to apply the method that 
appears best to a data set of adult Drosophila leg-positions and 
motion vectors. Measurements come from both wild type flies 
and animals bearing mutations in the gene nanchung, which 
encodes a TRP channel that mediates proprioceptive sensation 
(Gong et al 2004). Thus, our aim is to find the best method to 
produce a model-free map of the space of postures and postural 
dynamics exhibited by these animals. 
 We recognize that many methods for unsupervised 
clustering of behavioral data (and presumably time-series data in 
general) share a common architecture. 1) First, machine vision is 
performed to capture behavior in several dimensions. 2) This 
data then undergoes pre-processing and may be dimensionally 
expanded using time frequency analysis to capture postural 
dynamics (e.g. Berman et al 2014 and Wiltschko et al 2015). 3) 
Dimensionality reduction is employed to facilitate subsequent 
computational steps. 4) Lastly, a cluster assignment algorithm is 
used to assign individual data frames to a discrete list of 
behavioral modes. Some clustering algorithms require an 
intermediate density estimation step that approximates the 
underlying probability distribution that gives rise to the data, e.g. 
the watershed algorithm (Meyer 1994) and Gaussian mixture 
modeling (GMM) posterior probability estimation (McLachlan 
and Peel 2000). Other clustering algorithms do not require 
density estimation (e.g. k-means clustering (Lloyd 1982)). 
 Importantly, approaches with this architecture are 
modular. Alternative algorithms can be used at each stage 
interchangeably. Principal components analysis (PCA; Pearson 
1901) and t-distributed stochastic neighbor embedding (t-SNE; 
van der Maaten and Hinton 2008) both implement 
dimensionality reduction with respective advantages and 
disadvantages (van der Maaten et al 2009). Both of these 
algorithms (and many others that will not be considered further, 
such as multidimensional scaling (Torgerson 1952), isomap 
(Tenenbaum et al 2000)) can serve the role of reducing 
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dimensionality. These alternatives can be combinatorially mixed 
with the alternative algorithms for cluster assignment to yield a 
large number of possible unsupervised clustering methods. 
 Moreover, the degree of dimensionality reduction can 
be tuned continuously, though not arbitrarily, as some 
downstream steps may be computationally intractable without 
sufficient dimensionality reduction. For example, the watershed 
algorithm examines the probability densities associated with 
every point in a space, down to some level of granularity. If each 
dimension is resolved into 500 bins, as would make for a nice 
looking image, then the number of points that must be examined 
is 500d where d is the dimensionality of the space. Even with 
such dimensionality constraints, it is plausible that the degree of 
dimension reduction prior to clustering matters for the 
performance of the overall method, perhaps critically. There 
have been few systematic efforts to examine an assortment of 
methods. The work of Wiltschko et al (2015) is an exception, as 
they consider several methods to model the temporal evolution 
of mouse behavior. 
 Here we examine two alternative methods for 
dimension reduction, PCA and t-SNE. These algorithms 
represent opposite ends of the spectrum ranging from projection/
embedding algorithms that prioritize the preservation of global 
structure (PCA) to those that prioritize the preservation of local 
structure (t-SNE). In a combinatorial fashion, we consider two 
different cluster assignment methods: watershed and GMM 
posterior probabilities. These two algorithms each require a 
density estimation step, and we use 2D Gaussian blurring and 
Gaussian mixture modeling for them respectively. 
 Objectively comparing unsupervised clustering 
methods is philosophically challenging (Jain et al 1999), as 
unsupervised methods attempt to make useful clusters with as 
few as possible a priori assumptions. Identifying an 
unsupervised method as successful because it produces any 
particular quality in its output implicitly constrains the types of 
classifications that can be made, and pushes the method in the 
direction of supervised clustering/classification. Nevertheless, 
we claim that it is reasonable to posit very general desirable 
properties of a clustering output. For example, a “better” 
clustering method will produce fewer bouts of behavior that are 
impossibly short, i.e. faster than the animal can implement 
physically. Perhaps a better clustering method would also allow 
improved prediction of upcoming behavioral states given current 
states. In this way, we posited several qualities of good 
clustering methods, developed numerical metrics to capture 
them, and applied them to compare the various unsupervised 
clustering methods possible using the separate steps described 
above. 
 With these metrics as guides, we systematically 
examined seven unsupervised clustering methods. One of these 
was clearly the best (PCA reduction to 20 dimensions followed 
by GMM, with the addition of watershed-inspired cluster 
consolidation), by our metrics. With it we mapped the space of 
posture dynamics in a data set that measured the x- and y- 
position of flies’ legs as they walk, tethered above a floating ball. 

METHODS 

Data and code 

All code and data used in this project will be available for 
download at http://lab.debivort.org/ unsupervised-methods-for-
mapping-behavior. The raw data will be also available at http://
zenodo.org/URLREFREF. The code is also available at https://
github.com/de-Bivort- Lab/behavior-mapping.  

Fly husbandry and experiments 

Female Canton-S (wild type) and nanchung36a (nan; 
Bloomington stock #24902) flies were reared on standard 
CalTech recipe cornmeal-based growth medium, in 23°C 
incubators at approximately 40% humidity and on 12h-12h light-
dark cycles. 2-6 day old animals were marked with dye as 
described elsewhere (Kain et al 2013), and recorded on the leg-
tracker for 2h at room temperature and approximately 15% 
humidity, under white LED lighting. Digital video was acquired 
for the first 5 minutes of each wild type experiment using a filter 
which blocked the HeNe laser emission used to excite the dye. 
Visible LED illumination passing this filter appeared purple and 
emitted IR dye fluorescence appeared orange. Flies were 
identified by sequential numbers corresponding to experiments. 
Recordings pertinent to this study began with experiment 37. 
With all flies, we attempted to recover the animal (unglue it from 
its tether) for repeated longitudinal testing across days. This 
yielded 2 sequential recordings, separated by ~24h, for 6 wild 
type flies and 3 sequential recordings, separated by ~24 and 
~48h for two wild type flies. Four additional wild type animals 
yielded a single recording each. Five nan flies were tested in 
total, none of which yielded sequential recordings. 

