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Abstract

Motivation: Chromatin immunoprecipitation sequencing (ChIP-seq) experiments are commonly used to
obtain genome-wide profiles of histone modifications associated with different types of functional genomic
elements. However, the quality of histone ChIP-seq data is affected by a myriad of experimental parameters
such as the amount of input DNA, antibody specificity, ChIP enrichment, and sequencing depth. Making
accurate inferences from chromatin profiling experiments that involve diverse experimental parameters is
challenging.
Results: We introduce a convolutional denoising algorithm, Coda, that uses convolutional neural networks
to learn a mapping from suboptimal to high-quality histone ChIP-seq data. This overcomes various sources
of noise and variability, substantially enhancing and recovering signal when applied to low-quality chromatin
profiling datasets across individuals, cell types, and species. Our method has the potential to improve data
quality at reduced costs. More broadly, this approach – using a high-dimensional discriminative model to
encode a generative noise process – is generally applicable to other biological domains where it is easy
to generate noisy data but difficult to analytically characterize the noise or underlying data distribution.
Availability: https://github.com/kundajelab/coda
Contact: akundaje@stanford.edu

1 Introduction
Distinct combinations of histone modifications are associated with
different classes of functional genomic elements such as promoters,
enhancers, and genes (Consortium et al., 2015). Chromatin immuno-
precipitation followed by sequencing (ChIP-seq) experiments targeting
these histone modifications have been used to profile genome-wide
chromatin state in diverse populations of cell types and tissues (Consortium
et al., 2015), allowing us to better understand the mechanisms of
development (Bernstein et al., 2006) and disease (Gjoneska et al., 2015).

However, the quality of histone ChIP-seq experiments is affected by
a number of experimental parameters including antibody specificity and
efficiency, library complexity, and sequencing depth(Jung et al., 2014).
Achieving optimal experimental parameters and comparable data quality
across experiments is often difficult, costly, or even impossible, resulting
in low sensitivity and specificity of measurements especially in low input
samples such as rare populations of primary cells and tissues (Brind’Amour
et al., 2015; Cao et al., 2015; Acevedo et al., 2007). For example,
(Brind’Amour et al., 2015) found that single mouse embryos do not
provide enough cells to profile using conventional ChIP-seq techniques.
Similarly, (Acevedo et al., 2007) notes that tumor biopsies, fractionated
mixed cell populations, and differentiating embryonic stem cells provide
very small numbers of cells to use as input populations. Further, the
high sequencing depths (>50-100M reads) required for saturated detection
of enriched regions in mammalian genomes for several broad histone
marks (Jung et al., 2014) are often not met due to cost and material

constraints. Suboptimal and variable data quality significantly complicate
and confound integrative analyses across large collections of data.

To overcome these limitations, we introduce here a convolutional
denoising algorithm, called Coda, that uses convolutional neural networks
(CNNs) (Jain and Seung, 2009; Krizhevsky et al., 2012) to learn a
generalizable mapping between ’suboptimal’ and high-quality ChIP-seq
data (Fig. 1). Coda substantially attenuates three primary sources of noise
– due to low sequencing depth, low cell input, and low ChIP enrichment
– enhancing signal in low-quality samples across individuals, cell types,
and species. Our approach is conceptually related to the existing literature
on structured signal recovery, in particular supervised denoising in images
(Jain and Seung, 2009; Xie et al., 2012; Mousavi et al., 2015) and speech
(Maas and Le, 2012). It complements other efforts to impute missing
genomic data, such as ChromImpute (Ernst and Kellis, 2015), which
predict profiles for a missing target mark in a target cell type (e.g.,
H3K4me3 in embryonic stem cells) by leveraging other available marks
in the target cell type (e.g., H3K27ac in embryonic stem cells) and target
mark datasets in other reference cell types (e.g., H3K4me3 in 100s of other
celltypes). In contrast, our models take in low-quality signal of multiple
target marks in a target cell type and denoise them all (e.g., using low-
quality H3K27ac and H3K4me3 signal from a given cell population to
produce higher-quality H3K27ac and H3K4me3 signal in that same cell
population).

