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Abstract 

Unique Molecular Identifiers (UMIs) are random oligonucleotide barcodes that are increasingly used 

in high-throughout sequencing experiments. Through a UMI, identical copies arising from distinct 

molecules can be distinguished from those arising through PCR amplification of the same molecule. 

However, bioinformatic methods to leverage the information from UMIs have yet to be formalised. 

In particular, sequencing errors in the UMI sequence are often ignored, or else resolved in an ad-hoc 

manner. We show that errors in the UMI sequence are common and introduce network-based 

methods to account for these errors when identifying PCR duplicates. Using these methods, we 

demonstrate improved quantification accuracy both under simulated conditions and in real iCLIP and 

single cell RNA-Seq datasets. Reproducibility between iCLIP replicates and single cell RNA-Seq 

clustering are both improved using our proposed network-based method, demonstrating the value 

of properly accounting for errors in UMIs. These methods are implemented in the open source UMI-

tools software package (https://github.com/CGATOxford/UMI-tools).  
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Background 

High throughput sequencing technologies yield vast numbers of short sequences (reads) from a pool 

of DNA fragments. Over the last ten years a wide variety of sequencing applications have been 

developed which estimate the abundance of a particular DNA fragment by the number of reads 

obtained in a sequencing experiment (read counting) and then compare these abundances across 

biological conditions. Perhaps the most widely used read counting approach is RNA-seq, which seeks 

to compare the number of copies of each transcript in different cell types or conditions. Prior to 

sequencing, a PCR amplification step is normally performed to ensure sufficient DNA for sequencing. 

Biases in the PCR amplification step lead to particular sequences becoming overrepresented in the 

final library (Aird et al. 2011). In order to prevent this bias propagating to the quantification 

estimates, it is common to remove reads or read pairs with the same alignment coordinates as they 

are assumed to arise through PCR amplification of the same molecule (Sims et al. 2014). This is 

appropriate where sequencing depth is low and thus the probability of two independent fragments 

having the same genomic coordinates is low, as with paired-end whole genome DNA-seq from a 

large genome. However, the probability of generating independent fragments mapping to the same 

genomic coordinates increases as the distribution of the alignment coordinates deviates from a 

random sampling across the genome and/or the sequencing depth increases. For example, in 

RNA-seq, highly expressed transcripts are more likely to generate multiple fragments with exactly 

the same genomic coordinates. The problem of PCR duplicates is more acute when greater numbers 

of PCR cycles are required to increase the library concentration, as in single cell RNA-seq, or when 

the alignment coordinates are limited to a few distinct loci, as in individual-nucleotide resolution 

Cross-Linking and ImmunoPrecipitation (iCLIP). To resolve this issue, unique molecular identifiers 

(UMIs) are increasingly employed to identify PCR duplicates (Kivioja et al. 2012; Islam et al. 2014). By 

incorporating a short random sequence into the same location in each fragment during library 

preparation, but prior to PCR amplification, it is possible to identify true PCR duplicates as they have 
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both identical alignment coordinates and identical UMI sequences (Figure 1a). In addition to their 

use in single cell RNA-seq and iCLIP (König et al. 2010), UMIs may be applied to almost any 

sequencing method where confident identification of PCR duplicates by alignment coordinates alone 

is not possible and/or an accurate quantification is required, including ChIP-exo (He et al. 2015), 

DNA-seq karyotyping (Karlsson et al. 2015) and antibody repertoire sequencing (Vollmers et al. 

2013).  