Data pre-processing and error correction 

The raw data from the instrument (Kain et al 2013) was 
preprocessed before being subjected to analysis. First we used a 
3-frame median filter to reject single-frame noise in the data, 
then we resampled the variable-rate instrument data to 100 Hz. 
To detect errors longer than a single frame we computed σ, the 
standard deviation over the entire experiment. Frame-to-frame 
changes greater than 5σ were flagged as errors until the leg 
returned to within 5σ of its pre-error position or within 1σ of the 
overall median position. 

Gaussian mixture models 

All Gaussian mixture models in this paper were fit using 
MATLAB’s built-in expectation-maximization algorithm with 
fully independent and unconstrained covariance matrices. To 
estimate the scale of Gaussian mixture model components we 
examined the eigenvalues of the corresponding covariance 
matrix. The eigenvalues correspond to the standard deviation of 
the distribution along its principal axes (Banfield and Raftery 
1993), so we multiply them together to estimate the relative 
scale of each mixture component. When co-fitting data from 
multiple fly experiments with a Gaussian mixture model we built 
a training set with 2 million frames by decimating the frames 
from each trial so that an equal number of frames were taken 
from every trial. A PCA transform was computed using the 
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training set and applied to the full data set, and the resulting 
mixture model was used to classify the full data set in PCA 
space. 

Computing 

All of our analysis was done using built-in functions and custom 
code run in MATLAB R2015b-2016a. Computationally 
intensive portions of mapping methods (t-SNE, GMM in high 
dimensions, and sparse watershed) were run on the Odyssey 
cluster (FAS Division of Science, Research Computing Group, 
Harvard University). The rest of the processing and figure 
preparation was done on a MacBook Pro with 16 GB of RAM. 

Statistics and clustering 

Significant differences between mapping method metric values 
across flies were determined by pairwise Wilcoxon signed-rank 
tests, corrected for 90 comparisons using the formula p’=1-(1-
p)90. For comparisons of PCA20-GMM-SW and PCA20-GMM, 
see below, metric values, correction was applied for 6 
comparisons. Statistical significance of metric value differences 
between wild type and nan mutants were calculated using 
Wilcoxon–Mann–Whitney tests corrected for 36 comparisons 
(no such differences were significant). Metric mean Coefficients 
of Variation were calculated across 5 independently random 
seeded replicates of each fly x mapping method x metric, and 
then averaged across flies. Wilcoxon–Mann–Whitney tests were 
used to compare measures within a fly across trials with 
measures between random pairs of flies, as well as differences in 
cluster abundance between genotypes, with the latter corrected 
for 41 comparisons. Matrix row and column clustering was 
determined using the linkage command in MATLAB, using the 

‘spearman’ method, which minimizes distortion from very large 
input dimensions. 

RESULTS 

Unsupervised clustering methods 

We refer to our unsupervised clustering methods collectively as 
mapping methods, and they all share a common structure. They 
begin with a data preparation step (common to all mapping 
methods), followed by dimensionality reduction, density 
estimation and finally cluster assignment. We name each of them 
with an acronym for 1) the dimensionality reduction method, 2) 
a subscript indicating the number of resulting dimensions, and 3) 
the cluster assignment algorithm. For example the method in 
Berman et al (2014) is tSNE2-watershed mapping as it uses t-
SNE to reduce the data to two dimensions and a watershed 
transform for clustering (with an intermediate density estimation 
step done by 2D Gaussian blurring which we omit from the 
acronym). The six mapping methods that are the focus of this 
analysis are schematized in Figure 1A. In addition, as a baseline 
comparison class, we also implemented a random mapping 
method in which frames are independently assigned at random to 
one of k clusters. 

Data preparation 

Our data consists of a 15-dimensional 100 Hz time series: the x- 
and y-coordinates of each of the six legs, and the three rotational 
velocities of the trackball as published by Kain et al (2013) and 
five recordings from nan flies which are new to this publication. 
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Figure 1 – Unsupervised methods for mapping Drosophila behavioral space – A) Flow chart diagrams of the 6 combinatorial mapping methods 
considered herein. Box colors indicate stages common to all methods. B) Example data from fly experiment 371 illustrating each of the successive 
stages of pre-processing prior to dimensionality reduction. Dotted lines connect the example data to the point in the method where the data existed in 
that form. Red line in the second panel indicates the data prior to filtering and normalization (i.e. the data in the first panel). Time-frequency 
heatmaps in panels 3-5 are ordered from high frequencies at the top to low frequencies at the bottom. Grey blocks in the last two panels indicate low-
variance frames that were rejected from further analysis. C) Histograms of frame-by-frame variance in wavelet energies (i.e. the variance of the 375 
dimensions at each frame in the middle panel of B). Red line indicates the threshold below which frames were rejected (grey). The first 5 histograms 
from our data set are shown as a representative sample. 
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 The first step in all of our mapping methods is a 
wavelet transform which might be included in most analyses of 
behavior. The wavelet domain is a useful representation of our 
data for reasons given by Berman et al (2014): it describes 
dynamics over several timescales simultaneously, and by taking 
the magnitude of the complex wavelet coefficients it phase-
aligns periodic behaviors (Figure 1B). We used the wavelet 
transform used by Berman et al (2014) with 25 wavelet scales, 
spaced logarithmically between 1 and 50 Hz (the Nyquist limit). 
This yielded a 375-dimensional (15*25=375) time-series (see 
Supplemental Movie M1 for an example of time domain and 
wavelet data, along with subsequent steps in our mapping 
methods). 
 As described by Berman et al (2014), the magnitude of 
wavelet coefficients can vary due to the wavelet’s analysis 
window. To compensate for this we normalized each frame by 
the sum of its wavelet magnitudes. Thus we analyzed the relative 
energy at each wavelet scale (roughly equivalent to a frequency 
band) in our data (Figure 1B). The 375-dimensional frame-
normalized wavelet space captures how the fly’s posture changes 
over time, thus we refer to it as postural dynamics space. 
 Our data is mean-centered, and when the animal is at 
rest it tends to a zero value. So rest frames contain only noise 
energy. Frame normalization amplifies this low-level noise 
energy, generating a wide range of random high-energy 
behaviors. To avoid this, we noted that the distribution of frame 
variances is bimodal (Figure 1C), corresponding to rest frames 
and frames with activity. We thus classified frames as either low-
variance or high-variance based on these modes, and we 
subjected only high-variance frames to frame normalization and 
subsequent analysis. For the purposes of cluster assignment all 
low-variance frames were assigned to a single cluster. This 
approach also had the benefit of reducing computational 
requirements, since roughly half of the frames in our data set 
were classified as rest frames. 