Neural networks have been successfully used to reduce noise in image
data (Jain and Seung, 2009) and speech data (Maas and Le, 2012; Amodei
et al., 2016), and there are several reasons to believe that neural networks
could similarly denoise histone ChIP-seq data. First, histone marks have
regular structure: peaks in each mark, for example, might tend to have
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Fig. 1. Overall model. Coda learns a transformation from noisy histone ChIP-seq data to
a set of clean signal tracks and accurate peak calls. Top: a noisy signal track derived from
1M ChIP-seq reads per histone mark on the lymphoblastoid cell line GM12878. Bottom:
a high-quality signal track derived from 100+M ChIP-seq reads per histone mark from the
same experiment. S = Signal, P = Peak calls.

certain widths and certain shapes. This means that a noisy signal can
be denoised by a model that encodes prior expectations of what a clean
signal should look like, just as humans use the regular structure in speech
to decode noisy speech signals. Second, histone marks are correlated;
thus, one noisy mark can be denoised using information from other noisy
marks. Third, neural networks excel at flexibly learning complex non-
linear relationships when given large amounts of data, making them ideal
for genome-wide applications. Indeed, neural networks have recently been
successfully applied to many biological domains (Angermueller et al.,
2016b): for example, they have been used to predict regulatory sequence
determinants of DNA and RNA binding proteins (Alipanahi et al., 2015;
Zhou and Troyanskaya, 2015), chromatin accessibility (Kelley et al.,
2015), and methylation status (Angermueller et al., 2016a).

2 Methods

Model

Coda takes in a pair of matching ChIP-seq datasets of the same histone
modifications in the same cell-type – one high-quality and the other noisy
– and uses convolutional neural networks (CNNs) to learn a mapping from
the noisy to the high-quality ChIP-seq data. The noisy dataset used in
training can be derived computationally (e.g., by subsampling the high-
quality data) or experimentally (e.g., by conducting the same ChIP-seq
experiment with fewer input cells). Once this mapping has been learned,
the same mapping can then be applied to new, noisy data in any other
cellular context with the same underlying noise structure.

For each type of noise (e.g., due to low cell numbers, sequencing depth,
or enrichment) and each target histone mark, we train two separate CNNs

Fig. 2. Model architecture. Coda learns two separate convolutional neural networks
(CNN) for each target histone mark, one for regression (signal track reconstruction) and
the other for classification (peak calling). All networks share the same architecture. Here,
we show a schematic of a model trained to output a denoised signal track for H3K27ac.
To make a prediction on a single location, we take in 25,025bp of data from all available
histone marks centered at that location and pass it through two convolutional layers.

to accomplish two tasks: a regression task to predict histone ChIP signal
(i.e., the fold enrichment of ChIP reads over input DNA control) and a
binary classification task to predict the presence or absence of a significant
histone mark peak (Fig. 2). In total, if a given experiment has M marks,
then we train 2M models separately (one regression and one classification
model for each mark). Each individual model optionally makes use of the
noisy ChIP-seq data from all available marks but outputs only one target
histone mark. This allows us to learn separate features for each mark and
task while still leveraging information from multiple input histone marks;
we find empirically that this improves performance.

For computational efficiency, we first bin the genome into 25bp bins,
averaging the signal in each bin. Let L be the number of bins in the
genome (i.e., the length of the genome divided by 25). Each individual
model takes in an M × L input matrix X and returns a 1 × L output
vector Y representing the predicted high-quality signal (in the regression
setting) or peak calls (in the classification setting). It does this by feeding
the noisy data through a first convolutional layer, a rectified linear unit
(ReLU) layer, a second convolutional layer, and then a final ReLU or
sigmoid layer (for regression or classification, respectively). For the first
convolutional layer, we use 6 convolutional filters, each 51 bins in length;
for the second convolutional layer, we use a single filter of length 1001.
Effectively, this means that a prediction at the i-th bin is a function of the
noisy data at a 25,025bp window centered on the i-th bin.

The convolutional nature of our models (and the lack of max-pooling
layers commonly seen in neural network architectures for computer
vision) enables us to do efficient genome-wide prediction, as 98% of the
computation required for predicting signal at the i-th bin is shared with
the computation required for predicting the (i + 1)-th bin. In particular,
to compute the prediction at the i-th bin, the network needs to perform
6 × 1001 × 51 operations at the first convolutional layer and 6 × 1001

operations at the second convolutional layer. To compute the prediction at
the (i+1)-th bin, the network needs to perform only6×51more operations
at the first convolutional layer and 6 × 1001 operations at the second
convolutional layer, saving 6 × 1001 × 50 operations. Other models,
especially non-linear models such as random forests, would require a
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completely separate set of computations for each bin and are therefore
significantly more computationally expensive when it comes to making
predictions across the entire genome.

Training and evaluation

We applied Coda to three distinct sources of noise: low sequencing depth,
low cell input, and low ChIP enrichment. In all cases, the inputs to our
model were noisy signal measurements of multiple histone marks (see
Data Availability and Processing for more details), and we trained separate
models to predict the high-quality signal and peak calls for each target
mark.

For the regression tasks (predicting signal), we evaluated performance
by computing the Pearson correlation and mean squared error (MSE)
between the predicted and measured high-quality fold-enrichment signal
profiles after an inverse hyperbolic sine transformation, which reduced
the dominance of outliers. We compared this to the baseline performance
obtained by directly comparing the noisy and high-quality signal profiles
of the target mark (after the same inverse hyperbolic sine transformation).

