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Abstract 
We describe a new, highly accurate statistical method that computes the abundance of 

species in DNA sequences from a metagenomics sample. Bracken (Bayesian 

Reestimation of Abundance after Classification with KrakEN) uses the taxonomy labels 

assigned by Kraken, a highly accurate metagenomics classification algorithm, to estimate 

the number of reads originating from each species present in a sample. Kraken classifies 

reads to the best matching location in the taxonomic tree, but does not estimate 

abundances of species. We use the Kraken database itself to derive probabilities that 

describe how much sequence from each genome is shared with other genomes in the 

database, and combine this information with the assignments for a particular sample to 

estimate abundance at the species level, the genus level, or above. Combined with the 

Kraken classifier, Bracken produces accurate species- and genus-level abundance 

estimates even when a sample contains multiple near-identical species. 
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Background 
Metagenomics is a rapidly growing field of study, driven in part by our ability to generate 

enormous amounts of DNA sequence rapidly and inexpensively. Since the human 

genome was first published in 2001 [1, 2], sequencing technology has become 

approximately one million times faster and cheaper. This dramatic improvement in 

technology has made it possible for individual labs to generate as much sequence data as 

the entire Human Genome Project in just a few days.  

 

Along with the technological advances, the number of finished and draft genomes has 

also grown exponentially over the past decade. There are over 4,000 complete bacterial 

genomes, 20,000 draft bacterial genomes, and 80,000 full or partial virus genomes in the 
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public GenBank archive [3]. This rich resource of sequenced genomes now makes it 

possible to sequence uncultured, unprocessed microbial DNA from almost any 

environment, ranging from soil to the deep ocean to the human body, and use 

computational sequence comparisons to identify many of the formerly hidden species in 

these environments. 

 

When it was first published in 2014, the Kraken metagenomics classifier represented a 

major enhancement in the speed with which large metagenomics sequence data could be 

processed [4], running over 900 times faster than MegaBlast [5], the closest competitor at 

the time. Kraken’s success and accuracy rely on its use of a very large, efficient index of 

short sequences of length k, which it builds into a specialized database. If k is chosen 

appropriately, then most sequences of length k in the database will be unique to a single 

species, and many will also be unique to a particular strain or genome. Larger values of k 

will yield a database in which even more of each genome is uniquely covered by k-mers; 

obviously, though, k should not be longer than the length of a sequencing read, and 

metagenomics projects currently generate reads as short as 75-100 base pairs (bp). 

Furthermore, k-mers must be error-free in order for Kraken to identify them, because it 

relies on exact matches to its database. Longer k-mers are more likely to contain errors, 

meaning that more reads will be left unclassified if k is too long. Smaller k-mers, in 

contrast, will yield higher sensitivity because the minimum match length is shorter. The 

default value of k=31 used by Kraken represents a good tradeoff between sensitivity and 

precision for current metagenomics projects. 

  

When used to identify the taxonomic label of metagenomics sequences, the Kraken 

system for classification of metagenomics sequences is extremely fast and accurate [4]. 

When classifying raw sequence reads, though, many reads correspond to regions of two 

or more genomes that are identical.  (The number of such ambiguous reads decreases as 

reads get longer.) Kraken solves this problem by assigning labels corresponding to the 

lowest common ancestor (LCA) of all species that share the sequence; e.g., a read might 

be assigned to the genus Mycobacterium, rather than to a species or a strain, because two 

or more species of Mycobacterium contain identical sequences that match the read. 

 

Ambiguity among microbial species and strains 
As the database of bacterial genomes has grown, an increasing number of genomes share 

large portions of their sequence with other genomes. In many cases, these genomes are 

nearly identical; indeed, sequencing has revealed to scientists that many formerly distinct 

species and genuses are far closer than were known prior to sequencing. Many species 

have been renamed as a result, in a process that is continual and ongoing, but many other 

species have retained their old names, often for historical or other reasons. 

 

For example, the species Mycobacterium bovis is over 99.95% identical to 

Mycobacterium tuberculosis [6], and many cases of human tuberculosis are caused by M. 

bovis (which also infects cows) rather than M. tuberculosis [7]. Their high sequence 

identity indicates that they should be considered as two strains of a single species, but 

they retain different species names. As a compromise, taxonomists have created the 

category Mycobacterium tuberculosis complex [8] to represent a collection of taxa that 
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now includes more than 100 strains of five different species. This category sits above the 

species level but below the genus level in the current microbial taxonomy, but it can best 

be described as a species. 