Dimensionality reduction 

Berman et al (2014) (and several of our mapping methods) 
reduce data from a high-dimensional space to a two-dimensional 
t-SNE space. t-SNE (van der Maaten and Hinton 2008) is a non-
linear embedding that attempts to preserve the local structure of 
the high-dimensional space, as opposed to the global structure 
which is preserved by a linear embedding such as PCA. This 
means that two points which are close in the high-dimensional 
space should have their proximity preserved in the t-SNE space, 
while two points which are distant in the high-dimensional space 
may or may not end up far apart in the t-SNE space. For 
clustering applications this property is desirable, since clusters 
are defined by local structure, and moving clusters around (i.e. 
changing global structure) in the t-SNE space ought not to have 
a significant effect on cluster assignments. Once data points are 
embedded in the t-SNE space, they can be visualized, which is a 
very convenient property of the mapping methods that reduce 
data to two dimensions. 
 Our alternative technique for dimensionality reduction 
is principal component analysis (PCA). PCA selects an 
orthogonal set of basis vectors which maximize the amount of 
variance captured when the data is projected onto this basis. In 
order to determine how many principal components to keep we 

used the shuffling procedure described by Berman et al (2014) to 
quantify sampling error. The procedure indicated that between 
10 and 20 (depending on the fly experiment) principal 
components contained variance above sampling error and should 
be kept, explaining 60-70% of the variance in the data. We 
decided to keep 20 principal components for all trials to 
facilitate comparisons between trials and to make sure all 
relevant variance was captured. We refer to the resulting 20-
dimensional space containing PCA scores as compressed 
postural dynamics space. For comparison with t-SNE we also 
use PCA to reduce our data to two dimensions in several of our 
mapping methods. 

Density estimation 

Once we have a space with suitable dimension, the next step is 
to estimate the density of our data in this space. This can be 
viewed as a statistical procedure converting our finite set of data 
samples into a continuous probability density function from 
which animals sample their behavior. 
 One technique for density estimation is to fit our data 
points with a Gaussian mixture model (GMM). A Gaussian 
mixture model assumes data points are drawn from a probability 
distribution formed by summing mixture components. Each 
mixture component is a multivariate Gaussian distribution with 
dimension matching our space (e.g. 20 dimensions in the case of 
our compressed postural dynamics space) with a weight (a 
scalar), a multivariate mean (a 20-dimensional vector) and a 
covariance matrix (a 20x20 matrix). For the purposes of 
mapping method comparison we chose the number of mixture 
components (the key fitting parameter of a GMM, usually 
denoted k) to match the number of clusters found in other 
methods. The fitting procedure attempts to find the model which 
maximizes the likelihood of our data given the GMM. 
 The density estimation technique used by Berman et al 
(2014) applies a 2D Gaussian filter to the points in t-SNE space, 
yielding a 501 x 501 pixel density map. The width of this 
Gaussian filter can be tuned to produce a wide range of cluster 
counts, but we use the default width used by Berman et al. 

Cluster assignment 

When density estimation is done by fitting a GMM, each data 
point has a set of posterior probabilities, the respective 
probability of drawing that point from each mixture component. 
To assign a data point to a cluster we choose the mixture 
component with the maximum posterior probability (McLachlan 
and Peel 2000). This assignment is less clear if several mixture 
components have large posterior probabilities. As we will see 
below, this concern is not especially problematic in our data set. 
 The clustering method used by Berman et al (2014) is a 
watershed transform (Meyer 1994). It assigns two data points to 
the same cluster if they would both reach the same local 
maximum by ascending the local gradient. The watershed 
transform produces intuitive cluster assignments, but its memory 
usage scales with M, the number of bins along each dimension 
of the density map, and d, the number of dimensions, as Md. 
Thus it is feasible when our dimensionality reduction yields two 
dimensions, but it is not useful in our 20-dimensional 
compressed postural dynamics space. 
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Metrics 

It is difficult to compare results in unsupervised clustering 
problems because there is no general definition of a “correct” or 
“better” clustering (Jain et al 1999). Rather than attempt to 
create a single rule comparing clusterings, we assembled a set of 
quantitative metrics on clusterings. In some cases a high or low 
value for a metric is desirable for a good clustering. In other 
cases a metric is mostly of interest for trying to understand a 
given clustering. We evaluated each of the following metrics for 
each mapping method and each fly experiment (Figure 2). 
 Transient   state   count: We assume there is a lower 
bound on how long an animal can remain in a behavioral state. 
For the fruit fly we consider 20 ms to be a conservative lower 
bound on dwell time in any given state, as seen in previous 
supervised classifications (Kain et al 2013) and unsupervised 
clusterings (Berman et al 2014) of fly behavior, as well as other 
species (Wiltschko et al 2015). Our transient state count is the 
number of cluster dwell times of 20 ms (2 frames at 100 Hz) or 
less. Therefore, a lower transient state count corresponds to a 
clustering which is more biologically plausible. 
 Markov Log-Likelihood Ratio: One desirable property 
of a clustering is its predictive power. If we assume that fly 
behavior is Markovian, we can examine the likelihood of the 
cluster sequence under a Markov model. To measure this, we 
first fit a first-order Markov model to a given sequence of cluster 
assignments and compute the log-likelihood of the data under 