For the classification tasks (predicting presence or absence of a peak),
we compared our model’s output to peaks called by the MACS2 peak
caller (Feng et al., 2012) on the high-quality signal for the target mark.
As our dataset is unbalanced – peaks only make up a small proportion
of the genome – we evaluated performance by computing the area under
the precision-recall curve (AUPRC), a standard measure of classification
performance for unbalanced datasets (Davis and Goadrich, 2006). We
compared the AUPRC of our model to a baseline obtained by comparing
MACS2 peaks on the noisy data for the target mark to those obtained
from the high-quality data for the target mark (see Data Availability and
Processing for further details on dataset preparation).

We trained our models on 50,000 positions randomly sampled from
peak regions of the genome and 50,000 positions sampled from non-peak
regions, sampling from each autosome with equal likelihood. We defined
peak regions using the output mark of interest and with the high-quality
data. Further increasing dataset size did not increase performance; as each
sample covered 25,025bp, 100,000 samples had good coverage of the
entire genome. We selected the training dataset to be balanced because a
uniformly drawn dataset would have had very few peaks, making it difficult
for the model to learn to predict at peak regions; however, the test results
reported in this paper are on the entire (unbalanced) genome. We used the
Keras package (François Chollet, 2015) for training and AdaGrad (Duchi
et al., 2011) as the optimizer, stopping training if validation loss did not
improve for three consecutive epochs. We did not observe overfitting with
our models (train and test error were comparable), and therefore opted
not to use common regularization techniques such as dropout (Srivastava
et al., 2014).

We chose model hyperparameters and architecture through hold-out
validation on the low-sequencing-depth denoising task with GM12878 as
the training cell line (Kasowski et al., 2013), holding out a random 20%
subset of the training data for validation; this task will be discussed in
more detail in the next section. The model architecture described above
(6 convolutional filters each 51 bins in length in the first layer, and 1
convolutional filter of length 1001 in the second layer) yielded optimal
validation performance out of the configurations we tried (varying the
number of convolutional filters and the lengths of the filters by up to an
order of magnitude). Adding an additional layer to the neural network
brought a modest increase in performance at the cost of more computation
time and complexity. To be sure that our model architecture generalized,
we used the same architecture and hyperparameters for all denoising tasks
without any further tuning.

3 Results

Removing noise from low sequencing depth data

A minimum of 40-50M reads is recommended for optimal sensitivity for
histone ChIP-seq experiments in human samples targeting most canonical
histone marks (Jung et al., 2014). As adhering to this standard can often
be infeasible due to cost and other limitations, a substantial proportion of
publicly available datasets do not meet these standards. Motivated by these
constraints, we tested whether our model could recover high-read depth
signal from low-read depth experiments.

Training and testing on the same cell type across different individuals
We evaluated Coda on lymphoblastoid cell lines (LCLs) derived from six
individuals of diverse ancestry (European (CEU), Yoruba (YRI), Japanese,
Han Chinese, San) (Kasowski et al., 2013). We used the CEU-derived
cell line (GM12878) to train our model to reconstruct the high-depth
signal (100M+ reads per mark; exact numbers in Data Availability and
Processing) from a simulated noisy signal derived by subsampling 1M
reads per mark. On the other five cell lines, Coda significantly improved
Pearson correlation between the full and noisy signal (Fig. 3A, left) and the
accuracy of peak calling (Fig. 3A, right). Using just 1M reads per mark, the
predicted output of our model was equivalent in quality to signal derived
from 15M+ reads (H3K27ac) and 25M+ reads (H3K36me3) (Fig. 3B). Fig.
4 shows how Coda can accurately reconstruct histone modification levels
at the promoter of the PAX5 gene, a master transcription factor required
for differentiation into the B-lymphoid lineage (Nutt et al., 1999).

We confirmed Coda was not simply memorizing the profile of the
training cell line (GM12878) and copying it to the test cell lines by
examining differential regions, called by DESeq (Anders and Huber,
2010), between GM12878 and the other cell lines (Kasowski et al., 2013).
Coda improved correlation and peak-calling even in those regions (Table
1). Similarly, it also improved correlation on the regions of the genome
with enriched signal, i.e., called as statistically significant peaks (Table 2).

Table 1. Denoising differential regions (diff. reg.) between test cell line GM18526
and training cell line GM12878. Performance reported is improvement of the
denoised model over baseline (original, subsampled reads) on the test cell line.
In parentheses we report the baseline results followed by the denoised results.
Peak-calling results on H3K27me3 are omitted due to the lack of peak calls in
differential regions; all results on H3K36me3 are omitted due to low number of
differential regions.