 

Other examples are numerous and still growing. The three species Bacillus anthracis (the 

causative agent of anthrax), Bacillus cereus, and Bacillus thuringiensis are well over 99% 

identical and should all be designated as a single species [9], although their names have 

not been changed despite their near-identity revealed by sequencing. As a compromise, 

taxonomists created the category Bacillus cereus group, between the level of species and 

genus, to include these three species and at least five others [10], all of which are 

extremely similar to one another. In some cases, two organisms that should be called the 

same species may even have different genus names. For example, Escherichia coli and 

Shigella flexneri are classified in different genera, but we know from sequence analysis 

that they represent the same species [11]. 

 

Failure to recognize the mutability of the bacterial taxonomy can lead to erroneous 

conclusions about the performance of metagenomic classifiers. For example, one recent 

study [12] created a mock community of 11 species, one of which was Anabaena 

variabilis ATCC 29413, not realizing that this genome had been renamed and was 

synonymous with species in the genus Nostoc [13]. When Anabaena was removed from 

the database, Kraken correctly identified the reads as Nostoc, but Peabody et al. 

erroneously considered all these reads to be misclassified. 

 

Classification versus abundance estimation 
Kraken assigns a taxonomy label to every read in a metagenomics sample using a 

custom-built database that may contain any species the user chooses. Among the current 

set of finished bacterial and archaeal genomes, hundreds of species can be found for 

which large fractions of their sequence are identical to other genomes belonging to 

distinct strains, species, or even genera. The reads collected from these species cannot be 

assigned to a specific strain, and the correct behavior for a read-level classifier like 

Kraken is to assign them to a taxonomic level representing the lowest common ancestor 

(LCA) among the genomes that share the identical sequence. This implies that for some 

species, the majority of reads might be classified at a higher level of the taxonomy. 

Kraken thus leaves many reads “stranded” above the species level, meaning that the 

number of reads classified directly to a species may be far lower than the actual number 

present. 

 

Some recent studies have erroneously assumed that Kraken’s raw read assignments can 

be directly translated into species- or strain-level abundance estimates [14]. This over-

simplistic assumption is flawed, though, for the reasons explained here. Directly 

converting all read assignments to abundance estimates while ignoring reads at higher 

levels of the taxonomy will grossly underestimate some species, and create the erroneous 

impression that Kraken’s assignments themselves were incorrect. 

 

Nonetheless, metagenomics analysis often involves estimating the abundance of the 

species in a particular sample. Even if we cannot unambiguously assign each read to a 
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species, we would like to estimate how much of each species is present, either in terms of 

the number of reads or as a percentage of the sample. The purpose of the present study is 

to describe a method that combines inter-species similarity and Kraken classifications to 

produce species-level estimates for all species in the sample. 

 

Computational Methods 
Our new method, Bracken (Bayesian Reestimation of Abundance of Species and 

Sequences), estimates species abundances in metagenomics samples by probabilistically 

re-distributing reads in the taxonomic tree. Reads assigned to nodes above the species 

level are distributed down to the species nodes, while reads assigned at the strain level are 

re-distributed upward to their parent species. For example, in Figure 1 we would 

distribute reads assigned to family F and genus G1 down to species S1and S2, and reads 

assigned to strains S11 and S12 would be assigned to species S1. As we show below, 

Bracken can easily reestimate abundances at other taxonomic levels (e.g., genus or 

phylum) using the same algorithm. 

 

In order to re-assign reads classified at higher-level nodes in the taxonomy, we need to 

compute a probabilistic estimate of the number of reads that should be distributed to the 

species below that node. To illustrate using the nodes in Figure 1, we need to allocate all 

reads assigned to genus G1 to species S1 and S2 below it, and reads assigned to the 

family F would have to be allocated to species S1, S2, and S3. 

 

Reallocating reads from a genus-level node in the taxonomy to each genome below it can 

be accomplished using Bayes’ theorem, if the appropriate probabilities can be computed. 

