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Abstract1

This study presents a new boosting method for capture-recapture models, rooted in predictive-2

performance and machine-learning. The regularization algorithm combines Expectation-Maximization and3

boosting to yield a type of multimodel inference, including automatic variable selection and control of model4

complexity. By analyzing simulations and a real dataset, this study shows the qualitatively similar estimates5

between AICc model-averaging and boosted capture-recapture for the CJS model. I discuss a number of6

benefits of boosting for capture-recapture, including: i) ability to fit non-linear patterns (regression-trees,7

splines); ii) sparser, simpler models that are less prone to over-fitting, singularities or boundary-value esti-8

mates than conventional methods; iii) an inference paradigm that is rooted in predictive-performance and9

free of p-values or 95% confidence intervals; and v) estimates that are slightly biased, but are more stable over10

multiple realizations of the data. Finally, I discuss some philosophical considerations to help practitioners11

motivate the use of either prediction-optimal methods (AIC, boosting) or model-consistent methods. The12

boosted capture-recapture framework is highly extensible and could provide a rich, unified framework for13

addressing many topics in capture-recapture, such as spatial capture-recapture, individual heterogeneity, and14

non-linear effects.15
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1. Introduction19

In this study, I introduce boosting for Hidden-Markov Models (HMM) with a particular focus on capture-20

recapture models. It is targeted at capture-recapture practitioners who desire model parsimony under low-21

sample sizes and high-dimensional settings. Capture-recapture system are perennially in an situation of high22

model-uncertainty (Johnson & Omland, 2004) and would benefit from an inference-paradigm that is flexible,23

extensible and rooted in good predictive performance. Some questions are the following. Can we find a24

simple model out of the hundreds or millions of plausible “fixed-effects” models? Can we correctly identify25
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a sparse set of highly influential covariates in high-dimensional situations? Can the method accommodate26

non-linear relationships and interactions (e.g., regression trees, kernels and splines) without over-fitting? Can27

the method avoid the scourge of singularities and boundary-value estimates that trouble MLE-based models28

and their model-averaged derivatives? How does the method compare to other popular multimodel inference29

techniques, such as AICc model-averaging?30

A motivating model will be the Cormack-Jolly-Seber (CJS) capture-recapture model, with a focus on31

which covariates influence the survival of an open population of marked animals under imperfect detection.32

While there are many regularization and variable selection techniques in univariate regression models, the33

problem becomes combinatorially difficult for HMMs such as capture-recapture models: we must consider34

multiple plausible specifications for both the transition process (survival), as well as the emission process35

(capture probability).36

The issues of model selection and multimodel inference are front-and-centre in most capture-recapture37

studies. For example, the popular Program MARK (White & Burnham, 1999) is strongly allied to the38

model-averaging ideas of Burnham, Anderson, Buckland and others (Buckland et al., 1997; Anderson et al.,39

2000; Burnham, 2004; Burnham & Anderson, 2014). By default, the program offers AICc-weighted averages40

(Akaike, 1974) of survival and capture probability. The widespread use of model-averaging in the capture-41

recapture field reflects an early appreciation by researchers for the model uncertainty inherent to capture-42

recapture: every analysis has dozens or thousands of plausible fixed-effect models, including, at a minimum,43

time-varying vs time-invariant processes. However, such post-hoc model-selection and/or averaging become44

computationally unfeasible with just a few extra covariates, due to the combinatorial explosion in the number45

of plausible models. Secondly, even if one could realistically compute every model, the AIC/AICc tends to46

favour more complex models (Shao, 1997; Hooten & Hobbs, 2015), which, in a capture-recapture context,47

can have singularities or boundary-value estimates (like 100% survival or 100% capture probability; Rankin48

et al., 2016; Hunt et al., 2016). This latter problem is rarely appreciated, but has motivated the development49

of Bayesian models to encourage parsimony under sparse data (Schofield et al., 2009; Schofield & Barker,50