MSE (diff. reg.) Pearson R (diff. reg.) AUPRC (diff. reg.)

H3K4me1 -85% (4.01, 0.57) +59% (0.37, 0.59) +03% (0.93, 0.97)

H3K4me3 -75% (2.88, 0.70) +14% (0.63, 0.72) +11% (0.78, 0.87)

H3K27ac -86% (3.43, 0.48) +39% (0.55, 0.77) +06% (0.90, 0.96)

H3K27me3-80% (0.78, 0.15) +106% (0.14, 0.30) -

Training and testing on different cell types across different individuals
We next assessed if Coda could be trained on one cell type in one individual
and used to denoise low-sequencing-depth data from a different cell type
in a different individual. As above, the model was trained to output high-
depth data (30M reads) from low-depth data (1M reads). We used histone
ChIP-seq data spanning T-cells (E037), monocytes (E029), mesenchymal
stem cells (MSCs, E026), and fibroblasts (E056) from the Roadmap
Epigenomics Consortium (Consortium et al., 2015). Coda substantially
improved the quality of the low-depth signal on the test cell type for all
pairs of cell types (Table 3), illustrating its ability to denoise low-depth
data on a cell type even if high-depth training data for that cell type is not
available.
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Fig. 3. Coda removes noise from low-sequencing-depth experiments on
lymphoblastoid cell lines derived from different individuals. (A) Compared to
the signal from subsampled reads (blue), the denoised signal (green) shows greater
correlation with the full signal (left) and more accurate peak-calling (right) across all cell
lines. The model was trained on GM12878 and tested on different cell lines; within each
column in the plot, each point is a single test cell line. (B) With 1M reads per mark, the
denoised H3K27ac data is equivalent in quality to a dataset with 15M+ reads per mark, and
the H3K36me3 data is equivalent in quality to a dataset with 25M+ reads per mark. Similar
results hold for other marks. These results are from training on GM12878 and testing on
GM18526.

Table 2. Denoising peak regions between test cell line GM18526 and training
cell line GM12878. Performance reported is improvement of the denoised model
over baseline (original, subsampled reads) on the test cell line. In parentheses
we report the baseline results followed by the denoised results.

MSE (peaks) Pearson R (peaks)

H3K4me1 -86% (3.69, 0.49) +56% (0.44, 0.70)

H3K4me3 -83% (2.93, 0.50) +11% (0.78, 0.87)

H3K27ac -87% (3.36, 0.43) +28% (0.65, 0.83)

H3K27me3 -90% (2.20, 0.21) +103% (0.18, 0.36)

H3K36me3 -93% (3.78, 0.25) +120% (0.32, 0.70)

Coda outperforms linear baselines
We compared Coda to a linear and logistic regression baseline for signal
denoising and peak calling, respectively. In both cases, we used an input
region of the same size as Coda (i.e., 25,025bp centered on the location
to be predicted, binned into 25bp bins). As noted above, the desire
for computational efficiency in making genome-wide predictions across
multiple marks limits the complexity of models that would be practically
useful in genome-wide prediction.

When evaluated in the same cell type, different individual setting, Coda
achieved 3x lower MSE on peak regions and 2x lower MSE on differential
regions, with similar (very slightly better) MSE and correlation across the

Fig. 4. Genome browser tracks for low-sequencing-depth experiments. We compare
noisy signal and peak calls obtained from 1M reads per mark (top) with Coda’s output
(middle) and the target, high-quality signal and peak calls obtained from 100M+ reads per
mark (bottom) at the PAX5 promoter. Coda successfully cleans up signal across all histone
marks and correctly calls the H3K27ac, H3K36me3, and H3K4me1 peaks (missed in the
noisy data) while removing the spurious H3K27me3 peak calls. Note that we show the noisy
peak calls to allow for comparisons; Coda uses only the noisy signal, not the peak calls,
as input. The signal tracks are in arcsinh units, with the following y-axis scales: H3K27ac:
0-160, H3K27me3: 0-20, H3K36me3 and H3K4me1: 0-40, H3K4me3: 300. The shading
of the peak tracks that the model outputs represent the strength of the peak call on a scale
of 0-1.

Table 3. Cross cell-type experiments. Rows are train cell type, while columns are
test cell type. In parentheses we report the baseline results followed by the denoised
results, averaged across all histone marks used.