this model. The transition matrix is dominated by self-transitions 
(see the mean dwell time metric below), so to normalize for this 
we subtracted the log-likelihood of the data under a zeroth-order 
Markov model. The result is a log-likelihood ratio measuring the 
improvement in likelihood obtained by considering transitions 
between states. A larger value is desirable as it indicates a greater 
cluster predictability.  
 Entropy: Many of the other metrics will be affected by 
how evenly frames are distributed across clusters. For example, 
if a single cluster tends to dominate then one can expect fewer 
state transitions (this probably also represents a less useful 
clustering). To quantify this we counted the number of data 
points in each cluster and then normalized to form a probability 
mass function (PMF). This PMF indicates the probability that a 
data point drawn at random will be assigned to a particular 
cluster. We then measured the diversity of cluster sizes by 
computing the entropy of this PMF. Entropy is maximal when 
frames are evenly distributed among all clusters. 
 Mean number of cluster exits: If we form a Markov 
transition matrix from our cluster assignments, we can look at 
the average out-degree of clusters. A network with lower mean 
out-degree is probably desirable in that it facilitates the 
prediction of sequences of clusters. We measured this by sorting 
the transition probabilities (excluding the self-transition) from 
most probable to least probable and taking an average weighted 
by rank. The mean number of cluster exits is the mean of this 
weighted average across clusters. A lower mean number of 
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Figure 2 – Comparison of metric values across mapping methods and flies – Metric values are plotted for each fly experiment and each mapping 
method. See text for explanation. Red points indicate nan fly experiments. Lines connect corresponding points across mapping methods. Lines of the 
same color indicate multiple experiments done on the same fly across successive days. Letters indicate statistically significant differences, with 
groups that share the same letter being statistically indistinguishable. Significance determined using pairwise Wilcoxon signed-rank tests corrected 
for 90 comparisons (see Methods). Bar graphs at the right of each panel are the coefficients of variation, averaged across fly experiments, of five 
replicates of each mapping method computed with different random seeds.  
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cluster exits indicates a more predictable sequence of cluster 
transitions. 
 Uncompactness: A compact clustering is one with a 
relatively small distance between points within the same cluster. 
To compute uncompactness we first find the mean of each 
cluster’s data points. Then for each cluster we compute the mean 
distance to the cluster mean over all of the points in that cluster. 
Finally we take the mean across clusters as our uncompactness 
metric. Since uncompactness is greatly affected by cluster shape 
(hyperspherical clusters will tend to minimize uncompactness), 
it is not necessarily desirable to minimize this metric. 
 Mean   dwell   time: The mean dwell time is the mean 
number of frames the fly spends in each cluster before 
transitioning to the next cluster. The transient state count metric 
captures our assumption about a lower bound on dwell times, so 
the mean dwell time is foremost a descriptive metric. 
 Repeatability: The implementations of GMM and t-
SNE chosen for this paper are non-deterministic, since both 
algorithms start from a random solution and converge to a more 
optimal one. To measure how repeatable the algorithms are, we 
ran each mapping method 5 times for each fly experiment and 
computed the coefficient of variation for each metric (Figure 2, 
bars at right in each panel). Repeatability is probably a desirable 
quality in a clustering. 
 In order to identify the mapping method most 
appropriate to our data set we examined these metrics in 
aggregate (Figure 3). We sorted the metrics from those that 
definitely measure desirable qualities of a mapping method to 
those that are more neutrally descriptive. We saw that PCA20-
GMM yielded desirable metric values for nearly all metrics. The 
one exception was the mean number of cluster exits, which we 
considered to be a metric for which low values were probably 
desirable. 

Cluster consolidation 

Based on the above metrics we elected to focus on the PCA20-
GMM mapping method. In order to gain intuition for the 
structure of the 20-dimensional compressed postural dynamics 

space, we first looked at the GMM covariance matrices to 
estimate the “volume” of each mixture component in this space 
(i.e. product of the eigenvalues of each component’s covariance 
matrix; Banfield and Raftery 1993). We found that cluster 
volumes are approximately log-normally distributed (Figure 
4A), with a roughly exponential falloff in scale as a function of 
dimension (Figure 4B). That is, components are more linear or 
disk-shaped than high-dimensional balls. Since we use 
maximum posterior probability for cluster assignment, we also 
verified that the most likely mixture component tends to 
dominate the posterior probabilities for each frame of data, i.e., 
most frames are predominantly associated with just a single 
cluster (Figure 4C). 
 To visualize the overlap between our clusters, we 
created a set of toy data and arranged it (via a Monte Carlo 
method) to have the same distribution of posterior probabilities 
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Figure 3 – Summary of mapping method performance on all metrics – 
Numbers indicate the rank of each method according to each metric. 
Methods are considered to be in different ranks if they are statistically 
significantly different. In evaluating repeatability we considered both 
the frame-by-frame stability of cluster assignments and the coefficient 
of variation measures in Figure 2. Lower rank numbers are preferable. 
Metrics are categorized by our confidence that the metric should be 
optimized for a method to be declared successful. Darker green shading 
indicates better ranks, with the darkest shades marking metrics where 
we have the greatest confidence that particular metric values are 
desirable. 