2011; Rankin et al., 2014, 2016)51

Clearly, methods are needed to address the dual challenge of variable selection and low-sample sizes. Also,52

we should favour flexible techniques that can accommodate different functional forms (such as regression trees,53

splines, random effects) and find covariate-interactions, without over-fitting or producing boundary-value54

estimates.55

Hand & Vinciotti (2003) and Burnham (2004) hinted at a possible contender to the model-averaging ap-56

proach when they suggested a parallel between multimodel inference and boosting: whereas model-averaging57

weights dozens or hundreds of fixed-effect models, boosting sequentially combines hundreds or thousands of58

simple weak learners to yield a strong statistical model in aggregate. Most ecologists are familiar with boost-59

ing for univariate regression and classifications tasks (Elith et al., 2008; Kneib et al., 2009; Oppel et al., 2009;60

Hothorn et al., 2010; Tyne et al., 2015), but the recently developed component-wise boosting and gamboostLSS61
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algorithms (Bühlmann & Yu, 2003; Schmid & Hothorn, 2008b; Schmid et al., 2010; Mayr et al., 2012) opened62

the way for complex hierarchical distributions with many components (Hothorn et al., 2010; Hutchinson63

et al., 2011; Schmid et al., 2013; Hofner et al., 2014). Under this boosting framework, each boosting iteration64

alternates between fitting the capture probability parameter (conditional on survival), and then fitting the65

survival component (conditional on the capture probabilities). Plus, boosting offers a wide variety of possible66

weak learners, from ordinary least squares to splines and CART-like trees (Hothorn et al., 2006; Bühlmann &67

Hothorn, 2007). This gives boosting much appeal over other sparsity-inducing variable selection paradigms,68

such as the Lasso (Tibshirani, 2011; Efron et al., 2004), Elastic-Net, Support Vector Machines, Hierarchical69

Bayesian shrinkage-estimators (Rankin et al., 2016). In this way, component-wise boosting offers a unified70

framework to address high-dimensional variable selection, interaction-detection, and non-linear relationships,71

while encouraging model parsimony through a prediction-optimized control on model complexity.72

The contribution of this study is to develop a boosting method suitable for the Cormack-Jolly-Seber73

capture-recapture model (hereafter, CJSboost) and whose framework can be used for a wider class of capture-74

recapture models. The particular challenge of boosting a HMM is the serially dependent nature of observa-75

tions. Hitherto, boosting methods required independent data points in order to perform gradient descent,76

e.g., by descending the point-wise negative gradient of a loss-function. The CJSboost approach is to garner77

such conditional independence by imputing expectations of latent states z (here, alive or dead). In CJSboost,78

we alternate between boosting the parameters (conditional on latent states) and imputing expectations of the79

latent states (conditional on the parameters). I provide two different techniques to impute such expectations:80

i) Expectation-Maximization (called CJSboost-EM), and ii) Monte-Carlo approximation of the marginal dis-81

tribution of latent states (CJSboost-MC). As I will show, both algorithms lead to approximately the same82

estimates. Furthermore, the estimates are qualitatively very similar to the model-averaged estimates by AICc83

weighting. The AIC is also motivated by optimal (asymptotic) predictive performance.84

This article will demonstrate CJSboost via simulations and an analysis of an European Dipper dataset85

from Lebreton et al. (1992), with particular emphasis on comparing estimates from linear and non-linear mod-86

els (e.g., CART-like trees), and comparisons to Maximum Likelihood estimation and AICc model-averaging87

(Burnham, 2004) using Program MARK (White & Burnham, 1999). Simulations will also challenge CJS-88

boost to perform a model-selection task that is nearly impossible for conventional methods: finding a sparse89

set of influential covariates among 21× 21 different covariates.90

There are two potential audiences for this paper. First, HMM practitioners will be interested in a91

general approach to boosting and HMMs, which opens new possibilities for incorporating regularization, semi-92

parametric learners and interaction detection to a vast catalogue of applications. For the second audience of93

mark-recapture practitioners, I offer a fresh view of mark-recapture from a prediction or learning perspective.94

