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Abstract

Grade of membership models, also known as “admixture models”, “topic models” or
“Latent Dirichlet Allocation”, are a generalization of cluster models that allow each
sample to have membership in multiple clusters. These models are widely used in
population genetics to model admixed individuals who have ancestry from multiple
“populations”, and in natural language processing to model documents having words
from multiple “topics”. Here we illustrate the potential for these models to cluster
samples of RNA-seq gene expression data, measured on either bulk samples or single
cells. We also provide methods to help interpret the clusters, by identifying genes that
are distinctively expressed in each cluster. By applying these methods to several
example RNA-seq applications we demonstrate their utility in identifying and
summarizing structure and heterogeneity. Applied to data from the GTEx project on 53
human tissues, the approach highlights similarities among biologically-related tissues
and identifies distinctively-expressed genes that recapitulate known biology. Applied to
single-cell expression data from mouse preimplantation embryos, the approach
highlights both discrete and continuous variation through early embryonic development
stages, and highlights genes involved in a variety of relevant processes – from germ cell
development, through compaction and morula formation, to the formation of inner cell
mass and trophoblast at the blastocyst stage. The methods are implemented in the
Bioconductor package CountClust.

Author Summary

Gene expression profile of a biological sample (either from single cells or pooled cells) 1

results from a complex interplay of multiple related biological processes. Consequently, 2

for example, distal tissue samples may share a similar gene expression profile through 3

some common underlying biological processes. Our goal here is to illustrate that grade 4

of membership (GoM) models – an approach widely used in population genetics to 5

cluster admixed individuals who have ancestry from multiple populations – provide an 6

attractive approach for clustering biological samples of RNA sequencing data. The GoM 7

model allows each biological sample to have partial memberships in multiple 8

biologically-distinct clusters, in contrast to traditional clustering methods that partition 9

samples into distinct subgroups. We also provide methods for identifying genes that are 10

distinctively expressed in each cluster to help biologically interpret the results. Applied 11

to a dataset of 53 human tissues, the GoM approach highlights similarities among 12

biologically-related tissues and identifies distinctively-expressed genes that recapitulate 13
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known biology. Applied to gene expression data of single cells from mouse 14

preimplantation embryos, the approach highlights both discrete and continuous 15

variation through early embryonic development stages, and genes involved in a variety 16

of relevant processes. Our study highlights the potential of GoM models for elucidating 17

biological structure in RNA-seq gene expression data. 18

Introduction 19

Ever since large-scale gene expression measurements have been possible, clustering – of 20

both genes and samples – has played a major role in their analysis [5–7]. For example, 21

clustering of genes can identify genes that are working together or are co-regulated, and 22

clustering of samples is useful for quality control as well as identifying 23

biologically-distinct subgroups. A wide range of clustering methods have therefore been 24

employed in this context, including distance-based hierarchical clustering, k-means 25

clustering, and self-organizing maps (SOMs); see for example [8, 9] for reviews. 26

Here we focus on cluster analysis of samples, rather than clustering of genes 27

(although our methods do highlight sets of genes that distinguish each cluster). 28

Traditional clustering methods for this problem attempt to partition samples into 29

distinct groups that show “similar” expression patterns. While partitioning samples in 30

this way has intuitive appeal, it seems likely that the structure of a typical gene 31

expression data set will be too complex to be fully captured by such a partitioning. 32

Motivated by this, here we analyse expression data using grade of membership (GoM) 33

models [10], which generalize clustering models to allow each sample to have partial 34

membership in multiple clusters. That is, they allow that each sample has a proportion, 35

or “grade” of membership in each cluster. Such models are widely used in population 36

genetics to model admixture, where individuals can have ancestry from multiple 37

populations [16], and in document clustering [41,42] where each document can have 38

membership in multiple topics. In these fields GoM models are often known as 39

“admixture models”, and “topic models” or “Latent Dirichlet Allocation” [41]. GoM 40

models have also recently been applied to detect mutation signatures in cancer 41

samples [38]. 42

Although we are not the first to apply GoM-like models to gene expression data, 43

previous applications have been primarily motivated by a specific goal, “cell type 44

deconvolution”, which involves using cell-type-specific expression profiles of marker 45

genes to estimate the proportions of different cell types in a mixture [47,49,50]. 46

Specifically, the GoM model we use here is analogous to – although different in detail 47

from – blind deconvolution approaches [45,46,48] which estimate cell type proportions 48

and cell type signatures jointly (see also [43,44] for semi-supervised approaches). Our 49

goal here is to demonstrate that GoM models can be useful much more broadly for 50

understanding structure in RNA-seq data – not only to deconvolve mixtures of cell 51

types. For example, in our analysis of human tissue samples from the GTEX project 52

below, the GoM model usefully captures biological heterogeneity among samples even 53

though the inferred grades of membership are unlikely to correspond precisely to 54

proportions of specific cell types. And in our analyses of single-cell expression data the 55

GoM model highlights interesting structure, even though interpreting the grades of 56

membership as “proportions of cell types” is clearly inappropriate because each sample 57

is a single cell! Here we are exploiting the GoM as a flexible extension of traditional 58

cluster models, which can capture “continuous” variation among cells as well as the 59

more “discrete” variation captured by cluster models. Indeed, the extent to which 60

variation among cells can be described in terms of discrete clusters versus more 61

continuous populations is a fundamental question that, when combined with appropriate 62

single-cell RNA-seq data, the GoM models used here may ultimately help address. 63
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Methods Overview 64

We assume that the RNA-seq data on N samples has been summarized by a table of 65

counts CN×G = (cng), where cng is the number of reads from sample n mapped to gene 66

g (or other unit, such as transcript or exon) [14]. The GoM model is a generalization of 67

a cluster model, which allows that each sample has some proportion (“grade”) of 68

membership, in each cluster. For RNA-seq data this corresponds to assuming that each 69

sample n has some proportion of its reads, qnk coming from cluster k. In addition, each 70

cluster k is characterized by a probability vector, θk·, whose gth element represents the 71

relative expression of gene g in cluster k. The GoM model is then 72

(cn1, cn2, · · · , cnG) ∼ Multinomial (cn+, pn1, pn2, · · · , pnG) , (1)

where 73

png :=
K∑
k=1

qnkθkg. (2)

The number of clusters K is set by the analyst, and it can be helpful to explore multiple 74

values of K (see Discussion). 75

To fit this model to RNA-seq data, we exploit the fact that this GoM model is 76

commonly used for document clustering [41]. This is because, just as RNA-seq samples 77

can be summarized by counts of reads mapping to each possible gene in the genome, 78

document data can be summarized by counts of each possible word in a dictionary. 79

Recognizing this allows existing methods and software for document clustering to be 80

applied directly to RNA-seq data. Here we use the R package maptpx [15] to fit the 81

GoM model. 82

Fitting the GoM model results in estimated membership proportions q for each 83

sample, and estimated expression values θ for each cluster. We visualize the 84

membership proportions for each sample using a “Structure plot” [17], which is named 85

for its widespread use in visualizing the results of the Structure software [16] in 86

population genetics. The Structure plot represents the estimated membership 87

proportions of each sample as a stacked barchart, with bars of different colors 88

representing different clusters. Consequently, samples that have similar membership 89

proportions have similar amounts of each color. See Fig 1 for example. 90

To help biologically interpret the clusters inferred by the GoM model we also 91

implemented methods to identify, for each cluster, which genes are most distinctively 92

differentially expressed in that cluster; that is, which genes show the biggest difference 93

in expression compared with the other most similar cluster (see Methods). Functions for 94

fitting the GoM model, plotting the structure plots, and identifying the distinctive 95

(“driving”) genes in each cluster, are included in our R package CountClust [53] 96

available through Bioconductor [36]. 97

Results 98

Bulk RNA-seq data of human tissue samples 99

We begin by illustrating the GoM model on bulk RNA expression measurements from 100

the GTEx project (V6 dbGaP accession phs000424.v6.p1, release date: Oct 19, 2015, 101

http://www.gtexportal.org/home/). These data consist of per-gene read counts from 102

RNA-seq performed on 8, 555 samples collected from 450 human donors across 53 103

tissues, lymphoblastoid cell lines, and transformed fibroblast cell-lines. We analyzed 104

16, 069 genes that satisfied filters (e.g. exceeding certain minimum expression levels) 105

that were used during eQTL analyses by the GTEx project (gene list available in 106
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http://stephenslab.github.io/count-clustering/project/utilities/gene_ 107

names_all_gtex.txt). 108

We fit the GoM model to these data, with number of clusters K = 5, 10, 15, 20. For 109

each K we ran the fitting algorithm three times and kept the result with the highest 110

log-likelihood. As might be expected, increasing K highlights finer structure in the data, 111

and for brevity we focus discussion on results for K = 20 (Fig 1(a)), with results for 112

other K shown in S1 Fig. For comparison we also ran several other commonly-used 113

methods for clustering and visualizing gene expression data: Principal Components 114

Analysis (PCA), Multidimensional Scaling (MDS), t-Distributed Stochastic Neighbor 115

Embedding (t-SNE) [25,26], and hierarchical clustering (Fig 2). 116

These data present a challenge to visualization and clustering tools, because of both 117

the relatively large number of samples and the complex structure created by the 118

inclusion of many different tissues. Indeed, neither PCA nor MDS provide satisfactory 119

summaries of the structure in these data (Fig 2(a,b)): samples from quite different 120

tissues are often super-imposed on one another in plots of PC1 vs PC2, and this issue is 121

only partly alleviated by examining more PCs (Supplementary Figure S2 Fig). The 122

hierarchical clustering provides perhaps better separation of tissues (Fig 2(d)), but 123

producing a clear (static) visualization of the tree is difficult with this many samples. 124

By comparison t-SNE (Fig 2(b)) and the GoM model (Fig 1(a)) both show a much 125

clearer visual separation of samples by tissue, although they achieve this in very 126

different ways. The t-SNE representation produces a two-dimensional plot with 20-25 127

visually-distinct clusters. In contrast, the GoM highlights similarity among samples by 128

assigning them similar membership proportions, resulting in groups of similarly-colored 129

bars in the structure plot. Some tissues are represented by essentially a single 130

cluster/color (e.g. Pancreas, Liver), whereas other tissues are represented as a mixture 131

of multiple clusters (e.g. Thyroid, Spleen). Furthermore, the GoM results highlight 132

biological similarity among some tissues by assigning similar membership proportions to 133

samples from those tissues. For example, samples from several different parts of the 134

brain often have similar memberships, as do the arteries (aorta, tibial and coronary) 135

and skin samples (sun-exposed and un-exposed). 136

Although it is not surprising that samples cluster by tissue, other results could have 137

occurred. For example, samples could have clustered according to technical variables, 138

such as sequencing batch [34] or sample collection center. While our results do not 139

exclude the possibility that technical variables could have influenced these data, the 140

t-SNE and GoM results clearly demonstrate that tissue of origin is the primary source 141

of heterogeneity, and provide a useful initial assurance of data quality. 142

While in these data both the GoM model and t-SNE highlight the primary structure 143

due to tissue of origin, the GoM results have at least two advantages over t-SNE. First, 144

the GoM model provides an explicit, quantitative, estimate of the mean expression of 145

each gene in each cluster, making it straightforward to assess which genes and processes 146

drive differences among clusters; see Table 1 (and also S1 Table). Reassuringly, many 147

results align with known biology. For example, the purple cluster (cluster 18), which 148

distinguishes Pancreas from other tissues, is enriched for genes responsible for digestion 149

and proteolysis, (e.g. PRSS1, CPA1, PNLIP). Similarly the yellow cluster (cluster 12), 150

which primarily distinguishes Cell EBV Lymphocytes from other tissues, is enriched 151

with genes responsible for immune responses (e.g. IGHM, IGHG1 ) and the pink cluster 152

(cluster 19) which mainly appears in Whole Blood, is enriched with genes related 153

hemoglobin complex and oxygen transport (e.g. HBB, HBA1, HBA2 ). Further, 154

Keratin-related genes characterize the skin cluster (cluster 6, light denim), 155