Accurate quantification with UMIs is predicated on a one-to-one relationship between the number 

of unique UMI barcodes at a given genomic locus and the number of unique fragments which have 

been sequenced. However, errors within the UMI sequence, which may originate either from errors 

in base calling during sequencing, or polymerase replication errors during PCR, create additional 

artefactual UMIs. Herein, we will refer to these errors as UMI errors. The issue of UMI errors has 

been considered in previous analyses (Macosko et al. 2015; Bose et al. 2015; Yaari & Kleinstein 2015; 

Islam et al. 2014), however their impact on quantification accuracy has not previously been 

demonstrated and there is no consistency in the approaches taken to resolve these errors. For 

example, Islam et al (2014) removed all UMIs where the counts were below 1 % of the mean counts 

of all other non-zero UMIs at the genomic locus, whilst Bose et al (2015) merged together all UMIs 

within a hamming distance of two or less. We therefore set out to demonstrate the need to account 

for UMI errors, to compare different methods for resolving UMI errors and to formalise an approach 

for removing PCR duplicates with UMIs. 
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Results 

We reasoned that UMI errors create groups of similar UMIs at a given genomic locus. To confirm 

this, we calculated the average number of bases different (edit distance) between UMIs at a given 

genomic locus and compared the distribution of average edit distances to a null distribution 

generated by random sampling (see methods). Using iCLIP data (Müller-McNicoll et al. 2016), we 

confirmed that the UMIs are more similar to one another than expected, strongly suggesting PCR or 

sequencing errors are generating artefactual UMIs (see methods; Figure 1b, see Figure S1 for other 

datasets). Furthermore, the enrichment of low edit distances is well correlated with the degree of 

PCR duplication (Figure 1c). We then constructed networks between UMIs at the same genomic 

locus where nodes represent UMIs and edges connect UMI separated by a single nucleotide 

difference. Whilst most of the networks contained just a single node, we observed that 3% to 36% of 

networks contained two or more nodes, of which 4% to 20% did not contain a single central node, 

and thus could not be naively resolved (Figure 1d). This indicates that the majority of networks are 

likely to originate from a single unique molecule prior to PCR amplification, but a minority of 

networks may originate from a combination of errors during PCR and sequencing or may originate 

from multiple unique molecules, which by chance have similar UMIs.  

 

Methods to identify unique molecules 

Many previous studies assume each UMI at a given genomic locus represents a different unique 

molecule (Collins et al. 2015; Shiroguchi et al. 2012; Soumillon et al. 2014). We refer to this method 

as “unique”. Islam et al (2014) previously identified the issue of sequencing errors and proposed 

removing UMIs whose counts fall below a threshold of 1% of the mean of all non-zero UMIs at the 

locus, a method we refer to as “percentile”. 
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We have developed three methods to identify the number of unique molecules at a given locus by 

resolving UMI networks formed by linking UMIs separated by a single edit distance (Figure 1e). In all 

cases, the aim is to reduce the network down to a representative UMI(s) that accounts for the 

network; the exact sequence of the original UMI(s) is not important for the purposes of 

quantification. The simplest method we examined was to merge all UMIs within the network, 

retaining only the UMI with the highest counts. For this method, the number of networks formed at 

a given locus is equivalent to the estimated number of unique molecules. This is similar to the 

method employed by Bose et al (2015) where UMIs with an edit distance of 2 or less were 

considered to originate from an identical molecule. We refer to this method as “cluster”. This 

method is expected to underestimate the number of unique molecules, especially for complex 

networks. We therefore developed the “adjacency” method which attempts to resolve a complex 

network by using node counts: The most abundant node and all nodes connected to it are removed 

from the network. If this does not account for all the nodes in the network, the next most abundant 

node and its neighbours are also removed. This is repeated until all nodes in the network are 

accounted for. In the method, the total number of steps to resolve the network(s) formed at a given 

locus is equivalent to the number of estimated unique molecules. This method allows a complex 

network to originate from more than one UMI, although UMIs with an edit distance of two will 

always be removed in separate steps. The excess of UMIs pairs with an edit distance of two observed 

in the iCLIP datasets indicate that some of these UMIs are artefactual. Reasoning that counts for 

UMIs generated by a single sequencing error should be higher than those generated by two errors 

and UMIs resulting from errors during the PCR amplification stage should have higher counts than 

UMIs resulting from sequencing errors, we developed a final method, “directional adjacency”. We 

generated directional adjacency networks from the UMIs at a single locus, in which directional edges 

connect nodes only when na ≥ 2nb - 1, where na and nb are the counts of node a and node b. The 

entire directional network is then considered to have originated from the node with the highest 

counts. This method allows UMIs separated by edit distances greater than one to be merged as long 
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as the intermediate UMI is also observed with each sequential base change from the most abundant 

UMI the counts decrease. For this method, the number of directional networks formed is equivalent 

to the estimated number of unique molecules. 