For example, we can observe the degree to which regularization and bootstrap-validation suggest simpler95

models than those implied by AICc model-averaging. Boosting also offers capture-recapture an alternative96

means of inference that is principled and free of p-values and 95% Confidence Intervals (Anderson et al.,97
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2000; Hoekstra et al., 2014; Morey et al., 2016). Furthermore, this new capture-recapture paradigm can98

easily accommodate a range of hot-topics in capture-recapture, such as individual-heterogeneity and spatial99

capture-recapture, by leveraging the wide variety of base-learners available in the mboost family of R packages100

(Bühlmann & Hothorn, 2007; Hothorn et al., 2006; Mayr et al., 2012; Hofner et al., 2012).101

2. Methods102

2.1. Organization103

The manuscript begins by introducing some basic ideas of statistical learning theory (Section 2.2) and the104

Cormack-Jolly-Seber model. Section 2.3 describes two boosting algorithms, CJSboost-EM and CJSboost-105

MC, for capture-recapture models. Section 2.4 discusses some important practical considerations about106

regularization and base-learners. Section 2.5 describes a simulation to compare the estimates from CJSboost-107

EM and CJSboost-MC, as well as AICc model-averaging and MLEs (results in 3.1). Section 2.6 describes108

a reanalysis of of dipper dataset using CJSboost-EM and AICc model-averaging (results in 3.2). Section109

2.7 uses simulations to assess the performance of CJSboost-EM under a high-dimensional model-selection110

problem (results in 3.3). The manuscript finishes with a discussion about how to interpret the results from111

CJSboost and poses some new questions (Section 4). A summary is provided in Section 5. For R code and112

a tutorial, see the online content at http://github.com/faraway1nspace/HMMboost/.113

2.2. Background114

2.2.1. The Prediction perspective115

From a prediction perspective, our goal is to estimate a prediction function G that maps covariate in-

formation X to our response variable (i.e., G : X → Y). Our data {yj ,xj}nj=1 arises from some unknown

probability distribution P . Our optimal prediction function is that which minimizes the generalization error :

L(y,G(x)) =

∫
`
(
y,G(x)

)
dP (y,x) (1)

where ` is a loss function (it scores how badly we are predicting y from x) and L is the expected loss, a.k.a,116

the risk (our loss integrated over the entire data distribution). Our goal is to minimize the loss on new,117

unseen data drawn from the unknowable data distribution P (Bühlmann & Yu, 2003; Meir & Rätsch, 2003;118

Murphy, 2012a). It should be noted that for many disciplines, making good predictions is the primary goal119

(e.g., financial forecasting). In mark-recapture, we usually wish to make inference about covariates X and120

their functional relationship (G) to the response variable, such as estimating survival from capture histories,121

rather than making predictions per se. In such cases, the generalization criteria (1) serves as a principled122

means of “model parsimony”: our model is as complex as is justified to both explain the observed data123

and make good predictions on new data. This is very different from Maximum-Likelihood Estimation (as in124

Program MARK) whose estimate Ĝ is that which maximizes the likelihood of having seen the observed data125

y. It is, however, similar to AIC selection, which is implicitly motivated by minimizing expected loss (Vrieze,126

2012), i.e., optimal predictive performance.127
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One cannot measure the generalization error (1); instead, we must proceed by minimizing the empirical

risk measured on our observed data:

L(y, G(X)) =
n∑
j=1

`(yj , G(Xj)) (2)

Minimizing L(y, G(X)) until convergence is easy but will obviously over-fit a sample and make bad predic-128

tions. However, it can be shown that if we constrain the complexity of our function space (Bühlmann & Yu,129

2003; Meir & Rätsch, 2003; Mukherjee et al., 2003) we can pursue a strategy of “regularized risk minimization”130

and bound the generalization error. In learning algorithms, this entails at least one regularization parameter131

that smooths or constrains the complexity of G. In other words, we do not seek the estimator that best fits132

the data. In boosting, the principal means of regularization is via shrinkage (taking only small steps along the133

risk gradient) and early-stopping (not running the algorithm until the risk convergences). These correspond134

to hyperparameters ν and m, respectively, the shrinkage weight and the number of boosting iterations. For135

a small m, the model is strongly constrained and very conservative; as m gets big, the model becomes more136

complex. Likewise, ν�1 ensures that the influence of any one boosting step is tiny. Practically, one fixes ν137

and finds an optimal m via cross-validation. Figure 1 shows an example of bootstrap-validation to find an138

optimal stopping criteria mCV, used in the dipper CJS analysis (Section 3.2).139

2.2.2. Motivation for regularization140

The unregularized boosted model with prediction function G(m→∞) results in a fully-saturated model,141

which (depending on the prediction function) is equivalent to the Maximum Likelihood solution (Mayr et al.,142