Myosin-related genes characterize the muscle skeletal cluster (cluster 7, orange), etc. 156

These biological annotations are particularly helpful for understanding instances where 157

a cluster appears in multiple tissues. For example, the top genes in the salmon cluster 158
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(cluster 4), which is common to the Gastroesophageal Junction, Esophagus Muscularis 159

and Colon Sigmoid, are related to smooth muscle. And the top genes in the red cluster, 160

highlighted above as common to Breast Mammary tissue, Adipose Subcutaneous and 161

Adipose Visceral, are all related to adipocytes and/or fatty acid synthesis. 162

A second advantage of the GoM model is that, because it allows partial membership 163

in each cluster, it is better able to highlight partial similarities among distinct tissues. 164

For example, in Figure 1(a) the sky blue cluster (cluster 13), appears in testis, pituitary, 165

and thyroid, reflecting shared hormonal-related processes. At the same time, these 166

tissues are distinguished from one another both by their degree of membership in this 167

cluster (testis samples have consistently stronger membership; thyroid samples 168

consistently weaker), and by membership in other clusters. For example, pituitary 169

samples, but not testis or thyroid samples, have membership in the light purple cluster 170

(cluster 2) which is driven by genes related to neurons and synapsis. In the t-SNE 171

results these three tissues simply cluster separately into visually distinct groups, with no 172

indication that their expression profiles have something in common (Fig 2(b)). Thus, 173

although we find the t-SNE results visually attractive, this 2-dimensional projection 174

contains less information than the Structure plot from the GoM (Fig 1(a)), which uses 175

color to represent the samples in a 20-dimensional space. 176

In addition to these qualitative comparisons with other methods, we also used the 177

GTEx data to quantitatively compare the accuracy of the GoM model with hierarchical 178

clustering. Specifically, for each pair of tissues in the GTEx data we assessed whether or 179

not each method correctly partitioned samples into the two tissue groups; see Methods. 180

(Other methods do not provide an explicit clustering of the samples – only a visual 181

representation – and so are not included in these comparisons.) The GoM model was 182

more accurate in this test, succeeding in 88% of comparisons, compared with 79% for 183

hierarchical clustering (Supplemental Figure S3 Fig (c) vs (a)). 184

Sub-analysis of Brain tissues 185

Although the analysis of all tissues is useful for assessing global structure, it may miss 186

finer-scale structure within tissues or among similar tissues. For example, here the GoM 187

model applied to all tissues effectively allocated only three clusters to all brain tissues 188

(clusters 1,2 and 9 in Fig 1(a)), and we suspected that additional substructure might be 189

uncovered by analyzing the brain samples separately and using more clusters. Fig 1(b) 190

shows the Structure plot for K = 6 on only the Brain samples. The results highlight 191

much finer-scale structure compared with the global analysis. Brain Cerebellum and 192

Cerebellar hemisphere are essentially assigned to a separate cluster (lime green), which 193

is enriched with genes related to cell periphery and communication (e.g. PKD1, 194

CBLN3 ) as well as genes expressed largely in neuronal cells and playing a role in neuron 195

differentiation (e.g. CHGB). The spinal cord samples also show consistently strong 196

membership in a single cluster (yellow-orange), the top defining gene for the cluster 197

being MBP which is involved in myelination of nerves in the nervous system [51]. 198

Another driving gene, GFAP, participates in system development by acting as a marker 199

to distinguish astrocytes during development [4]. 200

The remaining samples all show membership in multiple clusters. Samples from the 201

putamen, caudate and nucleus accumbens show similar profiles, and are distinguished 202

by strong membership in a cluster (cluster 4, bright red) whose top driving gene is 203

PPP1R1B, a target for dopamine. And cortex samples are distinguished from others by 204

stronger membership in a cluster (cluster 2, turquoise in Fig 1(b)) whose distinctive 205

genes include ENC1, which interacts with actin and contributes to the organisation of 206

the cytoskeleton during the specification of neural fate [3]. 207

In comparison, applying PCA, MDS, hierarchical clustering and t-SNE to these 208

brain samples reveals less of this finer-scale structure (Supplementary Figures S4 Fig). 209
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Both PCA and MDS effectively cluster the samples into two groups – those related to 210

the cerebellum vs everything else. Hierarchical clustering also separates out the 211

cerebellum-related tissues from the others, but again the format seems ill-suited to 212

static visualization of more than one thousand samples. For reasons that we do not 213

understand t-SNE performs poorly for these data: many samples are allocated to 214

essentially identical locations, and so overplotting obscures them. 215

Single-cell RNA-seq data 216

Recently RNA-sequencing has become viable for single cells [11], and this technology 217

has the promise to revolutionize understanding of intra-cellular variation in expression, 218

and regulation more generally [12]. Although it is traditional to describe and categorize 219

cells in terms of distinct cell-types, the actual architecture of cell heterogeneity may be 220

more complex, and in some cases perhaps better captured by the more “continuous” 221

GoM model. In this section we illustrate the potential for the GoM model to be applied 222

to single cell data. 223

To be applicable to single-cell RNA-seq data, methods must be able to deal with 224

lower sequencing depth than in bulk RNA experiments: single-cell RNA-seq data 225

typically involve substantially lower effective sequencing depth compared with bulk 226

experiments, due to the relatively small number of molecules available to sequence in a 227

single cell. Therefore, as a first step towards demonstrating its potential for single cell 228

analysis, we checked robustness of the GoM model to sequencing depth. Specifically, we 229

repeated the analyses above after thinning the GTEx data by a factor of 100 and 230

10, 000 to mimic the lower sequencing depth of a typical single cell experiment. For the 231

thinned GTEx data the Structure plot for K = 20 preserves most of the major features 232

of the original analysis on unthinned data (Supplemental Figure S5 Fig). For the 233

accuracy comparisons with hierarchical clustering, both methods suffer reduced 234

accuracy in thinned data, but the GoM model remains superior (Supplemental Figure 235

S6 Fig). For example, when thinning by a factor of 10, 000, the success rate in 236

separating pairs of tissues is 0.32 for the GoM model vs 0.10 for hierarchical clustering. 237

Having established its robustness to sequencing depth, we now illustrate the GoM 238

model on two single cell RNA-seq datasets: data on mouse spleen from Jaitin et al [27] 239

and data on mouse preimplantation embryos from Deng et al [28]. 240

Mouse Spleen data from Jaitin et al, 2014 241

Jaitin et al sequenced over 4, 000 single cells from mouse spleen. Here we analyze 1, 041 242

of these cells that were categorized as CD11c+ in the sorting markers column of their 243

data (http://compgenomics.weizmann.ac.il/tanay/?page_id=519), and which had 244

total number of reads mapping to non-ERCC genes greater than 600. Our hope was 245

that applying the GoM model to these data would identify, and perhaps refine, the 246

cluster structure evident in [27] (their Fig 2A and 2B). However, the GoM model 247

yielded rather different results (Fig 3), where most cells were assigned to have 248

membership in several clusters. Further, the cluster membership vectors showed 249

systematic differences among amplification batches (which in these data is also strongly 250

correlated with sequencing batch). For example, cells in batch 1 are characterized by 251

strong membership in the orange cluster (cluster 5) while those in batch 4 are 252

characterized by strong membership in both the blue and yellow clusters (2 and 6). 253

Some adjacent batches show similar patterns - for example batches 28 and 29 have a 254

similar visual “palette”, as do batches 32-45. And, more generally, these later batches 255

are collectively more similar to one another than they are to the earlier batches (0-4). 256

The fact that batch effects are detectable in these data is not particularly surprising: 257

there is a growing recognition of the importance of batch effects in high-throughput 258
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data generally [31,32] and in single cell data specifically [33,34]. And indeed, both 259

clustering methods and the GoM model can be viewed as dimension reduction methods, 260

and such methods can be helpful in controlling for batch effects [29,30]. However, why 261

these batch effects are not evident in Fig 2A and 2B of [27] is unclear. 262

Mouse preimplantation embryo data from Deng et al, 2014 263

Deng et al collected single-cell expression data of mouse preimplantation embryos from 264

the zygote to blastocyst stage [28], with cells from four different embryos sequenced at 265

each stage. The original analysis [28] focuses on trends of allele-specific expression in 266

early embryonic development. Here we use the GoM model to assess the primary 267

structure in these data without regard to allele-specific effects (i.e. combining counts of 268

the two alleles). Visual inspection of the Principal Components Analysis in [28] 269

suggested perhaps 6-7 clusters, and we focus here on results with K = 6. 270

The results from the GoM model (Fig 4) clearly highlight changes in expression 271

profiles that occur through early embryonic development stages, and enrichment 272

analysis of the driving genes in each cluster (Table 3, S4 Table) indicate that many of 273

these expression changes reflect important biological processes during embryonic 274

preimplantation development. 275

In more detail: Initially, at the zygote and early 2-cell stages, the embryos are 276

represented by a single cluster (blue in Fig 4) that is enriched with genes responsible for 277

germ cell development (e.g., Bcl2l10 [62], Spin1 [63]). Moving through subsequent 278

stages the grades of membership evolve to a mixture of blue and magenta clusters (mid 279

2-cell), a mixture of magenta and yellow clusters (late 2-cell) and a mixture of yellow 280

and green (4-cell stage). The green cluster then becomes more prominent in the 8-cell 281

and 16-cell stages, before dropping substantially in the early and mid-blastocyst stages. 282

That is, we see a progression in the importance of different clusters through these stages, 283

from the blue cluster, moving through magenta and yellow to green. Examining the 284

genes distinguishing each cluster reveals that this progression 285

(blue-magenta-yellow-green) reflects the changing relative importance of several 286

fundamental biological processes. The magenta cluster is driven by genes responsible for 287

the beginning of transcription of zygotic genes (e.g., Zscan4c-f show up in the list of top 288

100 driving genes : see https://stephenslab.github.io/count-clustering/ 289

project/src/deng_cluster_annotations.html), which takes place in the late 2-cell 290

stage of early mouse embryonic development [65]. The yellow cluster is enriched for 291

genes responsible for heterochromation Smarcc1 [66] and chromosome stability 292

Cenpe [67] (see S4 Table) . And the green cluster is enriched for cytoskeletal genes (e.g., 293

Fbxo15 ) and cytoplasm genes (e.g., Tceb1, Hsp90ab1 ), all of which are essential for 294

compaction at the 8-cell stage and morula formation at the 16-cell stage. 295

Finally, during the blastocyst stages two new clusters (purple and orange in Fig 4) 296

dominate. The orange cluster is enriched with genes involved in the formation of 297

trophectoderm (TE) (e.g., Tspan8, Krt8, Id2 [59]), while the purple cluster is enriched 298

with genes responsible for the formation of inner cell mass (ICM) (e.g., Pdgfra, 299

Pyy [61]). 300

For comparison, results for PCA, MDS, t-SNE and hierarchical clustering are shown 301

in Supplemental Figure S7 Fig. All these methods show some clustering structure by 302

pre-implantation stage; however only PCA and MDS seem to capture the developmental 303

trajectory from zygote to blastocyst, exhibiting a “horse-shoe” pattern that is expected 304

when similarities among samples approximately reflect an underlying latent 305

ordering [39,40]. And none of them provide any direct indication of the ICM vs TE 306

structure in the blastocyst samples. 307

Although the GoM model results clearly highlight some of the key biological 308

processes underlying embryonic preimplantation development, there are also some 309
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expected patterns that do not appear. Specifically, just prior to implantation the 310

embryo consists of three different cell types, the trophectoderm (TE), the primitive 311

endoderm (PE), and the epiblast (EPI) [60], with the PE and EPI being formed from 312

the ICM. Thus one might expect the late blastocyst cells to show a clear division into 313

three distinct groups, and for some of the earlier blastocyst cells to show partial 314

membership in one of these groups as they begin to differentiate towards these cell 315

types. Indeed, the GoM model seems well suited to capture this process in principle. 316

However, this is not the result we obtained in practice. In particular, although the two 317

clusters identified by the GoM model in the blastocyst stages appear to correspond 318

roughly to the TE and ICM, even the late blastocyst cells tend to show a gradient of 319

memberships in both these clusters, rather than a clear division into distinct groups. 320