Figure 4 – Statistical characteristics of clusters produced by PCA20-
GMM – A) Histogram of mixture component “volumes” for the k = 104 
clustering of the data from fly experiment 371. Volume computed as the 
product of the eigenvalues of each Gaussian mixture component 
covariance matrix. B) Relative size of each of the dimensions of the 104 
mixture components of fly experiment 371. For each component, the 
eigenvalues of the covariance matrix were sorted, normalized by their 
total, and plotted. Grey lines are specific components, the black line is 
their average. C) Histogram of the maximum posterior probability of all 
mixture components across all frames of all fly experiments. The 
posterior probability of component a at point x is defined as the 
probability density of component a at x divided by the sum of the 
densities of all components at x. Dotted blue line is the equivalent 
histogram of maximum posterior probabilities achieved by the 
arrangement of mixture components in Figure 5A. 
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Figure 5 – Use of sparse watershedding to consolidate Gaussian mixture components – A) Contour plot of a 2D Gaussian mixture model with 100 
components, all of which have identical weights and the identity matrix as a covariance matrix. This arrangement of components has essentially the 
same distribution of maximum posterior probabilities as produced by the PCA20-GMM method on real fly data (Figure 4C). This toy example serves 
to visualize the sparseness of the mixture components that produces the observed distribution of maximum posterior probabilities. Inset expanded in 
B). B) lllustration of how the sparse watershed algorithm ascends the Gaussian mixture probability density to local maxima (arrows). Green 
components whose means (origins of arrows) ascend to the same point (asterisk) are consolidated. The sum of the separate components shown here is 
the inset of A). C) Histogram showing percentage of data points sampled from each mixture component for which sparse watershedding yields the 
same result as for the cluster mean. Dashed red line indicates the mean across all components (81%). D) Extended mapping method flow chart 
characterizing the PCA20-GMM-SW mapping method. E) Metric values for all fly experiments using PCA20-GMM and PCA20-GMM-SW. Asterisks 
indicate statistical significance as assessed by Wilcoxon signed-rank tests and corrected for 6 comparisons: *** p<0.001; ** p<0.01. F,G) Examples 
of 20 s frame sequences from fly experiment 371 illustrating the data values after pre-processing (white lines) superimposed on their wavelet time-
frequency representation. p = pitch, y = yaw, r = roll. L1X indicates the x-component of the position of the left (L) fore leg (1). Inset diagram shows 
leg labels on a fly in top-down view. Middle panel is the posterior probability associated with each frame of each PCA20-GMM-SW cluster. Parent 
cluster posterior probabilities (solids) are the sum of their respective child cluster posterior probabilities (e.g. dotted blue lines sum to the solid blue 
line). Bottom panel is the cluster label applied to each frame by PCA20-GMM-SW.  
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as our experimental data (Figure 5A). Based on this we believe 
our clusters are in general relatively far apart from each other, 
but that some are not Gaussian in shape. GMM may therefore 
need to invoke several mixture components in order to fit what is 
a single (non-Gaussian) cluster (Figure 5B). A watershed 
transform can identify non-Gaussian modes more naturally, but 
due to its memory requirements, we weren’t able to run it in our 
20-dimensional compressed postural dynamics space. As an 
approximation of a high-dimensional watershed transform, we 
applied what we termed a sparse watershed algorithm, which 
maps each data point to a local maximum by ascending the 
gradient (Snyman 2005) of the GMM distribution. Each data 
point (assigned to a child cluster by PCA20-GMM) was then 
reassigned to a parent cluster by taking the maximum posterior 

probability at its local maximum. To further ease the 
computational requirements, we ran this procedure on only the 
cluster means and assigned all points in each cluster to the same 
parent cluster, which yielded approximately the same result as 
transforming each point separately (Figure 5C). 
 The sparse watershed algorithm allows us to 
consolidate GMM-assigned clusters (c.f. several alternative 
ways to do this depending on the data set; Hennig 2010, Garcia 
et al 2010), leading to a refined mapping method which we refer 
to as PCA20-GMM-SW (Figure 5D). We recomputed our metrics 
by running the PCA20-GMM mapping method with cluster 
counts chosen to match the PCA20-GMM-SW consolidated 
cluster counts (Figure 5E). We found that every metric was 
significantly different between PCA20-GMM and PCA20-GMM-
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Figure 6 – Clustering of behavioral space for fly experiment 371 by PCA20-GMM-SW – A) Markov transition matrix between the inferred clusters of 
fly experiment 371. The entry in the ith row, jth column is the probability that a frame in cluster i will be followed by a frame in cluster j. Rows and 
columns have been arranged by similarity as indicated by dendrogram on the left. The rows and columns corresponding to clusters 60, 40 and 35 are 
marked with colored tabs, as are the clusters corresponding to rejected low-variance frames (red) and a cluster representing running behavior (green). 
B) Heatmap of the mean total wavelet energy of each input dimension (columns) for those frames receiving each cluster label (rows). Data vector 
labels as in Figure 5F, G. C) Abundance of each cluster label in fly experiment 371. D-F) Examples of streaks of consecutive frames receiving cluster 
labels 60, 40 and 35 respectively. Cluster 60 labels frames with motion predominantly in the x-coordinates of the hind legs. Cluster 40 labels frames 
with comparatively disorganized motion predominantly in the y-coordinates of the hind legs. Cluster 35 labels frames with high frequency motion 
predominantly in the fore legs and middle leg on the left. Vertical black lines demarcate distinct frame streaks. 
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SW. In half of the metrics, the addition of sparse watershedding 
shifted the metric values in the favorable direction: transient 
state count (decrease), entropy (increase), and uncompactness 
(decrease). The other metrics changed in the unfavorable 
direction: markov log likelihood (decrease), mean number of 
cluster exits (increase), and mean dwell time (decrease).  
 On balance, based on metrics alone, there is no 
definitive advantage to using sparse watershedding. However, 
there are cases (as in Figure 5B) where sparse watershedding can 
consolidate modes which are invoked by GMM to increase the 
quality of fit to a particular peak of behavioral probability 
density. In the absence of a consolidating step like sparse 
watershedding, these "shaping" modes are undesirable since they 
do not characterize new behavioral modes. Thus, we conclude 
that the flexibility of watershed-style algorithms to identify the 
boundaries of local maxima in behavioral probability density 
non-parametrically is an advantage. The ambivalent aggregate 
difference in metrics between PCA20-GMM and PCA20-GMM-
SW mean we can freely invoke this procedure, gaining its 
flexibility at no obvious cost to the overall quality of the 
unsupervised clustering. Several examples of sparse 
watershedding working to consolidate similar clusters can be 
seen in Figure 5F, G. 
 Once frames are assigned to clusters via PCA20-GMM-
SW we can construct a Markov transition matrix to explore the 
dynamics within behavioral space. After sorting the rows and 

columns of the transition matrix of fly experiment 371 by 
similarity, several structural aspects emerge (Figure 6A). The 
most evident is the partitioning of the space into two 
subdivisions of roughly equal size. The distribution of energy 
over dimensions for each cluster (Figure 6B) allows us to 
recognize the upper rows as containing motion in both front and 
rear legs (e.g. wing grooming), while the lower rows contain 
energy in only the front legs (e.g. front leg grooming). The three 
center rows contain relatively populous clusters (Figure 6C): one 
low-energy cluster (Figure 6A-C, red tabs) and two with energy 
in all legs, reflecting running (one of which is denoted in Figure 
6A-C, green tabs). The transition matrix shows which sequences 
of behavior are possible. For example, flies evidently do not 
transition directly from running to front leg grooming, but 
instead transition through an intermediate state (e.g. the resting 
state). 
 To demonstrate the similarity of behaviors assigned to 
the same cluster and to examine the data more closely, streaks of 
frames labeled with each of three clusters are shown in Figure 
6D-F. The distribution of lengths of streaks of consecutive 
frames receiving cluster label 35 appears to be roughly 
exponential. Indeed, this appears to be true for all clusters (data 
not shown). Thus, the process of leaving behavioral modes may 
be approximately memoryless (Murphy et al 2002). 
 To examine the evolution of behavior over time we 
plotted a 10 s sequence of frames in behavioral space, visualized 
with the corresponding tSNE2-watershed density map for 
reference in the background (Figure 7). The clusters identified 
by PCA20-GMM-SW are spread across multiple tSNE2-
watershed regions, illustrating the extent of discordance between 
these methods. As others have found (Berman et al 2014, Crall 
et al 2016), the step size distribution appears to be bimodal: the 
animal makes generally small steps within a behavioral cluster 
and large steps in moving between them. 