2012). At finite sample sizes and a large candidate-set of covariates, MLEs do not result in good predictions:143

they may be unbiased, but they will be wildly sensitive to noise in the data, especially for capture-recapture.144

For regularized G(m�∞), learning algorithms should preferentially select influential covariates and shrink145

the coefficients of less-important covariates close to zero. This shrinkage induces a bias (Bühlmann & Yu,146

2003; Bühlmann & Hothorn, 2007), but the predictions are more robust to noisy data (i.e. low-variance;147

Murphy, 2012a). In this light, we see the practical similarity between regularization and the more popular148

model parsimony strategies in capture-recapture, such as model-selection, model-averaging, and subjective149

Bayesian models. Hooten & Hobbs (2015) implore ecologists to unify these techniques under a Bayesian150

perspective; for example, the AIC, Lasso/L2Boosting, Ridge-regression can be reformulated in such a way151

that they differ according to the priors on the `0, `1 and `2-norm of regression-coefficients, respectively. Even152

a simple Bayesian prior can be understood as a type of regularization by shrinking estimates away from153

their MLE values and towards the conservative expectations of a prior (a.k.a “natural shrinkage”; Hooten &154

Hobbs, 2015).155

Today, most mark-recapture practitioners are implicitly using a prediction criteria for inference. For156

example, the AIC is popular in mark-recapture studies (Johnson & Omland, 2004), thanks in large part157

to the Frequentist and Information-Theoretic leanings of Program MARK (White & Burnham, 1999). The158

AIC is asymptotically prediction-optimal, whose maximum risk is minimal among all potential models, and159
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Figure 1: Monitoring the risk minimization (negative CJS log-Likelihood) for the Dipper analysis, using CJSboost-EM with
CART-like trees as base-learners. Each boosting iteration m takes a step towards minimizing the empirical risk and selects a
new shrunken base-learner to add to the ensembles. Top: Estimating the optimal stopping criteria at mcv (red dashed line) via
bootstrap-validation. Each grey line represents the holdout-risk predicted on a subset of the capture-histories, from a model
trained on a bootstrap-sample of capture-histories. mcv minimizes the mean holdout-risk over all bootstrap runs, an estimate
of the expected loss. Bottom: The empirical risk of the final statistical model using the full dataset; stopping early at mcv, well
before convergence.

has connections with leave-one-out-cross-validation (LOOCV; Stone, 1977; Shao, 1993, 1997; Vrieze, 2012).160

However, statisticians consider the AIC to be a bit too permissive, especially if the “true model” is sparse161

(Shao, 1993; Burnham, 2004; Hooten & Hobbs, 2015). For practical mark-recapture analysis, the AIC/AICc162

can favour overly-complex models which can suffer singularities or boundary-value estimates (like 100%163

survival or 100% capture probability; Rankin et al., 2016; Hunt et al., 2016). Boosting is also prediction-164

6

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 11, 2016. ; https://doi.org/10.1101/052266doi: bioRxiv preprint 

https://doi.org/10.1101/052266
http://creativecommons.org/licenses/by-nc-nd/4.0/


optimal (Bühlmann & Yu, 2003), but skirts the issues of singularities and boundary-value estimates by fitting165

very simple models, called base-learners in a step-wise manner. At finite sample sizes, boosting should lead166

to slightly sparser models than the AIC/AICc.167

In an extreme case of sparsity, when being prediction-optimal is not the chief concern, and one wishes to168

instead uncover a “true model” with just a few important covariates, boosting has another desirable prop-169

erty. Regularized risk-minimizers (in a univariate setting) can be made model-selection consistent by hard-170

thresholding unimportant covariates to zero weight (Bach, 2008; Meinshausen & Bühlmann, 2010; Murphy,171