Our results contrast with those from the single-cell mouse preimplantation data of [59], 321

measured by qPCR, where the late blastocyst cells showed a clear visual division into 322

three groups using PCA (their Figure 1). 323

To better understand the differences between our results for RNA-seq data from [28] 324

and the qPCR results from [59] we applied the GoM model with K = 3 to a small 325

subset of the RNA-seq data: the blastocyst cell data at the 48 genes assayed by [59]. 326

These genes were specifically chosen by them to help elucidate cell-fate decisions during 327

early development of the mouse embryo. Still, the GoM model results (Supplemental 328

Figure S8 Fig) do not support a clear division of these data into three distinct groups 329

(and neither do PCA or t-SNE; Supplemental Figure S9 Fig). Rather, the GoM model 330

highlights one cluster (Green in figure), whose membership proportions essentially 331

reflect expression at the Actb gene, and two other clusters (Orange and Purple in figure) 332

whose driving genes correspond to genes identified in [59] as being distinctive to TE and 333

EPI cell types respectively. The Actb gene is a “housekeeping gene”, used by [59] to 334

normalize their qPCR data, and its prominence in the GoM results likely reflects its very 335

high expression levels relative to other genes. However, excluding Actb from the analysis 336

still does not lead to a clear separation into three groups (Supplemental Figure S8 Fig). 337

Thus, although there are clear commonalities in the structure of these RNA-seq and 338

qPCR data sets, the structure of the single-cell RNA-seq data from [28] is fundamentally 339

more complex (or, perhaps, muddied), and consequently more difficult to interpret. 340

In addition to trends across development stages, the GoM results also highlight some 341

embryo-level effects in the early stages (Fig 4). Specifically, cells from the same embryo 342

sometimes show greater similarity than cells from different embryos. For example, while 343

all cells from the 16-cell stage have high memberships in the green cluster, cells from 344

two of the embryos at this stage have memberships in both the purple and yellow 345

clusters, while the other two embryos have memberships only in the yellow cluster. 346

The GoM results also highlight a few single cells as outliers. For example, a cell from 347

a 16-cell embryo is represented by the blue cluster - a cluster that represents cells at the 348

zygote and early 2-cell stage. Also, a cell from an 8-stage embryo has strong membership 349

in the purple cluster - a cluster that represents cells from the blastocyst stage. This 350

illustrates the potential for the GoM model to help in quality control: it would seem 351

prudent to consider excluding these outlier cells from subsequent analyses of these data. 352

Discussion 353

Our goal here is to highlight the potential for GoM models to elucidate structure in 354

RNA-seq data from both single cell sequencing and bulk sequencing of pooled cells. We 355

also provide tools to identify which genes are most distinctively expressed in each 356

cluster, to aid interpretation of results. As our applications illustrate, the results can 357

provide a richer summary of the structure in RNA-seq data than existing widely-used 358

visualization methods such as PCA and hierarchical clustering. While it could be 359
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argued that the GoM model results sometimes raise more questions than they answer, 360

this is exactly the point of an exploratory analysis tool: to highlight issues for 361

investigation, identify anomalies, and generate hypotheses for future testing. 362

Our results from different methods also highlight another important point: different 363

methods have different strengths and weaknesses, and can compliment one another as 364

well as competing. For example, t-SNE seems to provide a much clearer indication of 365

the cluster structure in the full GTEx data than does PCA, but does a poorer job of 366

capturing the ordering of the developmental samples from mouse pre-implantation 367

embryos. While we believe the GoM model often provides a richer summary of the 368

sample structure, we would expect to use it in addition to t-SNE and PCA when 369

performing exploratory analyses. (Indeed the methods can be used in combination: 370

both PCA and t-SNE can be used to visualize the results of the GoM model, as an 371

alternative or complement to the Structure plot.) 372

A key feature of the GoM model is that it allows that each sample has a proportion 373

of membership in each cluster, rather than a discrete cluster structure. Consequently it 374

can provide insights into how well a particular dataset really fits a “discrete cluster” 375

model. For example, consider the results for the data from Jaitin et al [27] and Deng et 376

al [28]: in both cases most samples are assigned to multiple clusters, although the 377

results are closer to “discrete” for the latter than the former. The GoM model is also 378

better able to represent the situation where there is not really a single clustering of the 379

samples, but where samples may cluster differently at different genes. For example, in 380

the GTEx data, the stomach samples share memberships in common with both the 381

pancreas (purple) and the adrenal gland (light green). This pattern can be seen in the 382

Structure plot (Fig 1) but not from other methods like PCA, t-SNE or hierarchical 383

clustering (Fig 2). 384

Fitting GoM models can be computationally-intensive for large data sets. For the 385

datasets we considered here the computation time ranged from 12 minutes for the data 386

from [28] (n = 259;K = 6), through 33 minutes for the data from [27] 387

(n = 1, 041;K = 7) to 3, 370 minutes for the GTEx data (n = 8, 555;K = 20). 388

Computation time can be reduced by fitting the model to only the most highly 389

expressed genes, and we often use this strategy to get quick initial results for a dataset. 390

Because these methods are widely used for clustering very large document datasets 391

there is considerable ongoing interest in computational speed-ups for very large datasets, 392

with “on-line” (sequential) approaches capable of dealing with millions of 393

documents [56] that could be useful in the future for very large RNA-seq datasets. 394

A thorny issue that arises when fitting clustering models is how to select the number 395

of clusters, K. Like many software packages for fitting these models, the maptpx package 396

implements a measure of model fit that provides one useful guide. However, it is worth 397

remembering that in practice there is unlikely to be a “true” value of K, and results 398

from different values of K may complement one another rather than merely competing 399

with one another. For example, seeing how the fitted model evolves as K increases is 400

one way to capture some notion of hierarchy in the clusters identified [17]. More 401

generally it is often fruitful to analyse data in multiple ways using the same tool: for 402

example our GTEx analyses illustrate how analysis of subsets of the data (in this case 403

the brain samples) can complement analyses of the entire data. Finally, as a practical 404

matter, we note that Structure plots can be difficult to read for large K (e.g. K = 30) 405

because of the difficulties of choosing a palette with K distinguishable colors. 406

The version of the GoM model fitted here is relatively simple, and could certainly be 407

embellished. For example, the model allows the expression of each gene in each cluster 408

to be a free parameter, whereas we might expect expression of most genes to be 409

“similar” across clusters. This is analogous to the idea in population genetics 410

applications that allele frequencies in different populations may be similar to one 411
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another [20], or in document clustering applications that most words may not differ 412

appreciably in frequency in different topics. In population genetics applications 413

incorporating this idea into the model, by using a correlated prior distribution on these 414

frequencies, can help improve identification of subtle structure [20] and we would expect 415

the same to happen here for RNA-seq data. 416

Finally, GoM models can be viewed as one of a larger class of “matrix factorization” 417

approaches to understanding structure in data, which also includes PCA, non-negative 418

matrix factorization (NMF), and sparse factor analysis (SFA); see [21]. This observation 419

raises the question of whether methods like SFA might be useful for the kinds of 420

analyses we performed here. (NMF is so closely related to the GoM model that we do 421

not discuss it further; indeed, the GoM model is a type of NMF, because both grades of 422

membership and expression levels within each cluster are required to be non-negative.) 423

Informally, SFA can be thought of as a generalization of the GoM model that allows 424

samples to have negative memberships in some “clusters” (actually, “factors”). This 425

additional flexibility should allow SFA to capture certain patterns more easily than the 426

GoM model. For example, a small subset of genes that are over-expressed in some 427

samples and under-expressed in other samples could be captured by a single sparse 428

factor, with positive loadings in the over-expressed samples and negative loadings in the 429

other samples. However, this additional flexibility also comes at a cost of additional 430

complexity in visualizing the results. For example, Supplementary Figures S10 Fig, S11 431

Fig, S12 Fig show results of SFA (the version from [21]) for the GTEx data and the 432

mouse preimplantation data: in our opinion, these do not have the simplicity and 433

immediate visual appeal of the GoM model results. Also, applying SFA to RNA-seq 434

data requires several decisions to be made that can greatly impact the results: what 435

transformation of the data to use; what method to induce sparsity (there are many; 436

e.g. [21–24]); whether to induce sparsity in loadings, factors, or both; etc. Nonetheless, 437

we certainly view SFA as complementing the GoM model as a promising tool for 438

investigating the structure of RNA-seq data, and as a promising area for further work. 439

Methods and Materials 440

Model Fitting 441

We use the maptpx R package [15] to fit the GoM model (1,2), which is also known as 442

“Latent Dirichlet Allocation” (LDA). The maptpx package fits this model using an EM 443

algorithm to perform Maximum a posteriori (MAP) estimation of the parameters q and 444

θ. See [15] for details. 445

Visualizing Results 446

In addition to the Structure plot, we have also found it useful to visualize results using 447

t-distributed Stochastic Neighbor Embedding (t-SNE), which is a method for visualizing 448

high dimensional datasets by placing them in a two dimensional space, attempting to 449

preserve the relative distance between nearby samples [25,26]. Compared with the 450

Structure plot our t-SNE plots contain less information, but can better emphasize 451

clustering of samples that have similar membership proportions in many clusters. 452

Specifically, t-SNE tends to place samples with similar membership proportions together 453

in the two-dimensional plot, forming visual “clusters” that can be identified by eye (e.g. 454

http://stephenslab.github.io/count-clustering/project/src/tissues_tSNE_ 455

2.html). This may be particularly helpful in settings where no external information is 456

available to aid in making an informative Structure plot. 457
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Cluster annotation 458

To help biologically interpret the clusters, we developed a method to identify which 459

genes are most distinctively differentially expressed in each cluster. (This is analogous 460

to identifying “ancestry informative markers” in population genetics applications [18].) 461

Specifically, for each cluster k we measure the distinctiveness of gene g with respect to 462

any other cluster l using 463

KLg[k, l] := θkg log
θkg
θlg

+ θlg − θkg, (3)

which is the Kullback–Leibler divergence of the Poisson distribution with parameter θkg 464

to the Poisson distribution with parameter θlg. For each cluster k, we then define the 465

distinctiveness of gene g as 466

Dg[k] = min
l 6=k

KLg[k, l]. (4)

The higher Dg[k], the larger the role of gene g in distinguishing cluster k from all other 467

clusters. Thus, for each cluster k we identify the genes with highest Dg[k] as the genes 468

driving the cluster k. We annotate the biological functions of these individual genes 469

using the mygene R Bioconductor package [35]. 470

For each cluster k, we filter out a number of genes (top 100 for the Deng et al 471

data [28] and GTEx V6 data [13]) with highest Dg[k] value and perform a gene set 472

over-representation analysis of these genes against all the other genes in the data 473

representing the background. To do this, we used ConsensusPathDB database 474

(http://cpdb.molgen.mpg.de/) [57] [58]. See Table 1-2 and Table 3 for the top 475

significant gene ontologies driving each cluster in the GTEx V6 data and the Deng et al 476

data respectively. 477

Comparison with hierarchical clustering 478

We compared the GoM model with a distance-based hierarchical clustering algorithm by 479

applying both methods to samples from pairs of tissues from the GTEx project, and 480

assessed their accuracy in separating samples according to tissue. For each pair of 481

tissues we randomly selected 50 samples from the pool of all samples coming from these 482

tissues. For the hierarchical clustering approach we cut the dendrogram at K = 2, and 483

checked whether or not this cut partitions the samples into the two tissue groups. (We 484

applied hierarchical clustering using Euclidean distance, with both complete and average 485

linkage; results were similar and so we showed results only for complete linkage.) 486

For the GoM model we analysed the data with K = 2, and sorted the samples by 487

their membership in cluster 1. We then partitioned the samples at the point of the 488

steepest fall in this membership, and again we checked whether this cut partitions the 489

samples into the two tissue groups. Supplemental Figure S3 Fig shows, for each pair of 490

tissues, whether each method successfully partitioned the samples into the two tissue 491

groups. 492

Thinning 493

We used “thinning” to simulate lower-coverage data from the original higher-coverage 494

data.. Specifically, if cng is the counts of number of reads mapping to gene g for sample 495

n for the original data, we simulated thinned counts tng using 496

tng ∼ Bin(cng, pthin) (5)

where pthin is a specified thinning parameter. 497
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Code Availability 498

Our methods are implemented in an R package CountClust, available as part of the 499

Bioconductor project at 500

https://www.bioconductor.org/packages/3.3/bioc/html/CountClust.html. The 501

development version of the package is also available at 502

https://github.com/kkdey/CountClust. 503

Code for reproducing results reported here is available at 504

http://stephenslab.github.io/count-clustering/. 505

Acknowledgments 506

We thank Matt Taddy, Amos Tanay and Effi Kenigsberg for helpful discussions. We 507

thank Po-Yuan Tung, John Blischak and Jonathan Pritchard for helpful comments on 508

the draft manuscript. 509

PLOS 12/25

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2016. ; https://doi.org/10.1101/051631doi: bioRxiv preprint 

https://www.bioconductor.org/packages/3.3/bioc/html/CountClust.html
https://github.com/kkdey/CountClust
http://stephenslab.github.io/count-clustering/
https://doi.org/10.1101/051631
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1. Cluster Annotations GTEx V6 data (with GO annotations).

