Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

A Graph Extension of the Positional Burrows-Wheeler Transform and its Applications

View ORCID ProfileAdam M. Novak, Erik Garrison, Benedict Paten
doi: https://doi.org/10.1101/051409
Adam M. Novak
1Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Adam M. Novak
Erik Garrison
2Wellcome Trust Sanger Institute, Cambridge, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Benedict Paten
1Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

1 Abstract

We present a generalization of the Positional Burrows-Wheeler Transform (PBWT) to genome graphs, which we call the gPBWT. A genome graph is a collapsed representation of a set of genomes described as a graph. In a genome graph, a haplotype corresponds to a restricted form of walk. The gPBWT is a compressible representation of a set of these graph-encoded haplotypes that allows for efficient subhaplotype match queries. We give efficient algorithms for gPBWT construction and query operations. We describe our implementation, showing the compression and search of 1000 Genomes data. As a demonstration, we use the gPBWT to quickly count the number of haplotypes consistent with random walks in a genome graph, and with the paths taken by mapped reads; results suggest that haplotype consistency information can be practically incorporated into graph-based read mappers.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted May 02, 2016.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
A Graph Extension of the Positional Burrows-Wheeler Transform and its Applications
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
A Graph Extension of the Positional Burrows-Wheeler Transform and its Applications
Adam M. Novak, Erik Garrison, Benedict Paten
bioRxiv 051409; doi: https://doi.org/10.1101/051409
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
A Graph Extension of the Positional Burrows-Wheeler Transform and its Applications
Adam M. Novak, Erik Garrison, Benedict Paten
bioRxiv 051409; doi: https://doi.org/10.1101/051409

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Bioinformatics
Subject Areas
All Articles
  • Animal Behavior and Cognition (4241)
  • Biochemistry (9173)
  • Bioengineering (6806)
  • Bioinformatics (24064)
  • Biophysics (12155)
  • Cancer Biology (9565)
  • Cell Biology (13825)
  • Clinical Trials (138)
  • Developmental Biology (7658)
  • Ecology (11737)
  • Epidemiology (2066)
  • Evolutionary Biology (15543)
  • Genetics (10672)
  • Genomics (14360)
  • Immunology (9512)
  • Microbiology (22903)
  • Molecular Biology (9129)
  • Neuroscience (49115)
  • Paleontology (357)
  • Pathology (1487)
  • Pharmacology and Toxicology (2583)
  • Physiology (3851)
  • Plant Biology (8351)
  • Scientific Communication and Education (1473)
  • Synthetic Biology (2301)
  • Systems Biology (6205)
  • Zoology (1302)