2012c). These sparse solutions may be more interesting for capture-recapture practitioners when inference172

about covariates or estimating survival is the chief concern.173

2.2.3. Introduction to boosting174

Boosting is an iterative method for obtaining a statistical model via gradient descent (Breiman, 1998;175

Friedman et al., 2000; Friedman, 2001; Breiman, 1999; Schmid et al., 2010; Robinzonov, 2013). The key176

insight is that one can build a strong predictor F = G(X) by the step-wise addition of many weak base-177

learners, b(y, x) ⇒ g(x) : x→ y (Schapire, 1990; Kearns & Valiant, 1994). Remarkably, a base-learner need178

only have a predictive performance of slightly better than random chance for the entire ensemble to be strong.179

The ensemble results in a smooth additive model of adaptive complexity:180

F (m) = G(X) =

mstop∑
m=1

ν · g(m)
k (Xk) (3)

where each gk is a base-learner’s prediction function, shrunken by ν. The ensemble is constructed as follows:181

i) initialize the prediction vector F (m=0) at some uniform estimate (like the MLE of an intercept model); ii) fit182

base-learners b to û, the estimated negative-gradient of the loss function (the residual variation unexplained183

by F (m−1)), b(û,x) ⇒ g; iii) shrink each base-learners’ prediction g(x) = f̂ (m) by a small fraction ν; iv)184

update the overall prediction F (m) = F (m−1) + νf̂ (m); v) repeat for mstop iterations. mstop is the key185

parameter that governs model complexity (Bühlmann & Yu, 2003; Schmid & Hothorn, 2008a) and must be186

tuned by cross-validation or bootstrap-validation. Variable selection can be directly embedded within each187

boosting iteration by choosing only one best-fitting base-learner per m iteration, discriminating among a188

large candidate set of base-learners {b(u,x1), b(u,x2), ..., b(u,xk)}, and where each candidate only includes189

a small subset of the covariates X. For linear base-learners, this boosting algorithm is generally considered190

equivalent to `1 regularization (Efron et al., 2004; Bühlmann & Hothorn, 2007), a.k.a the Lasso.191

Base-Learners may be simple Least-Squares estimators, bOLS, in which case an unregularized boosted192

model will estimate regression coefficients that are practically identical to a frequentist GLM. However,193

Bühlmann & Yu (2003) showed that for L2Boosting, good overall predictive performance depends on the fact194

that base-learners are very weak. Therefore, practitioners commonly use highly-constrained base-learners195

such as Penalized Least Squares bPLS, recursive-partitioning trees btrees (a.k.a CART), or low-rank splines196

bspline. Despite their weakness, Bühlmann & Yu note that for a fixed constraint (such as low degrees-of-197

freedom in bspline or low tree-depth in btrees), the overall boosted ensemble will typically have a much greater198
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complexity than its constituent base-learners and that this complexity is adaptive.199

There are many flavours of boosting. CJSboost hails primarily from the component-wise boosting and200

gamboostLSS frameworks (Bühlmann & Yu, 2003; Schmid & Hothorn, 2008b; Schmid et al., 2010; Mayr201

et al., 2012). Here, the prediction vector is now a set F = (F1, F2, ..., Fk) of k components, each representing202

one of the parameters in the likelihood function (e.g., φ and p). Each parameter has its own ensemble of base-203

learners. The loss function is the negative log-likelihood of the data-generating model `i = − log p(yi|φi, pi) =204

− log p
(
yi
∣∣ 1

1+e−Fφ
, 1

1+e−Fp

)
(see the CJS likelihood 4). Each components’ gradient can be estimated from205

the negative partial-derivatives of the loss function with respect to Fk, i.e., ûk,i = − ∂`i
∂Fk

, conditional on the206

values of the other prediction vectors F¬k. Each k parameter is updated once per boosting iteration.207

2.2.4. The Cormack-Jolly-Seber model and Hidden Markov Models208

The above component-wise boosting framework is not suitable for serially dependent observations in an209