Let P(Si) be the probability that a read is classified by Kraken as genome Si, P(Gj) be the 

probability that a read is classified by Kraken at the genus level Gj, and P(Gj | Si) be the 

probability that a read from genome Si is classified by Kraken as the parent genus Gj. 

 
Figure 1. Schematic showing a small portion of a hypothetical taxonomy of genomes. 
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Then the probability that a read classified at genus Gj belongs to the genome Si can be 

expressed as Equation 1: 

𝑃(𝑆𝑖|𝐺𝑗) =
𝑃(𝐺𝑗|𝑆𝑖)𝑃(𝑆𝑖)

𝑃(𝐺𝑗)
 (1) 

Note that because we began by assuming that a read was classified at node Gj, P(Gj) = 1. 

 

Next we consider how to compute P(Gj | Si), the probability that a read from genome Si 

will be classified by Kraken at the parent genus Gj. We estimate this probability for reads 

of length r by classifying the sequences (genomes) that we used to build the database 

using that same database, as follows. For each k-mer in the sequences, Kraken assigns it a 

taxonomy ID by a fast lookup in its database. To assign a taxonomy ID for a read of 

length r, Kraken examines all k-mer classifications in that read. For example, for k=31 

and r=75, the read will contain 45 k-mers. Our procedure examines, for each genome in 

the database, a sliding window of length r across the entire genome. 

 

To find the taxonomy ID Kraken would assign to each window, we simply find the 

deepest taxonomy node in the set of k-mers in that window. Since each k-mer in a 

database sequence is assigned to a taxonomy ID somewhere along the path from the 

genome’s taxonomy ID to the root, the highest-weighted root-to-leaf path (and thus the 

Kraken classification) corresponds to the deepest node. 

 

For each genome Si of length Li we thus generate (Li-r+1) mappings to taxonomical IDs. 

For each node Gj, we then count the number of reads from Si that are assigned to it, 

NGj(Si). P(Gj | Si) is then the proportion of reads from Si that were assigned to the genus 

node Gj; i.e., P(Gj | Si) = NGj(Si) / (Li-r+1). 

 

The final term that we must calculate from Equation 1 is P(Si), the probability that 

genome Si exists in the sample, which is computed in relation to other genomes from the 

same genus. For example, if the sample contains three genomes in the same genus, and if 

Si comprises 30% of the reads from those three genomes, then P(Si) = 0.3. We estimate 

this probability using the reads that are uniquely assigned by Kraken to genome Si, as 

follows. 

 

If we let USi be the proportion of genome Si that is unique, then  

 

𝑈𝑆𝑖
=

𝑁𝑆𝑖

𝐿𝑖 − 𝑟 + 1
 

 

(2) 

 

where NSi is the number of k-mers of length r that are uniquely assigned to genome Si by 

Kraken, and Li is the genome length. For example, if Li = 1 Mbp and only 250,000 k-

mers are unique to genome Si, then USi = 0.25.  

 

Then, using the number of reads KSi from a sample that Kraken actually assigns to Si, we 

can estimate the number of reads that likely derive from Si as: 
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𝐾̂𝑆𝑖
=

𝐾𝑆𝑖

𝑈𝑆𝑖

 

 

(3) 

 

For example, if Kraken classifies 1000 reads as genome Si and 25% of the reads from Si 

are unique, then we would estimate that 4000 reads (1000 / 0.25) from Si are contained in 

the sample.  

 

If genus Gj contains n genomes, we estimate the number of reads 𝐾̂𝑆 for each of the n 

genomes and then calculate P(Si) by: 

 

𝑃(𝑆𝑖) =
𝐾̂𝑆𝑖

∑ 𝐾̂𝑆𝑎
𝑛
𝑎=1

 

 

(4) 

Using this result in Equation 1 above allows us to compute 𝑃(𝑆𝑖|𝐺𝑗) for each genome Si.  

Each probability 𝑃(𝑆𝑖|𝐺𝑗) is then used to estimate the proportion of the reads assigned to 

genus Gj that belong to each of the genomes below it.  

 

These calculations are repeated for each taxonomic level above the genus level (family, 

class, etc.), with read distribution at each level going to all genomes classified within that 

taxonomic subtree.  