Inter-fly comparisons 

Having established the effectiveness of PCA20-GMM-SW on a 
single fly, we proceeded to apply it to all flies simultaneously. 
By fitting the GMM on data sampled from all flies (“co-fit”), we 
used PCA20-GMM-SW to establish a behavioral space for all of 
our data taken together. To determine the value of k used in 
fitting the GMM to this aggregated data set, we used PCA20-
GMM on the data from each fly independently. We 
systematically varied k in each case and computed the Bayesian 
Information Criterion (BIC) of the GMM fit (Schwarz 1978). 
This assesses the likelihood of the data under the GMM, 
assessing a penalty for the number of fitting parameters. Knees 
in the curve of BIC vs k can indicate when the addition of 
Gaussian mixture components offers no (or only marginal) fit 
improvement (Salvador and Chan 2004). We found that across 
flies, a soft knee was present around k = 70 mixture components. 
Therefore we sought to produce an aggregate clustering with 
approximately 70 labels in it. We found that PCA20-GMM-SW 
consolidated mixture components more aggressively in the co-fit 
data set than it did in individual fly data sets. In the end, we 
ended up choosing a PCA20-GMM-SW clustering in which 180 
GMM components consolidated to 40 clusters (plus the 
additional low-variance cluster).  
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Figure 7 – Time evolution of 10 s of data from fly experiment 371 – 
Background heatmap is a density estimate of points embedded in two 
dimensions using t-SNE. Grey lines are watershed boundaries. Thus the 
regions demarcated in this heatmap correspond to the cluster boundaries 
of the tSNE2-watershed method (Berman et al 2014). Line segments of 
the foreground data are time-coded. Foreground points are spatially 
positioned by the t-SNE embedding, but have markers whose color 
indicates the cluster label assigned to those points by the PCA20-GMM-
SW mapping method. 
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Figure 8 – Comparison across fly experiments 
using a common PCA20-GMM-SW mapping – 
A) Heatmap of the fraction of frames from 
each fly experiment (rows) receiving each 
cluster label in the PCA20-GMM-SW co-fit 
mapping. Rows and columns are respectively 
sorted by similarity as indicated by the left and 
bottom dendrograms. Bold black brackets next 
to the row dendrogram indicate experiments 
on successive days from the same fly which 
were placed adjacently by the dendrogram, i.e. 
having similar profiles of cluster labels. 
Dendrogram tips with *, † and ‡ represent 
experiments from the same fly that were not 
placed adjacently. Red tabs indicate nan 
mutant flies. Numbers at bottom indicate pre-
sorting cluster label numbers. Asterisk 
indicates the one behavioral cluster that was 
significantly different in abundance (p = 
0.013) in nan animals compared to wild type. 
B) Heatmap of the mean total wavelet energy 
of each input dimension (columns), for those 
frames receiving each cluster label (rows) 
from the PCA20-GMM-SW co-fit mapping. 
Rows sorted by similarity as indicated by 
dendrogram, numbers and asterisk as in A). 
Grey bars at right indicate blocks of clusters 
which have similarly distributed wavelet 
energy, as determined by inspection. C) 
Directed graph of the transitions between 
cluster labels in the PCA20-GMM-SW co-fit 
mapping. All frame transitions for all fly 
experiments were pooled here. Node positions 
were determined by the force-directed 
algorithm (Kobourov 2012). Each node is 
divided into three wedges colored to reflect  
the first three principal components of the 
mean total wavelet energy across input 
dimensions (i.e. the first three PCs of panel B). 
Cyan vs. red coloration in the top wedge 
indicates greater energy in hind legs vs. fore 
legs (PC1, 36% of variance). Green vs. 
Magenta coloration in the bottom-right wedge 
indicates greater energy in the left vs. right 
legs (PC2, 18%). Yellow vs. blue  coloration 
in the bottom-left wedge indicates greater 
energy in the middle left leg vs. the hind legs 
(PC3, 15%). In the key, input dimensions are 
listed if they received PCA loading values 
with absolute values > 0.2. Color scales are 
offset so that their values in the low-variance 
frames are neutral grey. Directed edges 
indicate frame-to-frame transitions more 
probable than 10-1.8. Grey regions in the 
background are high-level cluster categories 
determined by inspection. Numbers as in A) 
and B). D) Plot of the first two PCs of the 
cluster label distribution (i.e. panel A) for each 
fly experiment. Points with the same color are 
sequential experiments from the same fly. P-
value is the statistical significance of the 
difference in the mean distance (in the original 
41 dimensional cluster label space) between 
pairs of experiments either within fly or 
between random pairs of experiments, tested 
using the Wilcoxon–Mann–Whitney test. E) 
As in D), but for data consisting of the 1681 
Markov transition probabilities between 
cluster labels for each fly experiment. 
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Many of the clusters defined by this mapping method correspond 
to well-known behavioral elements in flies, such as a specific 
kind of fore leg grooming (cluster #15; see Supplemental 
Movies M2 and M3). However, some behavioral clusters 
captured behavioral sequences that seem like the concatenation 
of two distinct behaviors. For example, cluster #7 appears to 
represent a rotation of the floating ball followed by hind leg 
grooming. This pattern appears similarly in all the flies 
examined (see Supplemental Movies M2 and M4). Thus, the 
unsupervised approach appears to be identifying behavioral 
patterns that are distinct from those a human investigator might 
define. 
 We examined cluster size distributions across fly 
experiments (Figure 8A) sorting rows (flies) and columns 
(clusters) by their respective similarity. This reveals a broad 
consistency between flies in the overall distribution of time spent 
in each cluster (row). There are also apparent differences 
between individual flies, since multiple trials from the same fly 
tend to be grouped together. The total number of frames labeled 
by each cluster varied substantially across clusters, indicating 
that PCA20-GMM-SW is flexible enough to identify both rare 
and common modes of behavior. The distribution of wavelet 
energy over raw data dimensions across our 40 co-fit clusters 
(Figure 8B) is largely concordant with the distribution across 73 
clusters for fly experiment 371 (Figure 6B). Interestingly, sorting 
cluster energy distributions by the same permutation that sorts 
clusters by similarity in their abundance across flies (Figure 8A) 
moves together clusters which have similar distributions of 
wavelet energy. The fact that variation in cluster abundance 
across individuals (Figure 8A) is somewhat concordant with 
cluster variation in wavelet energy (Figure 8B) implies that there 
may be common mechanisms determining 1) which legs move in 
a cluster and 2) variation across individuals. 
 We constructed first-order Markov transition matrices 
for each fly in the co-fit behavioral space, then we pooled them 
together to explore co-fit behavioral dynamics. To visualize the 
connections between behavioral states we laid them out in a 
force-directed graph with node edges representing the most 
prevalent transitions (Figure 8C). A general structure emerges 
with a central hub consisting of the low-variance rest state 
(cluster #1) and several partially connected outlying sub-
networks of nodes suggesting a hierarchical organization of 
behaviors. Nodes representing behaviors involving the same 
combinations of leg movements (similar color patterns) are more 
likely to link to one another, consistent with the transitions for 
fly experiment 371 shown in Figure 6A, B. This visualization 
also makes it apparent that there may be a bias toward energy on 
the right side of the animal (more magenta than green wedges in 
Figure 8C). This is also discernible in the wavelet energy 
distributions of each cluster (Figure 8B), possibly reflecting 
population-level behavioral handedness. 
 We also projected individual fly experiments into a 
two-dimensional space consisting of the first two principal 
components of individual 41x1 cluster abundance distributions 
(Figure 8D) and individual 41x41 transition matrices (Figure 
8E). This shows a statistically significant grouping of 
experiments from individual flies, consistent with the fly 
individuality observed above in Figure 8A. 