Monocytes MSCs Fibroblasts

PearsonR
T-cells +33% (0.51, 0.67) +58% (0.44, 0.70) +78% (0.36, 0.65)

Monocytes - +59% (0.44, 0.70) +79% (0.36, 0.65)

MSCs - - +81% (0.36, 0.66)

AUPRC
T-cells +116% (0.31, 0.66) +136% (0.31, 0.72) +94% (0.35, 0.69)

Monocytes - +139% (0.31, 0.73) +94% (0.35, 0.69)

MSCs - - +100% (0.35, 0.71)

whole genome. This implies that Coda is better able to learn to match the
exact values of the signal tracks on “difficult" regions (i.e., where there
is the greatest deviation from the training signal), even though the linear
model matches the rough shape. These regions are important to predict well
because they can give insight into the differences between individuals and
cell types.

We note that many forms of smoothing can be represented via linear
regression. For example, a standard Gaussian filter can be interpreted as
taking a linear combination of surrounding points with fixed coefficients.
The comparison against a linear regression baseline therefore sets an upper
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Table 4. Low-cell-input experiments. We report improvement of the denoised model
output over baseline (original low-input experiments), as compared to high-input
experiments. In parentheses we report the baseline results followed by the denoised
results.

MSE Pearson R AUPRC

ULI-NChIP
H3K4me3 -61% (1.39, 0.54) +208% (0.13, 0.41) +61% (0.24, 0.38)

H3K9me3 -46% (0.51, 0.27) +28% (0.41, 0.53) +32% (0.28, 0.36)

H3K27me3 -41% (0.68, 0.40) +57% (0.34, 0.54) +32% (0.34, 0.45)

MOWChIP
H3K4me3 -42% (1.18, 0.68) +122% (0.14, 0.31) +34% (0.19, 0.25)

H3K27ac -21% (1.44, 1.14) +159% (0.09, 0.24) +66% (0.15, 0.24)

bound for the performance of simple smoothing measures on this task
(assuming no overfitting, which we do not observe in our case).

Comparisons to denoising and imputation
Next, we studied Coda’s performance in two additional settings: pure
denoising (using the noisy target mark as the only input mark) and
imputation from noise (using all noisy histone marks but the target mark
as the input marks). This is in contrast to the standard setting described
above, where we use all noisy histone marks, including the noisy version
of the target mark, to recover a high-quality version of the target mark.

In the denoising case, Pearson correlation dropped by 0.03 points and
AUPRC dropped by 0.05, on average, compared to when all marks were
used as input. Thus, additional marks provided some information, but the
denoised signal was still substantially better than the original subsampled
signal.

In the imputation case, performance dropped somewhat on the narrow
marks (H3K4me1, H3K4me3, H3K27ac; −0.12 correlation, −0.13

AUPRC) and dropped more on the broad marks (H3K27me3, H3K36me3;
−0.29 correlation, −0.30 AUPRC). The gap in correlation was even
larger within peak regions. Thus, having a noisy version of the target
mark substantially boosts recovery of the high-quality signal.

Removing noise from low cell input

Conventional ChIP-seq protocols require a large number of cells to reach
the necessary sequencing depth and library complexity (Brind’Amour
et al., 2015; Cao et al., 2015), precluding profiling when input material
is limited. Several ChIP-seq protocols were recently developed to address
this problem. We studied ULI-NChIP-seq (Brind’Amour et al., 2015) and
MOWChIP-seq (Cao et al., 2015), which use low cell input (102-103 cells)
to generate signal that is highly correlated, when averaged over bins of size
2-4kbp, with experiments with high cell input. However, at a finer scale
of 25bp, the low-input signals from both protocols are poorly correlated
with the high-input signals (Table 4).

We thus used Coda to recover high-resolution, high-cell-input signal
from low-cell-input signal specific to each protocol. For ULI-NChIP-seq,
we used a single mouse embryonic stem cell dataset (Brind’Amour et al.,
2015). For MOWChIP-seq, we trained on data from the human LCL
GM12878 and tested on hematopoietic stem and progenitor cells (HSPCs)
from mouse fetal liver (Cao et al., 2015). Coda successfully denoised the
low-input signal from both protocols (Table 4). Fig. 5 illustrates our model
denoising MOWChIP-seq signal across the Runx1 gene, a key regulator
of HSPCs (North et al., 2002); the results of peak calling were too noisy,
even on the original 10,000-cell data, to allow for any qualitative judgment
of improvement.

Fig. 5. Genome browser tracks for low-cell-input experiments. We compare noisy signal
obtained from 100 cells (top) with Coda’s output (middle) and the target, high-quality signal
obtained from 10,000 cells (bottom) at the Runx1 gene in mouse hematopoietic stem and
progenitor cells. The model was trained on MOWChIP-seq data generated from human
LCL (GM12878) and captures two strong peaks at the promoters of the two isoform classes,
removing much of the intervening noise. The signal tracks are in arcsinh units, with a scale
of 0-40 for both histone marks.