 

 

Figure 1. Modelling errors in UMIs 

A. Schematic representation of how UMIs are used to count unique molecules. Fragmented DNA is 

labelled with a random UMI sequence (short oligonucleotide; represented as coloured blocks). 

Following PCR amplification, sequencing and bioinformatics steps, the sequence read alignment 
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coordinates and UMI sequences are used to identify sequence reads originating from the same initial 

DNA fragment (PCR duplicates) and so count the unique molecules. B. Average edit distances 

between UMIs with the same alignment coordinates. Genomic positions with a single UMI are not 

shown. Null = Null expectation from random sampling of UMIs. C. Correlation between duplication 

rate and enrichment of positions with an average edit distance of 1 for iCLIP data. D. Topologies of 

networks formed by joining reads with the same genomic coordinates and UMIs a single edit 

distance apart. Single hub = One node connected to all other nodes. Complex = No node connected 

to all other nodes. E. Methods for estimating unique molecules from UMI sequences and counts at a 

single locus. Where the method uses the UMI counts, these are shown. Red bases are inferred to be 

sequencing errors, blue bases inferred to be PCR errors. The inferred number of unique molecules 

for each method is shown in parentheses.  

 

Comparing methods with simulated data 

 To compare the accuracy of the proposed methods we simulated the process of UMI amplification 

and sequencing and varied the simulation parameters (see methods). As the number of initial UMIs 

are increased, all methods show worse accuracy, with the greatest loss in accuracy for the unique 

and percentile methods (Figure 2a). As expected, the network-based methods tend towards 

underestimation in more extreme conditions, whereas the unique and percentile methods tend 

towards overestimation. A similar pattern is observed with increased UMI length and sequencing 

depth, with a linear relationship between the sequencing depth and the degree of overestimation 

for the unique and percentile methods (Figure 2b, c). We expect this is because increasing either 

parameter leads to a linear increase in the total amount of UMI sequence which may harbour errors. 

In contrast, the estimates from the network-based methods remain relatively stable as the UMI 

length and sequencing depth are increased. Increasing in number of PCR cycles and sequencing error 

rates leads to exponential overestimation for unique and percentile methods (Figure 2d,e), with a 
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10-fold overestimation observed with 12 PCR cycles. Again, the network-based methods remain 

accurate at higher numbers of PCR cycles; the directional adjacency estimates were within 5% of the 

ground truth even with 12 PCR cycles. 

We also compared the variability in the estimates by computing the Coefficient of Variation (CV; 

standard deviation/mean) across the 10,000 simulations for each set of parameters. Using this, we 

observed that, although the average estimates of adjacency and directional adjacency methods are 

very similar, directional adjacency often leads to less variable estimates. For example, with a 

sequencing depth of 40% , the average estimate from the two methods was identical, however, the 

adjacency CV was 20% higher (0.055 vs. 0.046) 

We observed little or no difference between the percentile and unique methods under the 

conditions tested. Increasing the sequencing depth to 50% and the number of PCR cycles to >12, we 

were able to see a slight improvement in accuracy of the percentile method relative to the unique 

method (Figure S2c), however, the gains were marginal compared to the difference with the 

directional adjacency method. 

In summary, under simulation conditions, the directional adjacency methods outperforms all other 

methods, while the adjacency and cluster methods performs equally well under simulation 

conditions that are expected to reflect a well-designed experiment with a reasonable number of PCR 

cycles. 
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Figure 2. Comparison of methods with simulated data 

In each panel, all but one of the simulation parameters are held constant, with the remaining 

parameter varied as shown on the x-axis. A. Initial UMIs. B. UMI length. C. Library sequencing depth. 