Cluster Top 5 Driving Genes Top significant GO terms (function)[q-value]

1. Royal purple NEAT1, IGFBP5, CCLN2,
SRSF5, PNISR

GO:0005654 (nucleoplasm)[2e-10], GO:0044822 (poly-A RNA binding)[3e-09], GO:0044428
(nuclear part)[1e-09], GO:0043233 (organelle lumen)[2e-08]

2. Light purple SNAP25, FBXL16, NCDN,
SNCB, SLC17A7

GO:0097458 (neuron part)[2e-25], GO:0007268 (synaptic transmission)[9e-18], GO:0030182
(neuron differentiation)[2e-14], GO:0022008 (neurogenesis)[1e-13], GO:0007267 (cell-cell
signaling)[3e-13]

3. Red FABP4, PLIN1, FASN,
GPX3, LIPE

GO:0044255 (cellular lipid metabolism)[1e-09], GO:0006629 (lipid metabolism)[1e-09],
GO:0006639 (acylglycerol metabolism)[3e-08], GO:0045765 (angiogenesis regulation)[4e-08]

4. Salmon ACTG2, MYH11, SYNM,
MYLK, CSRP1

GO:0043292 (contractile fiber)[3e-13], GO:0006936 (muscle contraction)[5e-12], GO:0030016
(myofibril)[5e-12], GO:0015629 (actin cytoskeleton)[2e-12], GO:0005925 (focal adhesion)[6e-11]

5. Denim RGS5, MGP, AEBP1,
IGFBP7, MFGE8

GO:0005578 (proteinaceous extracellular matrix)[4e-20], GO:0030198 (extracellular
matrix)[2e-18], GO:0007155 (cell adhesion)[4e-14], GO:0001568 (blood vessel development)[4e-
13]

6. Light denim KRT10, KRT1, KRT2, LOR,
KRT14

GO:0008544 (epidermis development)[3e-12], GO:0043588 (skin development)[5e-10],
GO:0042303 (molting cycle)[8e-06], GO:0042633 (hair cycle)[7e-06], GO:0048513 (organ
development)[6e-05]

7. Orange NEB, MYH1, MYH2,
MYBPC1, ACTA1

GO:0043292 (contractile fiber)[6e-52], GO:0030016 (myofibril)[1e-51], GO:0030017
(sarcomere)[5e-40], GO:0003012 (muscle system process)[2e-25], GO:0015629 (actin
cytoskeleton)[1e-25]

8. Light orange FN1, COL1A1, COL1A2,
COL3A1, COL6A3

GO:0030198 (extracellular matrix)[6e-29], GO:0043062 (extracellular structure)[4e-29],
GO:0032963 (collagen metabolism)[3e-16], GO:0030199 (collagen fibril organization)[1e-14],
GO:0030574 (collagen catabolism)[1e-14]

9. Green MBP, GFAP, MTURN,
HIPK2, CARNS1

GO:0043209 (myelin sheath)[4e-07], GO:0007399 (nervous system development)[4e-05],
GO:0008366 (axon ensheathment)[9e-05], GO:0044430 (cytoskeletal part)[1e-04], GO:0005874
(microtubule)[3e-04]

10. Light green CYP17A1, CYP11B1, PIGR,
GKN1, STAR

GO:0006694 (steroid biosynthesis)[2e-13], GO:0008202 (steroid metabolism)[1e-12],
GO:0016125 (sterol metabolism)[1e-11], GO:0042446 (hormone biosynthesis)[1e-10],
GO:0008207 (C21-steroid hormone metabolism)[3e-10]

11. Turquoise MPZ, APOD, PMP22, PRX,
NGFR

GO:0007272 (ensheathment of neurons)[4e-07], GO:0008366 (axon ensheathment)[7e-07],
GO:0042552 (myelination)[7e-06], GO:0048856 (anatomical structure development)[1e-06],
GO:0005578 (proteinaceous extracellular matrix)[1e-06]

12. Yellow IGHM, IGHG1, IGHG2,
IGHG4, CD74

GO:0006955 (immune response)[1e-18], GO:0002252 (immune effector process)[7e-18],
GO:0003823 (antigen binding)[1e-15], GO:0019724 (B-cell mediated immunity)[5e-13],
GO:0002684 (positive regulation immune system)[6e-13]

13. Sky blue TG, PRL, GH1, PRM2,
PRM1

GO:0019953 (sexual reproduction)[8e-10], GO:0048232 (male gamete generation)[2e-
08], GO:0035686 (sperm fibrous sheath)[4e-06], GO:0005179 (hormone activity)[6e-05],
GO:0042403 (thyroid hormone metabolism)[2e-04]

14. Light pink NPPA, MYH6, TNNT2,
ACTC1, MYBPC3

GO:0045333 (cellular respiration)[2e-34], GO:0022904 (respiratory electron transport)[8e-33],
GO:0015980 (energy derivation by oxidation of organic compounds)[4e-30], GO:0031966 (mi-
tochondrial membrane)[5e-26]

15. Light gray KRT13, KRT4, MUC7,
CRNN, KRT6A

GO:0070062 (extracellular exosome)[2e-23], GO:0043230 (extracellular organelle)[3e-23],
GO:0031982 (vesicle)[3e-20], GO:0008544 (epidermis development)[2e-18], GO:0043588 (skin
development)[1e-13]

16. Gray SFTPBβ, SFTPA1, SFTPA2,
SFTPC, A2M

GO:0001525 (angiogenesis)[5e-08], GO:0001944 (vasculature development)[2e-07], GO:0048514
(blood vessel morphogenesis)[2e-07], GO:0040012 (locomotion regulation)[4e-06], GO:2000145
(cell motility)[1e-05]

17. Brown CSF3R, MMP25, IL1R2,
SELL, VNN2

GO:0006955 (immune response)[8e-22], GO:0006952 (defense response)[9e-16], GO:0071944
(cell periphery)[7e-15], GO:0005886 (plasma membrane)[7e-15], GO:0050776 (regulation of im-
mune response)[2e-12]

18. Purple PRSS1, CPA1, PNLIP,
CELA3A, GP2

GO:0007586 (digestion)[3e-14], GO:0004252 (serine-type endopeptidase activity)[4e-08],
GO:0006508 (proteolysis)[6e-06], GO:0016787 (hydrolase activity)[6e-05], GO:0044241 (lipid
digestion)[1e-04]

19. Pink HBB, HBA2, HBA1, FKBP8,
HBD

GO:0005833 (hemoglobin complex)[1e-13], GO:0015669 (gas transport)[4e-11], GO:0020037
(heme binding)[3e-07], GO:0031720 (haptoglobin binding)[3e-06], GO:0006950 (response to
stress)[6e-04]

20. Dark gray ALB, HP, FGB, FGA, ORM1 GO:0072562 (blood microparticle)[1e-27], GO:0043230 (extracellular organelle)[1e-
24], GO:0044710 (single organism metabolism)[7e-20], GO:0019752 (carboxylic acid
metabolism)[1e-18], GO:0034364 (high density lipoprotein)[3e-16]
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Table 2. Cluster Annotations for GTEx V6 Brain data.

Cluster Top 5 Driving Genes Top significant GO terms

1. Royal blue CLU, OXT, GLUL, NDRG2,
CST3

GO:0043230 (extracellular organelle)[5e-11], GO:1903561 (extracellular vesicle)[6e-11],
GO:0070062 (extracellular exosome)[2e-09], GO:0006950 (response to stress)[3e-10],
GO:0031988 (membrane bound vesicle)[1e-10]

2. Turquoise ENC1, NCALD, YWHAH,
KIF5A, NPTXR

GO:0097458 (neuron part)[3e-11], GO:0008092 (cytoskeletal protein binding)[7e-
11], GO:0031175 (neuron projection development)[7e-09], GO:0030182 (neuron
differentiation)[4e-08], GO:0007268 (synaptic transmission)[1e-08]

3. Lime green PKD1, CBLN3, CHGB,
COL27A1, ABLIM1

GO:0005089 (Rho guanyl-nucleotide exchange factor activity)[1e-03], GO:0016604
(nuclear body)[0.002], GO:0022008 (neurogenesis)[0.02], GO:0035239 (tube morpho-
genesis)[0.08], GO:0007269 (neurotransmitter secretion)[0.10]

4. Red PPP1R1B, RGS14, NCDN,
PDE1B, RAP1GAP

GO:0065009 (regulation of molecular function)[2e-06], GO:0036477 (somatodendritic
compartment)[6e-05], GO:0007268 (synaptic transmission)[1e-03], GO:0023051 (sig-
naling regulation)[2e-03], GO:0010646 (cell communication regulation)[1e-03]

5. Yellow orange MBP, GFAP, TF, MTURN,
SCD

GO:0043209 (myelin sheath)[2e-09], GO:0007399 (nervous system development)[1e-04],
GO:0005737 (cytoplasm)[1e-04], GO:0048471 (perinuclear region of cytoplasm)[5e-04],
GO:0007272 (ensheathment of neurons)[1e-02]

6. Yellow IQGAP1, A2M, C3, MYH7,
TG

GO:0072562 (blood microparticle)[1e-10], GO:0044449 (contractile fiber part)[1e-
10], GO:0043230 (extracellular organelle)[7e-10], GO:0030017 (sarcomere)[1e-08],
GO:0072376 (protein activation cascade)[1e-08]

Table 3. Cluster Annotations for Deng et al (2014) data.