We note that the Pearson correlations between the low cell input and
high cell input in the original ULI-NChIP-seq (Brind’Amour et al., 2015)
and MOWChIP-seq (Cao et al., 2015) papers are significantly higher than
the ones we report here. We report lower correlations because we use a
smaller bin size for the genome, as noted above; we look at correlation
across the whole genome, instead of only at transcription start sites; and
we compute correlation after an arcsinh transformation to prevent large
peaks from dominating the correlation. Therefore, while the original low-
cell-input data is suitable for studying histone ChIP-seq signal at a coarse-
grained level and around genetic elements like transcription start sites, the
denoised data is more accurate at a fine-grained level and across the whole
genome.

Removing noise from low-enrichment ChIP-seq

Histone ChIP-seq experiments use antibodies to enrich for genomic regions
associated with the target histone mark. When an antibody with low
specificity or sensitivity for the target is used, the resulting ChIP-seq
data will be poorly enriched for the target mark. This is a major source
of noise (Landt et al., 2012). We simulated results from low-enrichment
experiments by corrupting GM12878 and GM18526 LCL data (Kasowski
et al., 2013). For each histone mark profiled in those cell lines, we kept
only 10% of the actual reads and replaced the other 90% with reads taken
from the control ChIP-seq experiment, which was done without the use of
any antibody; this simulates an antibody with very low specificity.

This corruption process significantly degraded the genome-wide
Pearson correlation and the accuracy of peak calling (Table 5). This shows
that recovering the true signal from the corrupted data cannot be achieved
by simply linearly scaling the signal (e.g., multiplying the empirical fold
enrichment by 10 since only 10% of the actual reads were kept), as if
that were the case, the correlation would be unchanged. In contrast, when
trained on GM12878 and tested on GM18526, Coda accurately recovered
high-quality, uncorrupted signal from the corrupted data (Table 5). Fig. 6
shows a comparison of Coda’s output versus the corrupted and uncorrupted
data at the promoter of the EBF1 gene, another key transcription factor of
the B-lymphoid lineage. (Nechanitzky et al., 2013)

To further validate Coda’s output, we examined aggregate histone
ChIP-seq signal around known biological regions of interest. In particular,
we used the fact that H3K4me1 and H3K27ac, known enhancer marks, are
enriched at DNase I hypersensitivity sites (DHSs), whereas H3K27me3
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Fig. 6. Genome browser tracks for low-enrichment ChIP-seq experiments. We
compare noisy signal and peak calls obtained from the corrupted data with 10% enrichment
(top) with Coda’s output (middle) and the target, high-quality signal and peak calls obtained
from the uncorrupted data (bottom) at the EBF1 promoter. Coda significantly improves
the signal-to-noise ratio and correctly calls the H3K27ac, H3K36me3, H3K4me1, and
H3K4me3 peaks that were missed in the noisy data while removing a spurious H3K27me3
peak call. Note that we show the noisy peak calls to allow for comparisons; Coda uses
only the noisy signal, not the peak calls, as input. The signal tracks are in arcsinh units,
with the following y-axis scales: H3K27ac: 0-60, H3K27me3, H3K36me3, and H3K4me1:
0-40, H3K4me3: 100. The shading of the peak tracks that the model outputs represent the
strength of the peak call on a scale of 0-1.

Table 5. Low-enrichment experiments. We report improvement of the denoised
model output over baseline (low-enrichment experiments), as compared to high-
enrichment experiments. In parentheses we report the baseline results followed
by the denoised results.

MSE Pearson R AUPRC

H3K4me1 -75% (0.35, 0.09) +42% (0.64, 0.91) +215% (0.29, 0.92)

H3K4me3 -86% (0.44, 0.06) +54% (0.58, 0.91) +94% (0.49, 0.95)

H3K27ac -70% (0.37, 0.11) +37% (0.65, 0.90) +121% (0.43, 0.94)

H3K27me3-61% (0.27, 0.10) +88% (0.42, 0.78) +242% (0.14, 0.49)

H3K36me3-82% (0.36, 0.06) +47% (0.65, 0.95) +168% (0.36, 0.98)

is depleted at DHSs. (Shu et al., 2011) For each of those marks, we
compared the average uncorrupted signal, the average denoised signal,
and the average low-enrichment signal within 5000 bp of the summits of
DNase I hypersensitive peaks in GM12878 from ENCODE data (Bernstein
et al., 2012). As expected, the corrupted, low-enrichment signal was
biased by the reads from the control experiment and had significantly
lower fold enrichment of H3K4me1 and H3K27ac at DHSs, compared to
the uncorrupted signal. In contrast, the denoised signal was significantly
more enriched at DHSs than the corrupted signal, more closely resembling
the uncorrupted signal. Conversely, the corrupted signal had higher levels
of H3K27me3 at DHSs, whereas the denoised signal had low levels of

Fig. 7. Aggregate histone ChIP-seq signal at DNase I hypersensitivity sites. We compare
the average uncorrupted signal (Full), the average denoised signal (Denoised), and the
average corrupted signal (Low enrichment) at DNase I hypersensitivity sites. Across all
histone marks, the denoised signal is significantly more similar to the uncorrupted signal
than the corrupted signal is.