D. PCR cycles. E. Sequencing error rate. Left plots show the difference between the ground truth and 

estimated counts. Ground truth = 10 UMIs except in A, where ground truth = Initial UMIs as 

indicated on x-axis. Right plots show the Coefficient of Variation (standard deviation / mean). The 

dashed red line represents the value used for this parameter in all other simulations. The dashed 

grey line represents perfect accuracy.  
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Implementation 

To implement our methods within the framework of removing PCR duplicates from BAM-formatted 

alignment files, we developed UMI-tools, with two commands, extract and dedup. extract takes the 

UMI from the read sequence contained in a fastq-formatted read sequence and appends it to the 

read identifier so it is retained in the downstream alignment. dedup takes an alignment in a BAM-

formatted file, identifies reads with the same genomic coordinates as potential PCR duplicates, and 

removes PCR duplicates using the UMI sequence according to the method chosen. extract expects 

the UMIs to be contained at the same location in each read. When this is not the case, e.g with 

sequencing techniques such as inDrop-Seq (Klein et al. 2015), the user will need to extract the UMI 

sequence from the read sequence and append it to the read identifier.  Time requirements for 

running dedup depend on number of input reads, length of UMI and level of duplication. Memory 

requirements depend on the number of output reads. On a desktop with a Xeon E3-1246 CPU, it 

takes ~220 seconds and ~100Mb RAM to process a 32 million read single-end input file with 5bp 

UMIs to ~700,000 unique alignments. Inputs with longer UMIs may take significantly longer.  

 

Comparing methods with iCLIP data 

We next sought to examine the effect of these methods on real data, starting with the previously 

mentioned iCLIP data , which includes 3-6 replicates for 9 proteins (Müller-McNicoll et al. 2016). In 

samples from replicate 1 of that experiment, the distribution of the average edit distance between 

UMIs present at each genomic locus showed enrichment for a single edit distance relative to a null 

distribution from random sampling (Figure 3a). For all samples, application of the directional 

adjacency method resulted in an edit-distance distribution resembling the null, whereas using the 

percentile method made little or no difference. The same was also true of other replicates of this 
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dataset or other datasets (Figure S2).  In some cases a residual enrichment of positions with an 

average edit distance of 2 was observed, but this was also reduced in most cases. 

We reasoned that if the tags eliminated were artefactual, while sites that had multiple genuine 

cross-links remained intact, such sites would be more likely to be cross-linked in other replicates of 

the same pull-down. To test this we turned to a previously defined measure of iCLIP reproducibility 

(König et al. 2010). Briefly, we identified in each sample the genomic sites with 2 or more tags 

mapping at that position and asked what percentage had a tag present in one or more other 

replicates for that pull-down. We limited the analysis to the first three replicates for each protein. In 

each case, genomic sites with 2 or more tags after de-duplication with the directional adjacency 

method were more reproducible than those identified after de-duplication with the unique method 

(Figure 3b), with the difference being very large in some cases (e.g. 21% vs 59% of bases 

reproducible for SRSF7 replicate 1). In contrast, the percentile method was little different from 

unique (Figure S3). 

To quantify the effect that this might have on downstream analyses, we repeated one of the 

analyses of the data conducted by the original authors. In order to measure reproducibility of their 

data, the authors measured the spearman’s rank correlation between the numbers of significant 

tags in each exon across the genome. We repeated this calculation with data processed using either 

the unique or directional adjacency method, and compared the average spearman’s correlation 

between each sample and other replicates of the same pull down. In all cases we see an 

improvement in the correlation between replicates of the same pull down when data are processed 

using the directional adjacency method instead of the unique method (Figure 3C). As expected, the 

degree of improvement for a particular sample was correlated with the enrichment of positions with 

an average edit distance of 1 (Figure S3; R2=0.4 ). Thus our method substantially improves the 

reproducibility of replicates in this iCLIP experiment.  
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Figure 3. UMI-Tools improves reproducibility between iCLIP replicates  

A.  Average edit distances between UMIs with the same alignment coordinates. Genomic positions 

with a single UMI are not shown. Null = Null expectation from random sampling of UMIs. Only the 

first replicate of the dataset is shown for each pull down B.  iCLIP reproducibility as represented by 

the percentage of positions with >2 tags also cross-linked in at least one of 2 other replicates. C. 