Cluster Top 10 Driving Genes Top significant GO terms

1. Blue Bcl2l10, E330034G19Rik,
Tcl1,LOC100502936, Oas1d,
AU022751, Spin1, Khdc1b,
D6Ertd527e, Btg4

GO:0007276 (gamete generation)[7e-06], GO:0032504 (multicellular organism
reproduction)[3e-06], GO:0044702 (single organism reproduction)[2e-05], GO:0048477
(oogenesis)[5e-04], GO:0048599 (oocyte development)[1e-03], GO:0009994 (oocyte
differentiation)[1e-03]

2. Magenta Obox3, Zfp352, Gm8300,
Usp17l5, BB287469, Rfpl4b,
Gm2022, Gm5662, Gm11544
, Gm4850

GO:0016604 (nuclear body)[1e-04], GO:0005814 (centriole)[4e-03], GO:0044450 (mi-
crotubule organizing center part) [8e-03]

3. Yellow Rtn2, Ebna1bp2, Zfp259,
Nasp, Cenpe, Rnf216, Ctsl,
Tor1b, Ankrd10, Lamp2

GO:0044428 (nuclear part)[1e-08], GO:0031981 (nuclear lumen)[3e-08], GO:0070013
(intracellular organelle lumen)[9e-08], GO:0005730 (nucleolus)[5e-07], GO:0005654
(nucleoplasm)[4e-05], GO:0003723 (RNA binding)[1e-04]

4. Green Timd2, Isyna1, Alppl2,
Prame15, Fbxo15, Tceb1,
Gpd1l, Pemt, Hsp90aa1,
Hsp90ab1

GO:0005829 (cytosol)[4e-10], GO:0044444 (cytoplasmic part)[2e-05], GO:1901575 (or-
ganic substance catabolic process)[9e-04], GO:0000151 (ubiquitin ligase com- plex)[1e-
04], GO:0009056 (catabolic process)[1e-03], GO:0044265 (cellular macromolecule
catabolic process)[1e-03], GO:0051082 (unfolded protein binding)[9e-04]

5. Purple Upp1, Tdgf1, Aqp8, Fabp5,
Tat, Pdgfra, Pyy, Prdx1,
Col4a1, Spp1

GO:0044710 (single-organism metabolic process) [1e-05], GO:0006950 (response to
stress) [1e-05], GO:0070062 (extracellular exosome)[1e-05], GO:0043230 (extracellular
organelle)[2e-05], GO:1903561 (extracellular vesicle)[1e-05], GO:0006979 (response to
oxidative stress)[7e-04], GO:0048514 (blood vessel morphogenesis)[7e-04], GO:0001944
(vasculature development)[3e-03]

6. Orange Actb, Krt18, Fabp3, Id2,
Tspan8, Gm2a, Lgals1, Adh1
, Lrp2, BC051665

GO:0065010 (extracellular membrane-bounded organelle), GO:0070062 (extracellular
exosome)[4e-23], GO:0043230 (extracellular organelle)[5e-23], GO:1903561 (extracel-
lular vesicle)[3e-23], GO:0031982 (vesicle)[4e-18], GO:0030036 (actin cytoskeleton
and organization)[4e-12], GO:0032432 (actin filament bundle)[2e-09], GO:0005912
(adherens junction)[2e-09]
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Fig 1. (a): Structure plot of estimated membership proportions for GoM model with
K = 20 clusters fit to 8555 tissue samples from 53 tissues in GTEx data. Each
horizontal bar shows the cluster membership proportions for a single sample, ordered so
that samples from the same tissue are adjacent to one another. Within each tissue, the
samples are sorted by the proportional representation of the underlying clusters.(b):
Structure plot of estimated membership proportions for K = 4 clusters fit to only the
brain tissue samples. This analysis highlights finer-scale structure among the brain
samples that is missed by the global analysis in (a).
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Fig 2. Visualization of the same GTEx data as in Figure 1 (a) across all tissues using
standard and widely used approaches - Principal Component Analysis (PCA), Multi
dimensional Scaling (MDS), t-SNE and hierarchical clustering. All the analysis are done
on log CPM normalized expression data to remove library size effects. (a): Plot of PC1
vs PC2 on the log CPM expression data, (b): Plot of first two dimensions of the t-SNE
plot, (c) Plot of first two dimensions of the Multi-Dimensional Scaling (MDS) plot. (d)
Dendrogram for the hierarchical clustring of the GTEx tissue samples based on the log
CPM expression data.
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Fig 3. Structure plot of estimated membership proportions for GoM model with K = 7
clusters fit to 1, 041 single cells from [27]. The samples (cells) are ordered so that
samples from the same amplification batch are adjacent and within each batch, the
samples are sorted by the proportional representation of the underlying clusters. In this
analysis the samples do not appear to form clearly-defined clusters, with each sample
being allocated membership in several “clusters”. Membership proportions are
correlated with batch, and some groups of batches (e.g. 28-29; 32-45) show similar
palettes. These results suggest that batch effects are likely influencing the inferred
structure in these data.
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Fig 4. Structure plot of estimated membership proportions for GoM model with K = 6
clusters fit to 259 single cells from [28]. The cells are ordered by their preimplantation
development phase (and within each phase, sorted by the proportional representation of
the clusters). While the very earliest developmental phases (zygote and early 2-cell) are
essentially assigned to a single cluster, others have membership in multiple clusters.
Each cluster is annotated by the genes that are most distinctively expressed in that
cluster, and by the gene ontology categories for which these distinctive genes are most
enriched (see Table 3 for more extensive annotation results). See text for discussion of
biological processes driving these results.
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Supporting Information 694

S1 Fig. Structure plot of GTEx V6 tissue samples for (a) K = 5, (b) K = 695

10, (c) K = 15, (d) K = 20. Some tissues form a separate cluster from the other 696

tissues from K = 5 onwards (for example: Whole Blood, Skin), whereas some tissue 697

only form a distinctive subgroup at K = 20 (for example: Arteries). 698

S2 Fig. Top five principal components (PC) for GTEx V6 tissue samples. 699

Scatter plot representation of the top five PCs of the GTEx tissue samples. Data was 700

transformed to log2 counts per million (CPM). 701

S3 Fig. Comparison between GoM model and hierarchical clustering 702

under different scenarios of data transformation. We used GTEx V6 data for 703

model performance comparisons. Specifically, for every pair of the 53 tissues, we 704

assessed the ability of the methods to separate samples according to their tissue of 705

origin. The subplots of heatmaps show the results of evaluation under different 706

scenarios. Filled squares in the heatmap indicate successful separation of the samples in 707

corresponding tissue pair comparison. (a) Hierarchical clustering on log2 counts per 708

million (CPM) transformed data using Euclidean distance. (b) Hierarchical clustering 709

on the standardized log2-CPM transformed data (transformed values for each gene was 710

mean and scale transformed) using the Euclidean distance. (c) GoM model of K = 2 711

applied to counts. (d) Hierarchical clustering on counts data with the assumption that, 712

for each gene the sample read count cng has a variance c̄g + 1 that is constant across 713

samples. And, the the gene-specific variance c̄g + 1 was used to scale the distance 714

matrix for clustering. (e) Hierarchical clustering applied to adjusted count data. Each 715

gene has a mean expression value of 0 and variance of 1. Taken together, these results 716

suggest that regardless of the different data transformation scenarios, the GoM model 717

with K = 2 is able to separate samples of different tissue of origin, better than 718

hierarchical cluster methods. 719

S4 Fig. GTEx brain PCA, t-SNE and MDS. 720

S5 Fig. Structure plot of GTEx V6 tissue samples for K = 20 in two runs 721

under different thinning parameter settings. (a) pthin = 0.01 and (B) 722

pthin = 0.0001. The structure in these two plots closely resemble the pattern observed 723

in Fig 1(a), though there are a few differences from the unthinned version. 724

S6 Fig. A comparison of accuracy of hierarchical clustering vs GoM on 725

thinned GTEx data, with thinning parameters of pthin = 0.01 and 726

pthin = 0.001. For each pair of tissue samples from the GTEx V6 data we assessed 727

whether or not each clustering method (with K = 2 clusters) separated the samples 728

according to their tissue of origin, with successful separation indicated by a filled square. 729

Thinning deteriorates accuracy compared with the unthinned data (Fig 2), but even 730

then the model-based method remains more successful than the hierarchical clustering 731

in separating the samples by tissue or origin. 732

S7 Fig. Deng et al (2014) PCA, tSNE, MDS and dendrogram plots for 733

hierarchical clustering. 734
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S8 Fig. Additional GoM analysis of Deng et al (2014) data including 735

blastocyst samples and 48 blastocyst marker genes. We considered 48 736

blastocyst marker genes (as chosen by Guo et al., 2010) and fitted GoM model with K 737

= 3 to 133 blastocyst samples. In the Structure plot, blastocyst samples are arranged in 738

order of estimated membership proportion in the Green cluster. The panel located 739

above the Structure plot shows the corresponding pre-implantation stage from which 740

blastocyst samples were collected. The heatmap located below the Structure plot 741

represents expression levels of the 48 blastocyst marker genes (log2 CPM), and the 742

corresponding dendrogram shows results of hierarchical clustering (complete linkage). 743

The table on the right of the expression heatmap displays gene information, showing, 744

from left to right, 1) whether or not the gene is a transcription factor, 2) the driving 745

GoM cluster if the gene was among the top five driving genes, and 3) the featured cell 746

type (TE: trophecoderm, EPI: epiblast, PE: primitive endoderm) that was found in Guo 747

et al., 2010. 748

S9 Fig. Visualization of PCA and t-SNE results of mouse pre-implantation 749

embryos data from Deng et al (2014) using 48 blastocyst marker genes. 750

S10 Fig. Sparse Factor Analysis loadings visualization of GTEx V6 tissue 751

samples. The colors represent the 20 different factors. The factor loadings are 752

presented in a stacked bar for each sample. We performed SFA under the scenarios of 753

when the loadings are sparse (left panel) and when the factors are sparse (right panel). 754

S11 Fig. Sparse Factor Analysis loadings visualization of GTEx brain 755

tissue samples. The colors represent the 6 different factors. The factor loadings are 756

presented in a stacked bar for each sample. We performed SFA under the scenarios of 757

when the loadings are sparse (left panel) and when the factors are sparse (right panel). 758

S12 Fig. Sparse Factor Analysis loadings visualization of mouse 759

pre-implantation embryos from Deng et al., (2014). The colors represent 760

the 6 different factors. The factor loadings are presented in a stacked bar 761

for each sample. We performed SFA under the scenarios of when the 762

loadings are sparse (left panel) and when the factors are sparse (right 763

panel). 764

S1 Table. Cluster Annotations of GTEx V6 data with top driving gene 765

summaries. 766

S2 Table. Cluster Annotations of GTEx V6 Brain data with top driving 767

gene summaries. 768

S3 Table. Cluster Annotations of Deng data with top driving genes. 769

S4 Table. Cluster Annotation of Deng data analysis using 48 genes with 770

top driving gene summaries. 771
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1 Supplementary figures

S1 Fig. Structure plot of GTEx V6 tissue samples for (A) K = 5, (B) K = 10, (C) K = 15,
(D) K = 20. Some tissues form a separate cluster from the other tissues from K = 5 onwards (for
example: Whole Blood, Skin), whereas some tissue only form a distinctive subgroup at K = 20 (for
example: Arteries).
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3

S2 Fig. Top five principal components (PC) for GTEx V6 tissue samples. Scatter plot
representation of the top five PCs of the GTEx tissue samples. Data was transformed to log2 counts per
million (CPM).

(b)(a) (c) (d)

(e) (f) (g)

(h) (i)

(j)

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2016. ; https://doi.org/10.1101/051631doi: bioRxiv preprint 

https://doi.org/10.1101/051631
http://creativecommons.org/licenses/by-nc-nd/4.0/


4

S3 Fig. Comparison between GoM model and hierarchical clustering under different
scenarios of data transformation. We used GTEx V6 data for model performance comparisons.
Specifically, for every pair of the 53 tissues, we assessed the ability of the methods to separate samples
according to their tissue of origin. The subplots of heatmaps show the results of evaluation under
different scenarios. Filled squares in the heatmap indicate successful separation of the samples in
corresponding tissue pair comparison. (a) Hierarchical clustering on log2 counts per million (CPM)
transformed data using Euclidean distance. (b) Hierarchical clustering on the standardized log2-CPM
transformed data (transformed values for each gene was mean and scale transformed) using the Euclidean
distance. (c) GoM model of K = 2 applied to counts.(d) Hierarchical clustering on counts data with the
assumption that, for each gene the sample read count cng has a variance c̄g + 1 that is constant across
samples. And, the the gene-specific variance c̄g + 1 was used to scale the distance matrix for clustering.
(e) Hierarchical clustering applied to adjusted count data from c(c). Each gene expression is further
normalized over (c) to have mean expression value of 0 and variance of 1. Taken together, these results
suggest that regardless of the different data transformation scenarios, the GoM model with K = 2 is able
to separate samples of different tissue of origin, better than hierarchical cluster methods.
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6

S4 Fig. GTEx brain tissue samples visualization using (a) principle component analysis,
(b) t-SNE, and (c) Multidimensional scaling and (d) dendrogram for hierarchical
clustering. The colors represent the 13 different brain tissue types. In (a) and (b), the majority of the
tissue samples are distinct from Cerebellum tissue samples (the cluster of samples located on the right
side of the plot). While, in (c), most tissue samples are located at the enter of the plot and are similar to
each other in the t-SNE dimensions. In (d), samples from Brain Cerebellar, Cerebellar Hemisphere seem
to cluster together and separate from samples from other brain regions. But, because of the large number
of samples, patterns of variation between tissue samples are difficult to detect.