 

To compute species abundance, any genome-level (strain-level) reads are simply added 

together at the species level. In cases where only one genome exists for a given species, 

we simply add the reads distributed downward from the genus level (and above) to the 

reads already assigned by Kraken to the species level. In cases where multiple genomes 

exist for a given species, the reads distributed to each genome are combined and added to 

the Kraken-assigned species level reads. The added reads give the final species-level 

abundance estimates.  

 

This method can also estimate abundance for other taxonomic levels. In such cases, only 

higher nodes within the taxonomy tree undergo read distribution. After distributing reads 

downward, we estimate abundance for a node at the level specified by combining the 

distributed reads across all genomes within that node’s subtree.  

 

Results and Discussion  
We applied the statistical re-assignment method described here to create species-level 

abundance estimates for several metagenomics data sets. The overall procedure works as 

follows. First, we compute a set of probabilities from the Kraken database by computing, 

for every sequence of length R in every genome, where it will be assigned in the 

taxonomy (see Methods). For our experiments we set R=75 as our datasets contain 75-bp 

reads. Bracken can use these probabilities for any metagenomics data set, including data 

with different read lengths, although the estimates might be slightly improved by re-

computing with a read length that matches the experimental data. 
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Second, we run Kraken on the dataset to produce read-level taxonomic classifications. 

We then apply our abundance estimator, Bracken, which uses the numbers of reads 

assigned by Kraken at every level of the taxonomy to estimate the abundances at a single 

level (e.g., species). Note that to exclude false positives, Bracken ignores species with 

counts below a user-adjustable threshold. 

 

Experiments on a 100-genome metagenomics data set 
For our first experiments, we used a data set containing simulated Illumina reads from 

100 genomes. This data, which we call here the i100 dataset, was used previously in a 

comparison of metagenomic assembly algorithms [15]. The data contains 53.3 million 

paired reads (26.7M pairs) from 100 genomes representing 85 species. The reads have 

error profiles based on quality values found in real Illumina reads [15]. The i100 dataset 

includes several very challenging genomes for this task, including multiple strains and 

species in the genuses Bacillus and Mycobacteria, some of which are nearly identical to 

one another. The i100 data are freely available at 

http://www.bork.embl.de/~mende/simulated_data. 

 

Figure 2: Estimates of species abundance in the i100 metagenomics dataset computed 

by Kraken (blue) and Bracken (blue+orange). For this result, the Kraken database 

contained 693 genomes that included the i100 genomes. The black line shows the true 

number of reads from each species. 

. 
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The difficulty of estimating species abundance increases as the database itself contains 

more species. For example, it would clearly be easier to estimate abundances in the i100 

dataset if we used a Kraken database containing only the 100 genomes in that dataset. To 

make the problem more realistic, we built two different databases and estimated 

abundance using both. The first (“small”) database contains 693 genomes including the 

i100 genomes; this is the full database from the simulation study by Mende et al. [15]. 

The results when using the small database for classification are shown in Figure 2. For 

several species, the initial Kraken numbers (reads assigned to a particular species) are far 

too low, because many of the reads (for some genomes, a large majority) were assigned 

labels at the genus level or above. After reestimation with Bracken, these reads were 

redistributed to the species level, with the result that almost all the abundance estimates 

were 98-99% correct, as shown in the figure. 

The second (“large”) database contains all genomes used in the synthetic and spike-in 

experiments, as well as a broad background of bacterial genomes. In particular, it 

includes all complete bacterial and archaeal genomes from RefSeq as of 25 July 2014 

(archived at ftp://ftp.ncbi.nlm.nih.gov/genomes/archive/old_refseq), which total 2596 

distinct taxa, plus those i100 genomes that were not present in the RefSeq data. We also 

added the nine genomes used in our skin bacteria spike-in experiment (described below) 

 
Figure 3: Estimates of species abundance computed by Kraken (blue) and Bracken 

(blue+orange) for the i100 metagenomics data. For this result, the Kraken database 

contained 2635 distinct bacterial and archaeal taxa. The black line shows the true 

number of reads from each species. 
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resulting in a total of 2635 distinct taxa. The complete list of sequences in the large 

database can be found in Supplementary Table 1. The resulting Kraken database has a 

size of 74 gigabytes. 