Spearman’s rank correlation between the numbers of significant tags in each exon  
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Comparing methods with Single Cell RNA Seq data 

Next, we applied our network based method to two differentiation single cell RNA-Seq data sets: the 

first reported use of single cell RNA barcoding sequencing (Soumillon et al. 2014), referred to here as 

SCRB-Seq, and a recently reported single cell RNA-Seq utilising droplet-barcoding (Klein et al. 2015), 

referred to here as inDrop-Seq . As before, network-based methods show a marked improvement in 

the distribution of edit distances over the percentile method and the unique method (Figure 4a). 

Improvements are generally less pronounced than observed with the iCLIP data, likely due to a lower 

maximum read depth.  

We applied hierarchical clustering to the SCRB-Seq gene expression data using the unique method 

and observed the Day 0 and Day 14 cells separately relatively well (Figure 4b). However, 7 cells 

clustered with cells of the wrong time point, reflecting either a failure to commit to differentiation or 

miss-classification event due to noise in the expression estimates. With the directional adjacency 

method this was reduced to 5 cells, suggesting that failure to account for UMI errors can lead to 

miss-classification in single cell RNA-Seq. Applying hierarchical clustering to the the inDrop-Seq gene 

expression estimates, we observed that 44/2717(1.6%) of cells clustered with cells from another 

timepoint when using the unique method. Biological variation in the progression of differentiation 

may explain Day 2, Day4 and Day 7 miss-classification events. However, 19/44 events involved 

undifferentiated mES cells, suggesting these miss-classification events were the result of low-

accuracy quantification estimates (Figure 4c). With the application of the directional adjacency 

method, the rate of miss-classification was reduced to 0.9% and, strikingly, all the mES cells were 

correctly classified. These results indicate that application of the directional adjacency method 

improves the quantification estimates and can improve classification by hierarchical clustering.   

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 10, 2016. ; https://doi.org/10.1101/051755doi: bioRxiv preprint 

https://doi.org/10.1101/051755
http://creativecommons.org/licenses/by/4.0/


 

Figure 4. Single Cell RNA-Seq 

A. Average edit distances between UMIs with the same alignment coordinates following removal of 

PCR duplicates using the methods indicated on the x-axis. Genomic positions with a single UMI are 

not shown. Null: Null expectation from random sampling of UMIs. B & C. Hierachical clustering 

based on the gene expression estimates obtained using unique and directional adjacency. Colour 

bars represent differentiation stage. B. SCRB-Seq. C. inDrop-DSeq. Red arrow indicates mES Cells 

clustering with Day 4 cells. 
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Discussion 

UMIs can be utilised across a broad range of sequencing techniques, however bioinformatic 

methods to leverage the information from UMIs have yet to be standardised. In particular, others 

have noted the problem of UMI errors, but the solutions applied are varied (Bose et al. 2015; Islam 

et al. 2014) . The adjacency and directional-adjacency methods we set out here are, to our 

knowledge, novel approaches to remove PCR duplicates when using UMIs. Comparing these 

methods to previous methods with simulated data, we observed that our methods are superior at 

estimating the true number of unique molecules. Of the three network-based methods, directional 

adjacency was the most robust over the simulation conditions and should be preferred. We note 

that the performance of all network-based methods will decrease as the number of aligned reads at 

a genomic locus approaches the number of possible UMIs, however this is an intrinsic issue with 

UMIs and not one that can be solved computationally post-sequencing. For this reason, we 

recommend all experiments to use UMIs of at least 8 bp in length and to use longer UMIs for higher 

sequencing depth experiments. The simulations also indicated that very long UMIs actually decrease 

the accuracy of quantification when not accounting for UMI errors, since the UMIs are more likely to 

accumulate errors. For experiments utilising long UMIs, network-based methods therefore show an 

even greater performance relative to the unique method. The simulations provide an insight into the 

impact on quantification accuracy and indicate that application of an error-aware method is even 

more important with higher sequencing depth. This is perhaps most pertinent for single cell 

RNA-Seq, as cost decreases continue to drive higher sequencing depths.  