D

D

a b

c d
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7

S5 Fig. Structure plot of GTEx V6 tissue samples for K = 20 in two runs under different
thinning parameter settings. (a) pthin = 0.01 and (b) pthin = 0.0001. The structural patterns in
these two plots closely resemble the structural patterns in Fig 1(a), though there are a few differences
from the unthinned version.
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9

S6 Fig. A comparison of “accuracy” of hierarchical clustering vs. GoM on thinned
GTEx data, with thinning parameters of pthin = 0.01 and pthin = 0.001. For each pair of tissue
samples from the GTEx V6 data we assessed whether or not each clustering method (with K = 2
clusters) separated the samples according to their tissue of origin, with successful separation indicated by
a filled square. Thinning deteriorates accuracy compared with the unthinned data (Fig 2), but even then
the model-based method remains more successful than the hierarchical clustering in separating the
samples by tissue or origin.

(a) hierarchy thin 0.01 (b) GoM thin 0.01

(c) hierarchy 0.001 (d) GoM thin 0.001
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S7 Fig. Visualizing mouse pre-implantation embryos data from Deng et al (2014) using
(a) Principle Component Analysis, (b) t-SNE, (c) Multidimensional Scaling (MDS) and
(d) circular dendrogram for hierarchical clustering. The colors represent different developmental
stages. PCA, MDS seem to be effective in capturing the developmental trajectory, but t-SNE fails to do
so. Hierarchical clustering fails to separate out the blastocyst cells from the cells in early stages of
development completely.

Ddc

a b
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S8 Fig. Additional GoM analysis of Deng et al (2014) data including blastocyst samples
and 48 blastocyst marker genes. We considered 48 blastocyst marker genes (as chosen by Guo et al.,
2010) and fitted GoM model with K = 3 to 133 blastocyst samples. In the Structure plot, blastocyst
samples are arranged in order of estimated membership proportion in the Green cluster. The panel
located above the Structure plot shows the corresponding pre-implantation stage from which blastocyst
samples were collected. The heatmap located below the Structure plot represents expression levels of the
48 blastocyst marker genes (log2 CPM), and the corresponding dendrogram shows results of hierarchical
clustering (complete linkage). The table on the right of the expression heatmap displays gene information,
showing, from left to right, 1) whether or not the gene is a transcription factor, 2) the driving GoM
cluster if the gene was among the top five driving genes, and 3) the featured cell type (TE: trophecoderm,
EPI: epiblast, PE: primitive endoderm) that was found in Guo et al., 2010.
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S9 Fig. Visualization of PCA and t-SNE results of mouse pre-implantation embryos data
from Deng et al (2014) using 48 blastocyst marker genes
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S10 Fig. Sparse Factor Analysis loadings visualization of GTEx V6 tissue samples. The
colors represent the 20 different factors. The factor loadings are presented in a stacked bar for each
sample. We performed SFA under the scenarios of (left) when the loadings are sparse and (right) when
the factors are sparse.
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S11 Fig. Sparse Factor Analysis loadings visualization of GTEx brain tissue samples. The
colors represent the 6 different factors. The factor loadings are presented in a stacked bar for each sample.
We performed SFA under the scenarios of (left) when the loadings are sparse and (right) when the factors
are sparse.
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S12 Fig. Sparse Factor Analysis loadings visualization of mouse pre-implantation
embryos from Deng et al., (2014). The colors represent the 6 different factors. The factor loadings
are presented in a stacked bar for each sample. We performed SFA under the scenarios of (left) when the
loadings are sparse and (right) when the factors are sparse.
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2 Supplementary tables

S1 Table. Cluster Annotations of GTEx V6 data with top driving gene summaries.

Cluster Top
Driving
Genes

Gene names Gene Summary

1. Royal

purple

NEAT1 nuclear paraspeckle assem-
bly transcript 1

produces a long non-coding RNA (lncRNA) transcribed from the multiple en-
docrine neoplasia locus, regulates genes involved in cancer progression.

CCNL2 cyclin L2 regulator of the pre-mRNA splicing process, as well as in inducing apoptosis by
modulating the expression of apoptotic and antiapoptotic proteins.

SRSF5 serine/arginine-rich
splicing factor 5

encodes proteins of serine/arginine (SR)-rich family, involved in mRNA export
from the nucleus and in translation.

2. Light

purple

SNAP25 synaptosomal-associated
protein, 25kDa

this gene product is a presynaptic plasma membrane protein involved in the
regulation of neurotransmitter release.

FBXL16 F-box and leucine-rich re-
peat protein 16

members of F-box protein family, which interact with SKP1 through the F box,
and they interact with ubiquitination targets through other protein interaction
domains.

SLC17A7 neurochondrin encodes proteins expressed in neuron-rich regions; associated with the mem-
branes of synaptic vesicles and functions in glutamate transport.

3. Red

FABP4 fatty acid binding protein 4 encodes the fatty acid binding protein found in adipocytes, takes part in fatty
acid uptake, transport, and metabolism.

PLIN1 perilipin 1 protein encoded by this gene coats lipid storage droplets in adipocytes, thereby
protecting them until they can be broken down by hormone-sensitive lipase.

FASN fatty acid synthase catalyze the synthesis of palmitate from acetyl-CoA and malonyl-CoA, in the
presence of NADPH, into long-chain saturated fatty acids.

4. Salmon

ACTG2 actin, gamma 2, smooth
muscle, enteric

involved in various types of cell motility and in the maintenance of the cytoskele-
ton.

MYH11 myosin, heavy chain 11,
smooth muscle

protein encoded by this gene is a smooth muscle myosin belonging to the myosin
heavy chain family, functions as a major contractile protein, converting chemical
energy into mechanical energy through the hydrolysis of ATP.

SYNM synemin protein has been found to form a linkage between desmin, which is a subunit
of the IF network, and the extracellular matrix, and provides an important
structural support in muscle.

5. Denim

RGS5 regulator of G-protein sig-
naling 5

encodes a member of the regulators of G protein signaling (RGS) family, asso-
ciated with retinal arterial macroaneurysm.

MFGE8 milk fat globule-EGF fac-
tor 8 protein

encodes a preproprotein that is proteolytically processed to form multiple pro-
tein products, been implicated in wound healing, autoimmune disease, and can-
cer

ITGA8 synemin Proteins generated mediate numerous cellular processes including cell adhesion,
cytoskeletal rearrangement, and activation of cell signaling pathways.

6. Light

denim

KRT10 keratin 10 encodes a member of the type I (acidic) cytokeratin family, mutations associated
with epidermolytic hyperkeratosis.

KRT1 keratin 1, type II specifically expressed in the spinous and granular layers of the epidermis with
family member KRT10 and mutations in these genes have been associated with
bullous congenital ichthyosiform erythroderma.

KRT2 keratin 2, type II expressed largely in the upper spinous layer of epidermal keratinocytes and mu-
tations in this gene have been associated with bullous congenital ichthyosiform
erythroderma.

7. Orange

NEB nebulin encodes nebulin, a giant protein component of the cytoskeletal matrix that
coexists with the thick and thin filaments within the sarcomeres of skeletal
muscle, associated with recessive nemaline myopathy.

MYH1 myosin, heavy chain 1,
skeletal muscle, adult

a major contractile protein which converts chemical energy into mechanical
energy through the hydrolysis of ATP.

MYH2 myosin, heavy chain 2,
skeletal muscle, adult

encodes a member of the class II or conventional myosin heavy chains, and
functions in skeletal muscle contraction.
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Cluster Top
Driving
Genes

Gene namese Gene Summary

8. Light

orange

FN1 fibronectin 1 Fibronectin is involved in cell adhesion, embryogenesis, blood coagulation, host
defense, and metastasis.

COL1A1 collagen, type I, alpha 1 Mutations in this gene associated with osteogenesis imperfecta types I-IV,
Ehlers-Danlos syndrome type and Classical type, Caffey Disease.

COL1A2 collagen, type I, alpha 2 Mutations in this gene associated with osteogenesis imperfecta types I-IV,
Ehlers-Danlos syndrome type and Classical type, Caffey Disease.

9. Green

MBP myelin basic protein major constituent of the myelin sheath of oligodendrocytes and Schwann cells
in the nervous system

GFAP glial fibrillary acidic pro-
tein

encodes one of the major intermediate filament proteins of mature astrocytes,
mutations casuses Alexander disease.

CARNS1 carnosine synthase 1 catalyzes the formation of carnosine and homocarnosine, which are found mainly
in skeletal muscle and the central nervous system, respectively.

10. Light

green

CYP17A1 cytochrome P450 family 17
subfamily A member 1

encodes a member of the cytochrome P450 superfamily of enzymes, mutations in
this gene are associated with isolated steroid-17 alpha-hydroxylase deficiency,20-
lyase deficiency, pseudohermaphroditism, and adrenal hyperplasia.

CYP11B1 cytochrome P450 family 11
subfamily B member 1

The protein encoded by this gene plays a key role in the acute regulation of
steroid hormone synthesis by enhancing the conversion of cholesterol into preg-
nenolone, associated with congenital lipoid adrenal hyperplasia.

GKN1 gastrokine 1 protein encoded by this gene is found to be down-regulated in human gastric
cancer tissue as compared to normal gastric mucosa..

11.

Turquoise

MPZ myelin protein zero specifically expressed in Schwann cells of the peripheral nervous system and
encodes a type I transmembrane glycoprotein that is a major structural protein
of the peripheral myelin sheath, mutations associated with autosomal dominant
form of Charcot-Marie-Tooth disease type 1 and other polyneuropathies.

APOD apolipoprotein D encodes a component of high density lipoprotein that has no marked simi-
larity to other apolipoprotein sequences, closely associated with lipoprotein
metabolism.

PMP22 peripheral myelin protein
22

encodes an integral membrane protein that is a major component of myelin in
the peripheral nervous system..

12. Yellow

IGHM immunoglobulin heavy con-
stant mu

IgM antibodies play an important role in primary defense mechanisms, Diseases
associated with IGHM include agammaglobulinemia 1 and immunodeficiency
23.

IGHG1 immunoglobulin heavy
constant gamma 1 (G1m
marker)

antigen binding functionality, diseases associated with IGHG1 include heavy
chain deposition disease and chronic lymphocytic leukemia.

IGHG2 immunoglobulin heavy
constant gamma 2 (G2m
marker)

antigen binding gene, diseases associated with IGHG2 include c2 deficiency.

13. Sky

blue

TG thyroglobulin thyroglobulin produced predominantly in thyroid gland, synthesizes thyroxine
and triiodothyronine, associated with Graves disease and Hashimotot thyroidi-
tis.

PRL prolactin 2 encodes the anterior pituitary hormone prolactin. This secreted hormone is a
growth regulator for many tissues, including cells of the immune system.

PRM2 protamine 2 Protamines are the major DNA-binding proteins in the nucleus of sperm.

14. Light

pink

NPPA natriuretic peptide A protein encoded by this gene belongs to the natriuretic peptide family, controls
extracellular fluid volume and electrolyte homeostasis, mutations Mutations
associated with atrial fibrillation familial type 6.

MYH6 myosin, heavy chain 6, car-
diac muscle, alpha

encodes the alpha heavy chain subunit of cardiac myosin, mutations cause fa-
milial hypertrophic cardiomyopathy and atrial septal defect 3

TNNT2 protamine 2 protein encoded by this gene is the tropomyosin-binding subunit of the troponin
complex, mutations in this gene have been associated with familial hypertrophic
cardiomyopathy as well as with dilated cardiomyopathy.
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Cluster Top
Driving
Genes

Gene namese Gene Summary

15. Light

gray

KRT13 keratin 13, type I protein encoded by this gene is a member of the keratin gene family, associated
with the autosomal dominant disorder White Sponge Nevus.