HMM time-series: consider that the negative gradient in traditional boosting must be estimated point-wise210

for each independent data pair (yi, Xi). Instead, the CJS likelihood is evaluated on individuals’ entire capture211

histories yi = (y1, y2, ..., yT )ᵀ over T capture periods:212

p(yi|φ, p, t0i ) =
( t∗i∏
t>t0i

φi,t(pi,t)
yi,t(1− pi,t)1−yi,t

)
χ

(t∗i+1)
i (4)

Where i indexes the n uniquely identified individuals constituting our dataset; t = 1:T indexes the T equally213

spaced capture periods (time); yi,t ∈ [0, 1] scores whether individual i was observed in capture period t; φi,t is214

the probability of surviving from capture period t−1 to t (note the one-time-step difference from the definition215

of φt used in Program MARK); pi,t is the capture probability of individual i in capture period t (a.k.a, our216

observation error, or the “emission process” in HMM parlance); t0i is the first capture period in which217

individual i was first observed; t∗i is the last period when individual i was observed. Finally, χ
(t∗i+1)
i is the218

probability of never being seen again after t∗i until the end of the study, χ
(t)
i = (1−φi,t) + (1− pi,t)φi,tχ(t+1)

i ,219

and whose recursive calculation exemplifies the serially dependent nature of the model. Yn×T is the full220

matrix of our capture-histories.221

Mark-recapture practitioners will be interested to note: i) the model conditions on first-capture {t0i }ni=1;222

ii) the model can potentially allow for individual heterogeneity in capture probabilities pt,i (which otherwise223

results in a negative-bias in population abundance estimates; Carothers, 1973; Burnham & Overton, 1978;224

Rankin et al., 2016); and iii) certain parameters cannot be separated in Maximum-Likelihood Estimation,225

such as pT and φT , but this is less of an issue under constrained base-learners and regularization.226

In order to boost the CJS model, we need independence of data pairs (yi,t, Xi,t). If we reformulate the227

capture-recapture system as a HMM, we can garner conditional independence via the concept of latent states228

zi,t ∈ {0, 1} to represent {dead, alive}. When zi,t = 1, then individual i is alive and available for capture at229

time t, and the probability of a capture is simply p(yi,t=1|zi,t=1) = pi,t. However, if zi,t = 0 then individual230

i is dead and unavailable for capture at time t; therefore the probability of a capture is zero.231
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Obviously, one never knows with certainty the latent states of a trailing sequence of zeros yt:T = (0, ..., 0)ᵀ,232

but we can utilize well-developed HMM tools to estimate the state-sequence z in various ways. In particular,233

“CJSboost-EM” 2.3.1 utilizes the marginal expectations of (zt, zt−1) in an Expectation-Maximization step.234

“CJSboost-MC” 2.3.2 utilizes Monte-Carlo integration by drawing random values of z from the posterior235

π(z|y, φ, p). We can interweave these two methods within a boosting algorithm: both will allow us to236

estimate point-wise negative gradients for all complete-data points
(
{yi,t, zi,t, zi,t−1}, Xi,t

)
and proceed with237

the gradient descent algorithm.238

2.3. CJSboost239

I will now formally describe the CJSboost variants “CJSboost-EM” and “CJSboost-MC”. In practise, I240

will show that they lead to approximately the same estimates, but have different computation disadvantages241

under different scenarios. When the number of discrete states in the HMM process is low (2-3), then the242

deterministic EM algorithm is significantly faster and less prone to approximation error. For example,243

in our CJS example, we just have two latent states {0, 1} := {dead, alive} with three legal transitions244

{1→1, 1→0, 0→0,���0→1}. However, as the number of discrete states increases, the memory management of245

all the possible transitions becomes combinatorially expensive. In such scenarios, it is computationally easier246

to sample z from its posterior.247

2.3.1. CJSboost by Expectation-Maximization248

For a CJS model using CJSboost-EM, our target risk is the CJS negative log-likelihood. However, we use

the principle of Expectation-Minimization to derive a slightly different loss function and subsequent negative

gradients. Our loss is derived from the negative Complete-Data Log-Likelihood (CDL) which assumes we

have estimates of the latent state zi,t, zi,t−1.