H3K27me3 throughout the DHS, similar to the uncorrupted signal though
without a dip at the peak summit (Fig. 7).

4 Conclusion
We describe a convolutional denoising algorithm, Coda, that uses paired
noisy and high-quality samples to substantially improve the quality of new,
noisy ChIP-seq data. Our approach transfers information from generative
noise processes (e.g., mixing in control reads to simulate low-enrichment,
or performing low-input experiments) to a flexible discriminative model
that can be used to denoise new data. We believe that a similar approach
can be used in other biological assays, e.g., ATAC-seq and DNase-seq
(Buenrostro et al., 2013; Crawford et al., 2006), where it is near impossible
to analytically characterize all types of technical noise or the overall data
distribution but possible to generate noisy versions of high-quality samples
through experimental or computational perturbation. This can significantly
reduce cost while maintaining or even improving quality, especially in
high-throughput settings or when dealing with limited amounts of input
material (e.g., in clinical studies).

An important caveat to our work is that the performance of Coda
depends strongly on the similarity of the noise distributions and underlying
data distributions in the test and training sets. For example, Coda expects
that the relationships between different histone marks should be conserved
between the test and training set. Thus, applying a set of trained Coda
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models to data that is very different from what it was trained on is unlikely
to work. We also assume that the noise parameters in the test data are
known in advance, e.g., the sequencing depth, the number of input cells,
or the level of ChIP enrichment. In some cases (e.g., the low-sequencing-
depth and low-cell-input settings) this is true, but in others (e.g., the
low-enrichment setting) it is not always possible. An important direction
for future work is to make Coda more robust; for example, training a single
model over various settings of the noise parameters and various cell types
could improve the generalizability of the models.

To further improve performance, more complex neural network
architectures could also be explored: for example, using recurrent neural
networks (Sutskever et al., 2014) to explicitly model long-range spatial
correlations in the genome; multi-tasking across output marks instead of
training separate models for each mark; or using deeper networks.

Another avenue for future work is exploring using more than just the
noisy histone ChIP-seq data at test time. In this work, we use only the noisy
data at test time, training our models to transform it into high-quality data.
In reality, at test time we might have access to other data; for example, we
might also have the DNA sequence of the test sample or access to high-
quality ChIP-seq data on a closely related cell type. Other work has used
DNA sequence to predict transcription factor binding (Alipanahi et al.,
2015; Zhou and Troyanskaya, 2015), chromatin accessibility (Kelley et al.,
2015), and methylation status (Angermueller et al., 2016a). A natural next
step would be to combine the ideas from these methods with ours, e.g.,
by having a separate convolutional module in our neural network that
incorporates sequence information and joins with the ChIP-seq module at
an intermediate layer. Others have also used high-quality ChIP-seq data
from closely related cell types for imputation (Ernst and Kellis, 2015);
combining this with our denoising approach could help to avoid a potential
pitfall of imputation approaches, namely the loss of cell-type-specific
signal, while improving the accuracy of our denoised output.

Below, we provide a link to a script that trains a model for low-
sequencing-depth noise using the LCL data described above. Since the
type of noise can vary from context to context, we also provide the code for
the general Coda framework to allow for developers of new protocols (e.g.,
new low-cell-count techniques) or core facilities that have high throughput
to train Coda with data specific to their context.

Data Availability and Processing

Datasets

We used the following publicly-available GEO datasets in this work:

1. GSE50893 for ChIP-seq data on LCLs (Kasowski et al., 2013)
2. GSE63523 for ULI-NChIP-seq data (Brind’Amour et al., 2015)
3. GSE65516 for MOWChIP-seq data (Cao et al., 2015)
4. GSM736620 for DNase I hypersensitive peaks (Bernstein et al., 2012)

For the low-sequencing-depth experiments, the full depth for
GM12878 (training set) was 171M (million reads) for H3K4me1, 168M
for H3K4me3, 328M for H3K27ac, 265M for H3K27me3, and 123M
for H3K36me3. The full depth for GM18526 (test set) was 120M for
H3K4me1, 136M for H3K4me3, 125M for H3K27ac, 138M for H327me3,
and 223M for H3K36me3.