The analysis of iCLIP and single cell RNA-seq data sets established that UMI errors were very likely to 

be present in all of the data sets tested. We observed an improved distribution of edit distances for 

all sample when using network-based methods to detect PCR duplicates, although theoretical 

reasoning and empirical evidence suggests that the extent of the errors depends on the quality of 

the sequencing base calls and the sequencing depth, as confirmed by the simulations.  
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Modelling UMI errors yielded improvements in single cell RNA-seq sample clustering, demonstrating 

the value of considering UMI errors. Since iCLIP aims to identify specific bases bound by RNA binding 

proteins, datasets have a high level of PCR duplication. The effects of UMI errors are therefore 

particularly strong, creating the impression of reproducible cross-linking sites within a replicate but 

not between replicates. For example only 21% of positions with two or more tags in SRSF7 replicate 

1 had any tags in replicates 2 or 3 when naive de-duplication was used, but this increased to 59% 

when the Directional adjacency method was used (Figure 3b). Application of the network based 

methods increases the correlation between replicates in all cases, with larger differences in samples 

where PCR duplication was higher. From the results of the simulation and real data analyses, we 

recommend the use of an error-aware method to identify PCR duplicates whenever UMIs are used. 

We provide our methods within the open-source UMI-tools software 

(https://github.com/CGATOxford/UMI-tools), which can easily be integrated into existing pipelines 

for analysis of sequencing techniques utilising UMIs.  
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Methods 

Simulation  

To simulate the effects of errors on UMI counts, an initial number of UMIs were generated at 

random, with a uniform random probability of amplification [0.9-1.0] assigned to each initial UMI. To 

simulate a PCR cycle, each UMI was selected in turn and duplicated according to its probability of 

amplification. Polymerase errors were also added randomly at this stage and any resulting new UMI 

sequences assigned new probabilities of amplification. Following multiple PCR cycles, a random 

proportion of UMIs were sampled to model the sampling of reads during sequencing (“sequencing 

depth”) and sequencing errors were introduced at a given probability, with all errors (e.g A -> T) 

being equally likely. The number of true UMIs within the sampled UMIs was then estimated from the 

final pool of UMIs using each method. To test the performance of the methods under a variety of 

simulation parameters, each parameter was varied in turn. The following values are the range of the 

parameter values tested with the value used for all other simulations in parentheses. Sequencing 

depth 2-100% (10%), number of initial UMIs 1-50 (10), UMI length 4-12 (6), DNA polymerase error 

rate 1 x 10-3 – 1 x 10-7 (1 x 10-5), sequencing error rate 1 x 10-2 -1 x 10-5 (1 x 10-2), number of PCR 

cycles 1-12 (5), minimum amplification probability 0.5-1 (0.9).  

 

Real data 

Re-analysis of the iCLIP and Single Cell RNA-Seq data was performed with in-house pipelines 

following the methods described in the original publication with exceptions as highlighted below. 

Pipelines are available at https://github.com/CGATOxford/UMI-tools_pipelines. 

 

iCLIP 
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Raw sequence was obtained from the European Nucleotide Archive (accessions SRP059277 and 

ERR039854) (Müller-McNicoll et al. 2016; Tollervey et al. 2011). Raw sequences were processed to 

move the UMI sequences to the read name using 'umi_tools extract'. Sample barcodes were verified 

and removed, and adaptor sequence removed from the 3' end of reads using the reaper tool from 

the Kraken package (version 15-065)  (Davis et al. 2013) with parameters: `-3p-head-to-tail 2 -3p-

prefix 6/2/1`. Reads were mapped to the same genome as the original publication (mm9 for SRSF 

dataset, hg19 for the TDP43 dataset) using Bowtie version v1.1.2 (Langmead et al. 2009) with the 

same parameters as the original publications (-v 2 -m 10 -a).  