 

Figure 3 shows results when using the large database to estimate abundance for the i100 

genomes. This test is much more difficult because of the large number of similar and 

near-identical genomes in the database. Many more reads are ambiguous, mapping 

identically to two or more species, which means that Kraken assigns them to the LCA of 

those species. Nonetheless, Bracken brings the estimated abundance of all species within 

4% of the true abundance, and most fall within 1%. Supplementary Tables 2A-B contains 

the detailed numbers for all species in Figures 1 and 2. 

 

 

Within the i100 genomes, the five species belonging to the Mycobacterium genus (M. 

tuberculosis, M. bovis, M. avium, M. marinum, and M. sp. JLS) pose a particular 

challenge for abundance estimation due to the similarities among their individual 

genomes. For example, Kraken classified only 9,733 M. tuberculosis reads at the species 

level, and classified the remaining 285,414 reads as either Mycobacterium (a genus) or 

M. tuberculosis complex (a taxonomic class intermediate between genus and species), as 

shown in Figure 4 and Supplementary Table 3.  For these Mycobacteria genomes, 

Bracken reallocated the reads from higher-level nodes to yield species abundance 

estimates within 4% of the true abundance. Figure 4 shows the number of reads assigned 

to each species by Kraken, the true number of reads, and the number of reads assigned to 

each species by Bracken after abundance reestimation. As shown in Supplementary Table 

3, for M. tuberculosis Bracken redistributes the reads to produce an estimate of 306,792 

reads, close to the true value of 295,147.  

 

Much of the ambiguity disappears when classifying reads at the genus level or above. 

Bracken can estimate abundances at any taxonomic level, from species to phylum. To 

illustrate, we used it to estimate the abundance of each genus in the i100 data, again using 

the large database. Figure 5 shows that Bracken’s abundance estimates for all genuses 

are 99% accurate or better. It also shows that for all but three genuses, the initial Kraken 

counts alone were equally accurate. Note that a similar plot for family, class, order, or 

phylum would show essentially perfect accuracy, as there were very few reads that were 

ambiguous at these higher levels. 

 

 
Figure 4. Number of reads within the Mycobacterium genus as assigned by Kraken 

(blue), estimated by Bracken (purple) and compared to the true read counts (green). 
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Experiments on a real metagenomics sample created from known species  

For a more realistic evaluation of the performance of Bracken, we generated new 

sequence data using a set of bacteria that are commonly found on healthy human skin. 

This mock community was assembled by combining purified DNA from nine isolates 

that were identified and sequenced during the initial phase of the Human Microbiome 

Project [16]: Acinetobacter radioresistens strain SK82, Corynebacterium amycolatum 

strain SK46, Micrococcus luteus strain SK58, Rhodococcus erythropolis strain SK121, 

Staphylococcus capitis strain SK14, Staphylococcus epidermidis strain SK135, 

Staphylococcus hominis strain SK119, Staphylococcus warneri strain SK66, and 

Propionibacterium acnes strain SK137. We used Kraken with the large database to 

classify all 78.4 million read pairs from this data set (see Methods).  

 

We used Bracken to estimate both species and genus-level abundance in the skin 

microbiome community. In the Bracken results, the nine true species comprise over 99% 

of the species-level abundance estimates.  The mixture was created with approximately 

equal amounts of each of the nine genomes, so the expectation was that each species 

would account for ~11% of the total. However, as shown in Figure 6, the estimates 

varied from 7.3% to 14.8%. Details for the exact number of reads assigned by Kraken 

and the abundance estimates by Bracken are shown in Supplementary Table 4. 

 

 

 
Figure 5. Estimates of genus abundance in the i100 metagenomics sample computed by 

Kraken (blue) and Bracken (blue+orange). For this result, Kraken used the large database 

of 2635 taxa. The black line shows the true number of reads from each genus. 
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Deviations from the expected abundance could arise from a variety of factors. The 

process of quantifying DNA and mixing in equal amounts can be influenced by pipetting 

consistency. Second, library amplification by PCR, an integral step in the Nextera library 

preparation process, can exaggerate small differences in quantities and lead to significant 

biases in abundance [17]. We examined a sample of the classified reads by hand, and 

could find no evidence that Kraken mis-classified reads from M. luteus (the smallest 

portion of the community, estimated at 7.3%) to any of the other species or genuses. The 

abundances found in this data, therefore, may correspond fairly closely with the true 

abundances. 
 