 Lastly, we examined nan mutant animals vs wild type. 
Consistent with subjective observations made during 
experiments, we found that a cluster representing a locomotor 
behavior (#32) was statistically significantly (p = 0.013) less 
abundant in nan animals than in wild type. Surprisingly, this was 
the only behavioral cluster that differed in frequency between 
the genotypes, after correcting for multiple comparisons. 

DISCUSSION 

We set out to compare alternative approaches to unsupervised 
behavioral mapping and apply the most promising method to our leg-
tracker data from wild type and nan animals. Selecting among 
competing unsupervised mapping methods on the basis of performance 
metrics seems paradoxical, since this will introduce bias in the outcome 
of the unsupervised mapping procedure, which, by definition, attempts 
unbiased clustering. However, we believe that the criteria we used to 
evaluate alternative mapping methods (our metrics) are general enough 
so as not to adversely distort the output of the mapping method 
comparisons. We also tried to be conservative in assigning normative 
value to the metrics, e.g. we said that high entropy classifications (i.e. 
those that distribute frame assignments more evenly across clusters) are 
probably desirable. We found that no single mapping method performed 
best across all these metrics. In fact, three principle components are 
needed to explain 95% of the variance in mapping method rank across 
all the metrics in Figure 3. So, there is likely no single method among 
the six we examined here that can be applied without compromises. 
Moreover, the suitability of mapping methods may be data set 
dependent, a possibility we did not explore here. 
 The PCA20-GMM method performs well in all metrics except 
the mean number of cluster exits. This metric, which we assume to be 
probably desirable, characterizes the average number of clusters that 
follow any particular cluster in the sequence of labeled frames. We 
assume that fewer such exits is better because this makes the entire 
sequence of labels more predictable. PCA20-GMM was ranked fifth of 
sixth in this respect; in all other metrics it was ranked first or second.  
 Because there is no particular reason to think that behaviors 
are manifested as multivariate Gaussians in real life, we implemented 
the sparse watershedding extension so that GMM components 
contributing to a single mode of density would be consolidated into a 
single cluster. To compute this consolidation we identified those 
mixture components whose means flowed (in the watershed analogy) to 
the same points in 20-dimensional space using a gradient ascent 
algorithm. This is not a trivial calculation, requiring the calculation of a 
20-dimensional PDF at each step of the gradient ascent, for each of 
~100 mixture component means, for each of the 27 fly experiments. 
Only computing the sparse watershed for the component means is a 
compromise under these computational constraints, as it could, in 
principle, be performed for every point in the data set. That said, our 
analysis of the sparse watershed behavior of points randomly sampled 
out of the mixture components of fly 371 (Figure 5C) suggests that a 
large majority of points drawn from a mixture component will 
consolidate to the same cluster as their component mean. This is 
consistent with the relatively low-density packing of mixture 
components in our mapping space (Figures 4C, 5A).  
 The degree of consolidation observed by the SW algorithm 
diverged between the individual fly data sets and the co-fit aggregated 
data. In the case of the latter, the fold-reduction in number of clusters 
was much higher, and appeared to scale sub-linearly with the k used for 
the initial GMM step (data not shown). Perhaps this reflects a case 
where the superimposed modes from each fly were slightly misaligned, 
meaning that more initial mixture components were needed to fit them, 
but they were still close enough to consolidate together via sparse 
watershedding. Alternatively, combining data across individuals may 
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average away differences (Figure 8D, E) to create a species-level data 
set that behaves differently under these procedures. 
  The PCA20-GMM-SW method is by no means the most 
sophisticated possible approach. For example Wiltschko et al. (2015) fit 
a hidden Markov model directly to the data instead of inferring it after 
clustering as we have done. Thus, their optimization is simultaneously 
on the Markovian transitions between states as well as the shape of the 
states themselves. It also produces a generative model which can 
synthesize new data sets instead of simply analyzing existing data. Our 
approach prioritizes the mapping of the total space occupied by postural 
dynamics rather than their transitions. The assumption of Markovian 
transitions between states is in general reasonable, and we found that 
the distribution of lengths of streaks of frames receiving the same 
cluster label were roughly exponential, as expected from a memoryless 
Markov process. However, there are biological reasons to think that 
behavioral transitions may not be Markovian, namely state-dependence 
and neuromodulation, which act on timescales longer than typical 
behavioral transitions, but shorter than our experimental recordings (e.g. 
Cohn et al 2015). 
 One central finding is that clusterings computed in higher 
dimensions appear to perform better in our metrics than clusterings 
computed in two dimensions. This may simply reflect the inevitable 
compression or distortion of high-dimensional data when it is embedded 
in two dimensions. High dimensionality poses many challenges, among 
them computational complexity and the inability to confirm intuition by 
examining the data visually. The examination of metrics that simply 
characterize mapping output without much normative weight (e.g. 