Mapped reads were deduplicated using 'umi_tools dedup' using each of the possible methods and 

edit_distance distribution produced using the '--output-stats' option. For the 'cluster' method only 

the '--further-stats' option was used to output statistics on the distribution of network topology 

types.  

Significant bases were produced by comparing tag count height at each position compared to 

randomised profiles (König et al. 2010), and bases with FDR<0.05 retained.  

Coverage over exons was calculated by collapsing Ensembl 67 transcripts. Where exons overlapped, 

they were restricted to their intersection and the number of reads mapped to significant bases 

counted for each exon. Exons that contained no tags in any sample were removed (König et al. 

2010). Spearman's rho between all pairwise combinations of replicates of pulldowns for the same 

protein were calculated and averaged for each replicate. 

Reproducibility between replicates was calculated as per König et al. 2010.  Bases with a depth 

greater than 2 were identified in the sample in question, and then the fraction of these bases that 

had one or more tags in other replicates was calculated. 

 

Single Cell RNA-Seq  
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For both datasets, raw data was downloaded from Gene Expression Omnibus 

(http://www.ncbi.nlm.nih.gov/geo). For The SCRB-Seq data (GSE53638) (Soumillon et al. 2014), a 

single Day 0 (SRR1058003) and Day 14 (SRR1058023) sample were obtained. For the inDrop data 

(GSE65525) (Klein et al. 2015), the mouse ES cells sample 1 (SRR1784310), mouse ES cells LIF-, 2 days 

(SRR1784313), mouse ES cells LIF-, 4 days (SRR1784314) and mouse ES cells LIF-, 7 days 

(SRR1784315) samples were obtained. Fastq files were extracted using SRA toolkit. The sequence 

read filtering, preparation and alignment differed for the two data sets. In both cases, one of the 

paired end reads contained adapter barcodes and UMI and the other read pair contained sequence 

for alignment. In addition, with the inDrop data, the position of the UMI within the read varied 

depending on the length of the cell barcode. For this reason the UMIs had to be extracted from the 

reads with bespoke code rather than using umi_tools extract. 

For SCRB-Seq samples, the UMI was extracted from read 2 and appended onto the read identifier of 

read 1 to generate a single-end fastq. Reads were filtered out if any of the following conditions was 

not met: Phred sequence quality of all cell barcode bases >=10 and all UMI bases >=30 and cell 

barcode matched expected cell barcodes. A reference transcriptome was built comprising all human 

protein-coding genes (Ensembl v75, hg19) and the ERCC spike-ins. Since expression quantification 

was being performed at the gene level, overlapping transcripts from the same gene were merged so 

that each gene contained a single transcript covering all exons from all transcripts. Reads were 

aligned to the reference transcriptome using BWA aln (Li & Durbin 2009) with the following 

parameters: “-l 24 –k 2” to set seed length to 24 bp, and mismatches allowed in the seed to 2.  

For inDrop samples, the cell barcode and UMI were extracted from read 1 and 2 and were written 

out to a single end fastq file with the cell barcode incorporated into the file name and the UMI 

appended to the read identifier. Only reads containing the adapter sequence (allowing 2 

mismatches) were retained. For each sample, only reads containing one of the n most abundant cell 

barcodes were retained, where n was the number of cells in a given sample. The resulting single end 
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reads were filtered using trimmomatic v0.32 (Bolger et al. 2014) with the following options: 

“LEADING:28 SLIDINGWINDOW:4:20 MINLEN:19” to remove bases with Phred quality scores below 

28 from the 5’ end, scan the reads in 4 bp sliding windows and trim when average quality score falls 

below 20, and retain all reads at least 19bp in length following trimming. Our alignment procedure is 

a deviation to the method used by Klein et al (2015) which involved alignment of reads to a 

reference transcriptome containing all transcripts (e.g not collapsed into one gene model), reporting 

up to 200 alignments per read, and dealing with multi-mapping alignments in a downstream step. As 

this method was not compatible with our de-duplication method we took a simpler approach. A 

reference transcriptome was built comprising all mouse protein-coding genes (Ensembl v78, mm10). 