The genus-level abundance estimates computed by Bracken also correspond closely to 

the expected abundances for the six genuses included in the sample. Four of the nine 

species belong to the genus Staphylococcus, which was thus expected to comprise 44% 

(4 x 11%) of the sample. The Bracken estimate was 43.3%. Each of the other genus 

classifications has only one species present, and their abundance estimates are the same 

for both genus and species.  

  

The comparison between the Kraken classification of reads and Bracken’s reassignment 

revealed that the nine species are sufficiently distinct to allow Kraken to classify a large 

majority of reads at the species level, with very few reads being classified at higher levels 

of the taxonomy. Specifically, Kraken classified 76.4 million reads to the nine species 

included in the sample. Only 1.3 million reads out of the 78.2 million total (1.6%) were 

classified by Kraken at the genus level or above. (The remaining reads were 

unclassified.) In this case Bracken does not provide a substantial benefit, because 

reassignment of the 1.3 million reads could yield at most a 1.6% change in the estimated 

composition of the sample. 

 

 

Figure 6. Estimates of species abundance made by Bracken for the metagenomics 

community containing isolates of nine bacterial species commonly found on human 

skin. 
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Conclusion 
Estimating the abundance of species, genuses, phyla, or other taxonomic groups is a 

central step in the analysis of many metagenomics datasets. Metagenomics classifiers like 

Kraken provide a very fast and accurate way to label individual reads, and at higher 

taxonomic levels such as phyla, these assignments can be directly translated to abundance 

estimates. However, many reads cannot be unambiguously assigned to a single strain or 

species, for at least two reasons. First, many bacterial species are nearly identical, 

meaning that a read can match identically to two or more distinct species. Second, the 

bacterial taxonomy itself is undergoing constant revisions and updates, as genome 

sequencing reveals the need to re-assign species to new names. These revisions 

sometimes create new taxa that share near-identical sequence with a distinct species. In 

these situations, Kraken correctly assigns the read to a higher-level taxonomic category 

such as genus or family. This creates a problem in that Kraken’s classifications cannot be 

used directly for species abundance estimation.  

 

Bracken addresses this problem by probabilistically re-assigning reads from intermediate 

taxonomic nodes to the species level or above. As we have shown here, these re-

assignments produce species-level abundance estimates that are very accurate, typically 

98% correct or higher. For genus-level abundance, accuracy is even higher because fewer 

reads have ambiguous assignments at that level. For abundance estimation at higher 

levels, ranging from family up to phylum, Kraken’s original read assignments can be 

used directly to create abundance estimates.  

 

Methods 
DNA preparation and sequencing. To generate the skin microbiome community, purified 

DNA was obtained from the Biodefense and Emerging Infections Research Resources 

Repository (BEI Resources). Each of the nine bacterial isolates was grown under 

conditions recommended by BEI Resources, collected by centrifugation during log 

growth phase at a 600nm optical density (OD600) of 0.8-1.2, and genomic DNA was 

isolated using MasterPure DNA isolation reagents (Epicentre). Purified genomic DNA 

was quantified using the high sensitivity picogreen assay (Invitrogen), pooled in equal 

amounts by mass, and prepared for sequencing using Nextera XT library preparation 

reagents (Illumina). The sample was then sequenced on a HiSeq sequencer, generating a 

total of 78,439,985 million read pairs (157 million reads), all of them 100 bp in length. 

These were then classified as pairs by Kraken, which concatenates the two reads from 

each pair and assigns them to a single taxonomic category.  

 

Relative Error. Supplementary Tables 2A-B include the error rate for each species in the 

i100 data, expressed as the difference between the true and estimated proportions. We 

calculated the average error as:  

 

1

𝑛
∑

|𝑅𝑡𝑟𝑢𝑒
(𝑖)

− 𝑅𝑒𝑠𝑡
(𝑖)

|

𝑅𝑡𝑟𝑢𝑒
(𝑖)

𝑛

𝑖=1

  (5) 
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where n is the number of species in the i100 data, 𝑅𝑡𝑟𝑢𝑒
(𝑖)

 is the true number of reads for 

species i, and 𝑅𝑒𝑠𝑡
(𝑖)

 is the Bracken estimate of the number of reads for species i. When 

using the small database, the average relative error of Bracken is 1.75% across all 85 

species in the i100 data. For the larger database, the average relative error is 1.89%.  
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