KRT4 keratin 4, type II protein encoded by this gene is a member of the keratin gene family, associ-
ated with White Sponge Nevus, characterized by oral, esophageal, and anal
leukoplakia.

CRNN cornulin may play a role in the mucosal/epithelial immune response and epidermal dif-
ferentiation.

16. Gray

SFTPB surfactant protein B an amphipathic surfactant protein essential for lung function and homeostasis
after birth, muttaions cause pulmonary alveolar proteinosis, fatal respiratory
distress in the neonatal period.

SFTPA2 surfactant protein A2 Mutations in this gene and a highly similar gene located nearby, which affect
the highly conserved carbohydrate recognition domain, are associated with id-
iopathic pulmonary fibrosis.

SFTPA1 surfactant protein A1 encodes a lung surfactant protein that is a member of C-type lectins called
collectins, associated with idiopathic pulmonary fibrosis.

17. Brown

CSF3R colony stimulating factor 3
receptor

protein encoded by this gene is the receptor for colony stimulating factor 3, a
cytokine that controls the production, differentiation, and function of granulo-
cytes, mutations a cause of Kostmann syndrome

MMP25 matrix metallopeptidase 25 proteins are involved in the breakdown of extracellular matrix in normal phys-
iological processes, such as embryonic development, reproduction, and tissue
remodeling, as well as in disease processes, such as arthritis and metastasis.

IL1R2 interleukin 1 receptor type
2

protein encoded by this gene is a cytokine receptor that belongs to the inter-
leukin 1 receptor family.

18. Purple

PRSS1 protease, serine 1 secreted by pancreas, associated with pancreatitis

CPA1 carboxypeptidase A1 secreted by pancreas, linked to pancreatitis and pancreatic cancer

PNLIP pancreatic lipase encodes a carboxyl esterase that hydrolyzes insoluble, emulsified triglycerides,
and is essential for the efficient digestion of dietary fats. This gene is expressed
specifically in the pancreas.

19. Pink

HBB hemoglobin, beta mutant beta globin causes sickle cell anemia, absence of beta chain/ reduction
in beta globin leads to thalassemia.

HBA2 hemoglobin, alpha 2 deletion of alpha genes may lead to alpha thalassemia.

HBA1 hemoglobin, alpha 1 deletion of alpha genes may lead to alpha thalassemia.

20. Dark

gray

ALB albumin functions primarily as a carrier protein for steroids, fatty acids, and thyroid
hormones and plays a role in stabilizing extracellular fluid volume.

HP haptoglobin encodes a preproprotein, which subsequently produces haptoglobin, linked to
diabetic nephropathy, Crohn’s disease, inflammatory disease behavior and re-
duced incidence of Plasmodium falciparum malaria.

FGB fibrinogen beta chain protein encoded by this gene is the beta component of fibrinogen, mutations
may lead to several disorders, including afibrinogenemia, dysfibrinogenemia,
hypodysfibrinogenemia etc.
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S2 Table. Cluster Annotations of GTEx V6 Brain data with top driving gene summaries.

Cluster Top
Driving
Genes

Gene names Gene Summary

1, Royal

blue

CLU clusterin protein encoded by this gene is a secreted chaperone that can under some
stress conditions also be found in the cell cytosol, also involved in cell death,
tumor progression, and neurodegenerative disorders.

OXT oxytocin/neurophysin I pre-
propeptide

encodes a precursor protein that is processed to produce oxytocin and neu-
rophysin I, involved in contraction of smooth muscle during parturition and
lactation, cognition, tolerance, adaptation and complex sexual and mater-
nal behaviour.

GLUL glutamate-ammonia ligase catalyzes the synthesis of glutamine from glutamate and ammonia in an
ATP-dependent reaction, associated with congenital glutamine deficiency,
and overexpression of this gene was observed in some primary liver cancer
samples.

2,

Turquoise

ENC1 ectodermal-neural cortex 1 plays a role in the oxidative stress response as a regulator of the transcrip-
tion factor Nrf2, may play role in malignant transformation.

NCALD neurocalcin delta encodes a member of the neuronal calcium sensor (NCS), a regulator of G
protein-coupled receptor signal transduction.

YWHAH tyrosine 3-
monooxygenase/tryptophan
5-monooxygenase activa-
tion protein eta

mediate signal transduction by binding to phosphoserine-containing pro-
teins, associated with early-onset schizophrenia and psychotic bipolar dis-
order.

3, Lime

green

PKD1 polycystin 1, transient re-
ceptor potential channel in-
teracting

functions as a regulator of calcium permeable cation channels and intracellu-
lar calcium homoeostasis. It is also involved in cell-cell/matrix interactions
and may modulate G-protein-coupled signal-transduction pathways.

CBLN3 cerebellin 3 precursor contain a cerebellin motif and C-terminal C1q signature domain that medi-
ates trimeric assembly of atypical collagen complexes

CHGB chromogranin B encodes a tyrosine-sulfated secretory protein abundant in peptidergic en-
docrine cells and neurons. This protein may serve as a precursor for regu-
latory peptides.

4, Red

PPP1R1B protein phosphatase 1 reg-
ulatory inhibitor sub- unit
1B

encodes a bifunctional signal transduction molecule, may serve as a thera-
peutic target for neurologic and psychiatric disorders.

RGS14 regulator of G-protein sig-
naling 14

attenuates the signaling activity of G-proteins, increases the rate of conver-
sion of the GTP to GDP.

NCDN neurochondrin encodes a leucine-rich cytoplasmic protein, essential for spatial learning
processes.

5, Yellow

orange

MBP myelin basic protein protein encoded is a major constituent of the myelin sheath of oligodendro-
cytes and Schwann cells in the nervous system.

GFAP glial fibrillary acidic protein encodes major intermediate filament proteins of mature astrocytes, a
marker to distinguish astrocytes during development, mutations in this gene
cause Alexander disease, a rare disorder of astrocytes in central nervous sys-
tem.

TF transferrin transport iron from the intestine, reticuloendothelial system, and liver
parenchymal cells to all proliferating cells in the body, involved in the re-
moval of certain organic matter and allergens from serum.

6, Yellow

IQGAP1 IQ motif containing GT-
Pase activating protein 1

interacts with components of the cytoskeleton, with cell adhesion molecules,
and with several signaling molecules to regulate cell morphology and motil-
ity.

A2M alpha-2-macroglobulin inhibits many proteases, including trypsin, thrombin and collagenase. A2M
is implicated in Alzheimer disease (AD) due to its ability to mediate the
clearance and degradation of A-beta, the major component of beta-amyloid
deposits.

C3 complement component 3 plays a central role in the activation of complement system, associated with
atypical hemolytic uremic syndrome and age-related macular degeneration
in human patients.
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S3 Table. Cluster Annotations of Deng data with top driving genes.

GO ID GO Term Top Driving Genes
1 GO:0007276 gamete generation BCL2L10; GDF9; NOBOX; PABPC1L; RGS2; CREB3L4; RNF114; BMP15;

PTTG1; TDRD12; WEE2; SPIN1; DAZL

2 GO:0007292 female gamete generation GDF9; BCL2L10; PABPC1L; BMP15; WEE2; DAZL; NOBOX

3 GO:0048609 multicellular organismal
reproductive process

GDF9; NOBOX; PABPC1L; BCL2L10; BMP15; CREB3L4; TGFB2; RNF114;
RGS2; PTTG1; TDRD12; WEE2; SPIN1; DAZL

4 GO:0032504 multicellular organism re-
production

GDF9; NOBOX; PABPC1L; BCL2L10; BMP15; CREB3L4; TGFB2; RNF114;
RGS2; PTTG1; TDRD12; WEE2; SPIN1; DAZL

5 GO:0019953 sexual reproduction BCL2L10; GDF9; NOBOX; PABPC1L; RGS2; CREB3L4; RNF114; BMP15;
PTTG1; TDRD12; WEE2; SPIN1; DAZL

6 GO:0044702 single organism reproduc-
tive process

GDF9; NOBOX; PABPC1L; BCL2L10; BMP15; CREB3L4; TGFB2; CASP8;
RNF114; RGS2; PTTG1; TDRD12; WEE2; SPIN1; DAZL

7 GO:0048477 oogenesis WEE2; GDF9; NOBOX; PABPC1L; DAZL

8 GO:0044703 multi-organism reproduc-
tive process

BCL2L10; GDF9; NOBOX; PABPC1L; RGS2; CREB3L4; RNF114; BMP15;
PTTG1; TDRD12; WEE2; SPIN1; DAZL

9 GO:0048599 oocyte development WEE2; GDF9; PABPC1L; DAZL

10 GO:0009994 oocyte differentiation WEE2; GDF9; PABPC1L; DAZL

11 GO:0051321 meiotic cell cycle H1FOO; WEE2; TDRD12; SPIN1; PTTG1; DAZL

12 GO:0001556 oocyte maturation WEE2; PABPC1L; DAZL

13 GO:0006306 DNA methylation TDRD12; H1FOO; TET3; ZFP57

14 GO:0051302 regulation of cell division TGFB2; PTTG1; TXNIP; WEE2; CHEK1; DAZL

15 GO:0060255 regulation of macro-
molecule metabolic
process

TGFB2; NOBOX; BPGM; UBE2D3; NFYA; CASP8; BMP15; TXNIP;
TDRD12; GDF9; BCL2L10

S3 Table continued. Deng et al (2014) Cluster 2 (magenta) top GO annotations.

GO ID GO Term Top Driving Genes
1 GO:0016604 nuclear body YTHDC1; RBM8A; CDK12; PSME4; PPP1R8; HIPK1; TOPORS

2 GO:0005814 centriole SFI1; PLK2; ROCK1; TOPORS

3 GO:0044450 microtubule organizing
center part

SFI1; PLK2; ROCK1; TOPORS
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S3 Table continued. Deng et al (2014) Cluster 3 (yellow) top GO annotations.

GO ID GO Term Top Driving Genes
1 GO:0044428 nuclear part MAD2L2; SMARCC1; PPRC1; SLU7; NFYB; TOR1B; MIOS; NR1H3;

POLR3K

2 GO:0031981 nuclear lumen MAD2L2; SMARCC1; PPRC1; SLU7; NFYB; POLR1E; MIOS; POLR3K;
XPO1

3 GO:0070013 intracellular organelle lu-
men

MAD2L2; SMARCC1; PPRC1; SLU7; NFYB; POLR1E; MIOS; POLR3K;
XPO1; DNTTIP2; ZBTB10; ZBTB17

4 GO:0043233 organelle lumen MAD2L2; SMARCC1; PPRC1; SLU7; NFYB; POLR1E; MIOS; POLR3K;
XPO1

5 GO:0005730 nucleolus XPO1; DNTTIP2; ESF1; WDR43; ZDHHC7; HEATR1; POLR1E; DDX24;
POLR3K

6 GO:0005634 nucleus MAD2L2; SMARCC1; PPRC1; SLU7; NFYB; TOR1B; MIOS; NR1H3; EIF5B;
POLR3K

7 GO:0044446 intracellular organelle
part

MAD2L2; PTDSS2; SMARCC1; KLHL21; TOR1B; PPRC1; SLU7; NFYB;
SLC25A36; ECE2

8 GO:0005654 nucleoplasm MAD2L2; SMARCC1; PPRC1; SLU7; NFYB; POLR1E; MIOS; POLR3K;
XPO1; ZBTB10; ZBTB17

9 GO:0003723 RNA binding PPRC1; EIF5B; XPO1; DNTTIP2; WDR43; DDX10; EIF3C; BCLAF1;
EBNA1BP2; RARS

10 GO:0003676 nucleic acid binding SMARCC1; PPRC1; SLU7; NFYB; POLR1E; EIF5B; POLR3K; XPO1; DNT-
TIP2

11 GO:0043231 intracellular membrane-
bounded organelle

MAD2L2; PTDSS2; SMARCC1; TOR1B; PPRC1; SLU7; NFYB; ESF1; ECE2;
LMAN1L

12 GO:0043229 intracellular organelle MAD2L2; PTDSS2; SMARCC1; KLHL21; TOR1B; PPRC1; ARRDC1; SLU7;
NFYB; ESF1; ECE2

13 GO:0005874 microtubule WDR43; KLHL21; HAUS6; CENPE; TEKT2; RACGAP1; WDR81; BCL2L11;
KIF20B

14 GO:0044822 poly(A) RNA binding WDR43; DNTTIP2; ESF1; NXF1; DDX10; HEATR1; EIF3C

15 GO:0044424 intracellular part MAD2L2; PTDSS2; SMARCC1; KLHL21; TOR1B; PPRC1; SNAPC4;
POLR3K; ARRDC1; SLU7; NFYB; ESF1; WDR43; ECE2; LMAN1L
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S3 Table continued. Deng et al (2014) Cluster 4 (green) top GO annotations.