Since expression quantification was being performed at the gene level, overlapping transcripts from 

the same gene were merged so that each gene contained a single transcript covering all exons from 

all transcripts. Reads were aligned to the reference transcriptome with Bowtie v1.1.2(Langmead et 

al. 2009) with the following options: “-n1 -l 15 -M 1 --best --strata” to allow one mismatch, set seed 

length to 15 bp and report only one alignment where multiple “best” alignments were found. The 

seed length and mismatch parameters were the same as the Klein et al (2015) alignment method. 

Following alignment, de-duplication was performed with UMI-tools dedup with unique, percentile 

and directional-adjacency used in turn. Both data sets were generated with sequencing methods 

which generate reads with different alignment coordinates from the same initial DNA fragment 

(SCRB-Seq, CEL-Seq). De-duplication was therefore performed with the “--per-contig” option so that 

the UMI and the contig (in this case, gene) rather than the exact alignment coordinates were to 

identify duplicate reads. The “--stats-output” and “--further-stats” options were used to generate 

summary statistics for the alignment files pre and post de-duplication. Gene expression was 

quantified by counting the number of remaining reads per gene following de-duplication 

 

Exploratory gene expression analysis 
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PCA was performed in R  (R Core Team 2015) using the prcomp function. Hierarchical clustering was 

performed in R using the hclust function and heatmaps generated using the heatmap.2 function 

from the gplots package. Clustering was performed using 1 - spearman’s correlation coefficient as 

the distance measure and “ward.D2” as the clustering method. Since many genes show very low 

expression in the SCRB-Seq data, the top 100 most highly expressed genes were selected for 

clustering and top 2000 genes for PCA. 
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Data access 

UMI-tools is available from pypy (package: umi_tools) and conda (channel: 

https://conda.anaconda.org/toms, package:  umi_tools) or github 

(https://github.com/CGATOxford/UMI-tools). Analyses conducted in this manuscript used version 

0.0.8 - archived on zenodo as https://zenodo.org/record/50684.  Analyses were performed using 

automated python pipelines. iCLIP specific analyses were completed using the iCLIPlib python library 

(manuscript in preparation). Figures were created by python pipelines or in Jupyter notebooks using 

the ggplot2 package (Wickham 2009) unless otherwise noted. All pipelines, notebooks and other 

code, along with configuration files used are available from the github repository 

(https://github.com/CGATOxford/UMI-tools_pipelines). 
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Supplementary Figures 
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Supplementary Figure 1. Edit distances for all iCLIP replicates 

Average edit distances between UMIs with the same alignment coordinates. Genomic positions with 

a single UMI are not shown. Null = Null expectation from random sampling of UMIs. A Further 

replicates from the SRSF dataset showing that effects vary between replicates, but are not specific 

the replicate 1. B Results from a TDP43 iCLIP dataset showing effects are not limited to a single 

experiment (Tollervey et al., 2011) 
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Supplementary Figure 2.  Comparison of methods with simulated data 

In each panel, all but one of the simulation parameters are held constant, with the remaining 

parameter varied as shown on the x-axis. Left plot shows the Coefficient of Variation (standard 

deviation / mean) , Right plot shows the difference between ground truth (10 molecules) and 

estimated counts. The dashed red line represents the value used for this parameter in all other 

simulations. The dashed grey line represents perfect accuracy. In the bottom panel, the sequencing 

depth has been increased to 50% to demonstrate the slightly increased accuracy for percentile when 

sequencing depth and number of PCR cycles are both high.  
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Supplementary Figure 3. UMI-Tools improves reproducibility between iCLIP replicates  

A.  iCLIP reproducibility as represented by the percentage of positions with >2 tags also cross-linked 

in at least one of 2 other replicates. No improvement is observed with the percentile method.  B. 

Correlation between enrichment for sites with an average edit distance of 1 following unique de-

deduplication and the improvement in Spearman’s ρ following directional adjacency de-duplication. 
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