For the cross-cell-type experiments, we used the consolidated
Roadmap Epigenomics data (Consortium et al., 2015), which is publicly
available from http://egg2.wustl.edu/roadmap/data/byFileType/alignments/.
Each mark is downsampled to a maximum of 30M reads to maximize
consistency across marks; we used this as the full depth data, and
downsampled to 1M reads for the noisy data. A detailed description of
this dataset is available in (Roa, 2015).

Dataset preparation

Fold change signal profiles and peak calling.
For each experiment, we used align2rawsignal (Kundaje, 2013) to generate
signal tracks and MACS2 (Feng et al., 2012) to call peaks, as implemented
in the AQUAS package (Lee and Kundaje, 2016). For the signal track, we
used fold change relative to the expected uniform distribution of reads after
an inverse hyperbolic sine transformation (Hoffman et al., 2012). We used
the gappedPeaks output from MACS2 as the peak calls. For computational
efficiency, we binned the genome into 25bp segments, averaging the signal
in each segment.

We evaluated our peak calling on a bin-by-bin basis, i.e., our model
output one number for each bin representing the probability that that bin
was a true peak, and we treated each bin as a separate example for the
purposes of computing AUPRC, our metric for peak calling performance.
To get ground truth data for our peak calling tasks, we labeled each bin as
“peak” or “non-peak” based on whether that bin was part of a peak called
by MACS2 on the high-quality data.

Computing AUPRC requires predictions to be ranked in order of
confidence. For our model, we used the output probabilities for each bin to
calculate the ranking. MACS2 outputs both a peak p-value track, assigning
a p-value to each genomic coordinate, and a set of binary peak calls. To
measure baseline performance on the noisy data, we ranked each bin by
the maximum peak p-value assigned by MACS2 to a genomic coordinate
in that bin, unless that bin did not intersect with any of the binary peak
calls, in which case it was assigned a p-value of − inf (i.e., ranked last).
We did this to ensure that the high-quality peak track had an AUPRC of 1;
empirically, this also improved performance of the noisy MACS2 baseline.

Histone marks used
We used different sets of input and output histone marks for different
experiments depending on which marks each dataset provided. For the
same cell type, different individual experiments (using lymphoblastoid
cell lines), we trained and tested on H3K4me1, H3K4me3, H3K27ac,
H3K27me3, and H3K36me3; we used the same data for the low-ChIP-
enrichment experiments. For the different cell type, different individual
experiments (using the uniformly-processed Roadmap Epigenomics
Consortium datasets (Consortium et al., 2015)), we trained and tested
on H3K4me1, H3K4me3, H3K9me3, H3K27ac, H3K27me3, and
H3K36me3. For all of the above experiments, we also used data from
the control experiments (no antibody) as input. Lastly, for the low-
cell-input experiments, we used H3K4me3, H3K9me3, and H3K27me3
from the ULI-NChIP-seq dataset and H3K4me3 and H3K27ac from the
MOWChIP-seq dataset.

Low-cell-input datasets
The ULI-NChIP-seq (Brind’Amour et al., 2015) and MOWChIP-seq (Cao
et al., 2015) papers provided several datasets corresponding to different
numbers of input cells used. For each protocol, we used the datasets with
the lowest number of input cells as the noisy input data (ULI-NChIP-
seq: 103 cells for H3K9me3 and H3K27me3, 5x103 cells for H3K4me3;
MOWChIP-seq: 102 cells) and the datasets with the highest number of
input cells as the gold-standard, high-quality data (ULI-NChIP-seq: 106

cells for H3K9me3, 105 cells for H3K4me3 and H3K27me3; MOWChIP-
seq: 104 cells). The ULI-NChIP-seq data had matching low- and high-
input experiments only for a single cell type, so we divided it into chr5-19
for training, chr3-4 for validation, and chr1-2 for testing.

Code, data, and browser track availability

Our code is available on Github at https://github.com/

kundajelab/coda, including a script that downloads pre-processed
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data and replicates the low-sequencing-depth experiments described
above, as well as code for processing new data.

The figures of browser tracks (Figures 4, 5, and 6) shown above were
taken from the Wash U Epigenome Browser (Zhou and Wang, 2012). Links
to the entire browser tracks are as follows:

• Fig. 4, low-sequencing-depth experiments on LCL GM12878: http:
//epigenomegateway.wustl.edu/browser/?genome=

hg19&session=KZvYzGBt03&statusId=107864126

• Fig. 5, low-cell-count experiments on mouse HSPCs: http:

//epigenomegateway.wustl.edu/browser/?genome=

mm9&session=PJUr7vAwEh&statusId=1611801659

• Fig. 6, low-enrichment experiments on LCL GM12878: http:

//epigenomegateway.wustl.edu/browser/?genome=

hg19&session=3hDZdGiGmF&statusId=1913128468
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