GO ID GO Term Top Driving Genes
1 GO:0005829 cytosol PARG; UAP1; PSMB10; TCEB1; RPLP0; EIF5; CNBP; RPS3; PSAT1; AACS;

PMM1; EXOSC7; EIF3I; SET; BHMT; BHMT2

2 GO:0044444 cytoplasmic part PARG; UAP1; PSMB10; TCEB1; HSPA8; SERINC1; EIF5; CNBP; RPS3;
PSAT1; GPD2; AACS; GPR137B; STIP1; PMM1; EXOSC7; VPREB3; PEX16

3 GO:0055131 C3HC4-type RING finger
domain binding

HSPA8; PINK1; DNAJA1

4 GO:1901575 organic substance
catabolic process

PSMB10; TCEB1; RPLP0; RPS3; GPD2; PINK1; EXOSC7; ALLC; BHMT;
HSP90AB1; RPL13A; ATG7; CUL5; UBXN1; ZMPSTE24

5 GO:0000151 ubiquitin ligase complex DNAJA1; RNF7; UBE2C; HSPA8; FBXO15; SUGT1; DCAF4; CUL5; FBXL20

6 GO:0072655 protein localization to mi-
tochondrion

TIMM17A; BNIP3L; ARIH2; PEMT; SFN; PINK1; HSP90AA1; TIMM23

7 GO:1901564 organonitrogen com-
pound metabolic process

PSMB10; RPLP0; SERINC1; EIF5; BHMT2; PINK1; EIF3I; ALLC; BHMT;
MRPL22; RPL13A; ATG7; NUDT9; VNN1; CTSA; HK1

8 GO:0005737 cytoplasm PARG; UAP1; PSMB10; TCEB1; HSPA8; SERINC1; EIF5; CNBP; RPS3;
PSAT1; GPD2; AACS; GPR137B; STIP1; PMM1; EXOSC7

9 GO:0044265 cellular macromolecule
catabolic process

EXOSC7; SUMO2; BNIP3L; ARIH2; PSMB10; TCEB1; RPLP0; UBXN1;
HSP90AB1; RPL13A; RPS3; RNF7; PINK1

10 GO:0023026 MHC class II protein
complex binding

HSP90AB1; HSP90AA1; HSPA8

11 GO:0051082 unfolded protein binding DNAJA1; PTGES3; HSPA8; HSP90AB1; HSP90AA1; NPM1

12 GO:0009056 catabolic process PSMB10; TCEB1; RPLP0; RPS3; GPD2; PINK1; EXOSC7; ALLC; WDR45;
HSP90AB1; RPL13A

13 GO:0009057 macromolecule catabolic
process

EXOSC7; SUMO2; BNIP3L; ARIH2; PSMB10; TCEB1; RPLP0; AZIN1;
UBXN1; HSP90AB1; RPL13A

14 GO:0044248 cellular catabolic process PSMB10; TCEB1; SUMO2; RPS3; GPD2; PINK1; EXOSC7; ALLC; WDR45;
HSP90AB1

15 GO:0006626 protein targeting to mito-
chondrion

TIMM17A; BNIP3L; ARIH2; PEMT; PINK1; HSP90AA1; TIMM23
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S3 Table continued. Deng et al (2014) Cluster 5 (purple) top GO annotations.

GO ID GO Term Top Driving Genes
1 GO:0044710 single-organism

metabolic process
PCK2; SAT1; EPHX2; NFATC4; CKB; PRDX6; MSH2; EPHA4; PROS1;
PDGFRA; PRDX1; UBE2L6; POGLUT1; FABP5; AKAP12; TDGF1; FBP2;
SOX2

2 GO:0006950 response to stress EPHX2; NFATC4; PRDX6; MSH2; EPHA4; PROS1; PDGFRA; PRDX1;
UBE2L6; FABP5; TDGF1; SOX2

3 GO:0065010 extracellular membrane-
bounded organelle

PCK2; EPHX2; MFGE8; CKB; PRDX6; PROS1; PRDX1; POGLUT1; FABP5;
FBP2; TRAP1; PLOD2; DHRS4

4 GO:0070062 extracellular exosome PCK2; EPHX2; MFGE8; CKB; PRDX6; PROS1; PRDX1; POGLUT1; FABP5;
FBP2; TRAP1; PLOD2; DHRS4; MARCKS; DPP4; PRKCI; RAC2; IDH1

5 GO:0043230 extracellular organelle PCK2; EPHX2; MFGE8; CKB; PRDX6; PROS1; PRDX1; POGLUT1; FABP5;
FBP2; TRAP1; PLOD2; DHRS4; MARCKS; DPP4

6 GO:1903561 extracellular vesicle PCK2; EPHX2; MFGE8; CKB; PRDX6; PROS1; PRDX1; POGLUT1; FABP5;
FBP2; TRAP1; PLOD2; DHRS4; MARCKS; DPP4; PRKCI

7 GO:0042221 response to chemical EPHX2; NFATC4; MFGE8; PRDX6; EPHA4; PROS1; PDGFRA; PRDX1;
UBE2L6; TDGF1; SOX2

8 GO:0031988 membrane-bounded vesi-
cle

PCK2; EPHX2; MFGE8; CKB; PRDX6; PROS1; PRDX1; POGLUT1; FABP5;
FBP2; TRAP1; PLOD2; DHRS4; SPARC

9 GO:0031982 vesicle PCK2; EPHX2; MFGE8; CKB; PRDX6; PROS1; PRDX1; POGLUT1; FABP5;
FBP2; TRAP1; PLOD2; DHRS4; SPARC

10 GO:0001525 angiogenesis SAT1; PDGFRA; BMP4; NFATC4; MFGE8; FN1; MEIS1; SPARC; COL4A2;
COL4A1; FGF10; TDGF1

11 GO:0048514 blood vessel morphogene-
sis

SAT1; PDGFRA; BMP4; NFATC4; MFGE8; FN1; ZFP36L1; MEIS1; SPARC;
COL4A2; COL4A1; FGF10; TDGF1

12 GO:0001944 vasculature development SAT1; PDGFRA; BMP4; NFATC4; MFGE8; FN1; ZFP36L1; MEIS1; PDPN;
SPARC; COL4A2; COL4A1; FGF10; TDGF1

13 GO:0006979 response to oxidative
stress

TAT; PDGFRA; BMP4; ETV5; TRAP1; PRDX6; IDH1; PARP1; AQP8;
PRDX1; CRYGD

14 GO:0009725 response to hormone PRKCI; GJA1; PDGFRA; BMP4; MFGE8; TAT; PLOD2; SPP1; IDH1

15 GO:0030198 extracellular matrix orga-
nization

PDGFRA; BMP4; JAM2; FN1; PLOD2; SPARC; SPP1; COL4A2; COL4A1;
SERPINH1; DPP4
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S3 Table continued. Deng et al (2014) Cluster 6 (orange) top GO annotations.

GO ID GO Term Top Driving Genes
1 GO:0065010 extracellular membrane-

bounded organelle
MYH10; SLC2A3; GM2A; TSPAN8; ACTG1; SDC4; TINAGL1; CRYAB; MSN;
FABP3; PDZK1IP1; PRSS8; S100A11; DAB2; KRT8; LCP1; UGP2

2 GO:0070062 extracellular exosome MYH10; SLC2A3; GM2A; TSPAN8; ACTG1; SDC4; TINAGL1; CRYAB; MSN;
FABP3; PDZK1IP1; PRSS8; S100A11; DAB2; KRT8; LCP1; UGP2

3 GO:0043230 extracellular organelle MYH10; SLC2A3; GM2A; TSPAN8; ACTG1; SDC4; TINAGL1; CRYAB; MSN;
FABP3; PDZK1IP1; PRSS8; S100A11

4 GO:1903561 extracellular vesicle MYH10; SLC2A3; GM2A; TSPAN8; ACTG1; SDC4; TINAGL1; CRYAB; MSN;
FABP3; PDZK1IP1; PRSS8; S100A11; DAB2; KRT8

5 GO:0031988 membrane-bounded vesi-
cle

MYH10; SLC2A3; GM2A; TSPAN8; ACTG1; TMSB4X; SDC4; TINAGL1;
CRYAB; MSN; FABP3; PDZK1IP1; PRSS8; S100A11; DAB2

6 GO:0031982 vesicle MYH10; SLC2A3; GM2A; TSPAN8; ACTG1; TMSB4X; SDC4; TINAGL1;
CRYAB; MSN; FABP3; PDZK1IP1; PRSS8; S100A11; DAB2; KRT8

7 GO:0008092 cytoskeletal protein bind-
ing

MYH10; TPM4; TMSB4X; CRYAB; MSN; TMSB10; FABP3; NDRG1; CALM1;
FMNL2; MYH9; CAP1; TPM1; CDH1

8 GO:0015629 actin cytoskeleton MYH10; CLIC4; MYH9; MYL12B; WDR1; CNN2; ARPC2; AHNAK; ACTN4;
CRYAB; CAP1; TPM1; DSTN; ARPC5; TPM4

9 GO:0003779 actin binding MYH10; TPM4; WDR1; CNN2; FMNL2; ARPC2; MYH9; CAP1; TPM1

10 GO:0048468 cell development MYH10; CAPG; ACTG1; WDR1; CNN2; FMNL2; MYH9; ACTN4; SDC4;
CAP1; TPM1; DSTN

11 GO:0030036 actin cytoskeleton organi-
zation

MYH10; CAPG; ACTG1; WDR1; CNN2; FMNL2; MYH9; ACTN4; SDC4;
CAP1; TPM1

12 GO:0032432 actin filament bundle MYH10; TPM4; MYL12B; CNN2; MYH9; CRYAB; TPM1; ACTN4; LCP1

13 GO:0005912 adherens junction TJP2; MYH9; ACTG1; CNN2; ARPC2; AHNAK; ACTN4; SDC4

14 GO:0070161 anchoring junction TJP2; MYH9; ACTG1; CNN2; ARPC2; AHNAK; ACTN4; SDC4

15 GO:0005925 focal adhesion MYH9; ACTG1; CNN2; ARPC2; AHNAK; ACTN4; SDC4; CAP1; ARPC5
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S4 Table. Cluster Annotation of Deng data analysis using 48 genes with top driving gene
summaries.

Cluster Top 5 Driving
Genes

Top significant GO terms (function)[q-value]

Green Actb GO:0048568 (embryonic organ development)[9e-08], GO:0048468 (cell
development)[4e-07], GO:0001890 (placenta development)[1e-06], GO:0051094 (posi-
tive regulation of developmental process)[1e-06], GO:0030097 (hemopoiesis)[1e-05]

Purple Pecam1, Esrrb,
Fn1, Pdgfra,
Sox2

GO:0048864 (stem cell development)[4e-12], GO:0048863 (stem cell
differentiation)[2e-11], GO:0009893 (positive regulation of metabolic process)[7e-10],
GO:0009653 ( anatomical structure morphogenesis)[4e-08]

Orange Dppa1, Gata3,
Id2, Dab2, Lcp1

GO:0061061 (muscle structure development)[2e-13], GO:0060537 (muscle tissue
development)[2e-12], GO:0048514 (blood vessel morphogenesis)[8e-12], GO:0007275
(multocellular orgasnimal development)
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