whether clusters are uncompact or have long vs. short dwell times) 
allowed us to build intuition about the space of behaviors in higher 
dimensions than can be visualized. Likewise, using a Monte Carlo 
method to arrange Gaussian mixture components in two dimensions to 
have the same statistical distribution of maximum posterior probabilities 
as in 20 dimensions (Figures 4C, 5A) also allowed us some intuitive 
access to the high-dimensional representation of our data set. 
 Based on these experiences working with our data set, we 
recommend the method outlined in Figure 9 for behavioral clustering. If 
the computational resources are available, GMM-BIC curves provide 
statistical support for the choice of mixture component count prior to 
the sparse watershedding step (i.e. looking for a knee in the BIC-vs-k 
curve). As an alternative, the tSNE2-watershed pipeline allows the 
mapping output to be visualized, which may provide a basis for 
choosing k for subsequent analysis. For example, one might find that 
there is a range of 2D Gaussian blurring kernel radii which give very 
similar numbers of watershed clusters. This would be a sign that the 
map is robust to this free parameter in the density estimation step. 
However, for our data set we found that the number of watershed 
clusters was roughly linearly proportional to the radius of the blurring 
kernel, so we could not use tSNE2-watershed to build a strong prior on 
the number of clusters in the data.  
 Combining data from all the fly experiments allowed us to 
make a common clustering for comparison across flies, similar to 
Berman’s method (2014) for co-embedding multiple animals’ data in a 
single mapping. This allowed us to compare wild type and nan mutant 
animals. Surprisingly, we only found a single behavioral cluster that had 
a significantly different abundance between these genotypes. Cluster 32, 
which encodes a behavior that features both hind leg grooming and 
walking, was reduced in nan flies. Such a difference was predicted at 
the time of experiments because the nan flies seemed clearly more 
lethargic. In fact, the small sample size of five nan recordings was due 
largely to very few of these animals performing on the floating ball. It is 
a surprise to see that outside of this one cluster, the abundance of 
behavioral clusters in nan animals is generally indistinguishable from 
that of wild type. This suggests that nanchung, and perhaps 
proprioception, may be dispensable for the establishment of full 
repertoires of behavioral building blocks, despite the necessity of this 
gene for the execution of locomotor behaviors (Mendes et al 2013, 
Isakov et al 2016). 
 With the co-fit PCA20-GMM-SW mapping we also found 
evidence of largely similar behavioral cluster abundances across 
individuals, but at the same time, significantly greater similarity across 
trials within a fly than between flies. The pairwise transition rates 
between clusters appeared to be idiosyncratic as well. These findings 
are consistent with behavioral individuality in Drosophila phototaxis 
(Kain et al 2012), locomotor handedness (Buchanan et al 2015) and 
thermal preference (Kain et al 2015). However, the clear evidence of 
individuality in PCA20-GMM-SW cluster abundance distributions is 
notable when compared to the lack of signal of such individuality in the 
supervised classification results of Kain et al (2013). This indicates that 
despite the challenges in evaluating and implementing unsupervised 
methods, relatively unbiased clustering approaches may indeed live up 
to their promise of providing more power to map behavior. 

CONCLUSION 

In this work we conducted the first systematic exploration of alternative 
unsupervised methods for mapping the behavior of Drosophila. We 
devised seven different metrics that range from definitely desirable to 
possibly desirable for the output of an unsupervised clustering method. 
Using these we were able to compare the overall performance of seven 
combinatorial alternative mapping methods. We concluded that keeping 
the data in as many dimensions as possible for clustering is preferable, 
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Figure 9 – Suggested unsupervised behavioral mapping method flow 
chart – The right branch represents an option for computing fast 
clustering by PCA-GMM-SW using a value of k informed by a first 
round of exploratory analysis using tSNE2-watershed. By contrast, a 
formal, methodical approach (left branch) stipulates systematically 
varying the value of k used in GMM and searching for a knee in the 
GMM-BIC curve to determine a final PCA-GMM-SW mapping k. 
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at least for our data set. Implementing this method on merged data from 
multiple individuals and genotypes, we saw that while individual flies 
implement very similar motor repertoires, there are repeatable 
differences in the abundances with which they implement behavioral 
clusters as well as the transitions they use to generate higher order 
sequences of behaviors. Surprisingly there was little difference between 
the repertoires of wild type and proprioceptive mutant flies. Future 
work building on these results will include: 1) comparison of the 
methods we considered here with altogether different approaches, such 
as structure learning (Vogelstein et al 2014), 2) characterization of the 
generality of these findings beyond data from the leg-tracking 
instrument, especially video data, 3) improvement of our PCA20-GMM-
SW method, e.g. by the implementation of the sparse watershedding 
algorithm at all data points, and 4) sensitivity analysis of PCA20-GMM-
SW under variation in noise in the data, dimensionality, sample sizes, or 
other factors. This sensitivity analysis could be conducted using hidden 
Markov models (Wiltschko et al 2015) to generate plausible sequences 
of realistic but synthetic data whose noise, dimensionality and sample 
size parameters can be adjusted arbitrarily. 
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