−CDL(yi,t, zi,t, zi,t−1|Fi,t,φ, Fi,t,p) = − 1[zi,t−1 =1, zi,t=1]

(
log

(
1

1+e−Fi,t,φ

)
+ yi,t log

(
1

1+e−Fi,t,p

)

+ (1−yi,t) log

(
1

1+eFi,t,p

))

− 1[zi,t−1 =1, zi,t=0] log

(
1

1+eFi,t,φ

)
− 1[zi,t−1 =0, zi,t=0]

(5)

where y and z are defined as above in (4) and Fi,t,p and Fi,t,φ are the prediction vectors for the capture

probability component and the survival component, respectively, on the logit scale. In accordance with the

principle of EM, we derive a “Q-function” to serve as our new loss, replacing the values of (zi,t−1, zi,t) with

their two-slice marginal expectations: wt(q, r) := p
(
zt−1 = q, zt = r|y,F

)
. Conditional on the prediction

vectors F and the capture history y, the values of the two-slice marginals {w(1, 1), w(1, 0), w(0, 0)} can be

easily computed using a standard “forwards-backwards” HMM algorithm (Rabiner, 1989; Murphy, 2012b),

as detailed in Appendix A. We can also treat each i × t observation as being conditionally independent,
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resulting in the new index j := (i, t). The Q-function is:

`(yj , {Fj,φ, Fj,p}) = −wj(1, 1)

(
log

(
1

1+e−Fj,φ

)
+ yj log

(
1

1+e−Fj,p

)
+ (1−yj) log

(
1

1+eFj,p

))
− wj(1, 0) log

(
1

1+eFj,φ

)
− wj(0, 0)

(6)

According to the theory of EM, by minimizing the Q-function, we also minimize the target empirical249

risk: the negative CJS log-likelihood (4). The advantage of working with the Q-function is that it is easy to250

calculate the negative gradients (7) and proceed with the gradient descent.251

I now describe the CJSboost-EM algorithm.252

1. Set the regularization parameters: mstop ≈ 102−103; νφ, νp ≈ 10−3−10−1;253

2. Initialize: m = 1; F (0) =
{
F

(0)
φ = φ̂MLE(·), F (0)

p = p̂MLE(·)
}

(i.e., initialize the prediction vectors at the254

MLEs of a simple intercept model).255

3. Estimate the two-slice marginal probabilities {wj(1, 1), wj(1, 0), wj(0, 0)}Jj=1 for all individuals and256

capture-periods, using the forwards-backwards algorithm (see Appendix A.3).257

4. Estimate the negative gradients:

û
(m)
j,φ = − ∂`j

∂F
(m−1)
φ

=
wj(1, 1)− wj(1, 0)eF

(m−1)
j,φ(

1 + eF
(m−1)
j,φ

)
û

(m)
j,p = − ∂`j

∂F
(m−1)
p

=
wj(1, 1)

(
1 + eF

(m−1)
j,p

)
yj − wj(1, 1)eF

(m−1)
j,p

1 + eF
(m−1)
j,p

(7)

5. For each component θ = {φ, p}:258

(a) fit k base-learners independently to the gradients: bk

(
û

(m)
θ , Xk

)
⇒ gk(Xk);259

(b) each fitted learner makes an estimate of the gradient, f̂k = gk(Xk);260

(c) select the best-fitting base-learner k∗ = argmin
k

(û
(m)
θ − f̂k)2 and append the fitted-learner to the261

ensemble Gθ ← g∗k;262

(d) update the prediction vector: F
(m)
θ = νθf̂

∗
k + F

(m−1)
θ ;263

6. Estimate the empirical risk on the full data L(Y,F (m)), or estimate the holdout-risk on a test set264

L(Ytest,F (m)
test ) s.t. F (m)

test = {G(m)
φ (Xtest), G

(m)
p (Xtest)}.265

7. Update m = m+ 1.266

8. Repeat steps 3 to 7 until m = mstop.267

The outputs of the algorithm are the fit vectors F and the ensemble of fitted base-learners Gφ and Gp. The268

estimate of survival for individual i at time t can be retrieved j := (i, t);φj = logit−1(Fj), and likewise for269

capture probability. For predicting φ and p on new covariate data X, we merely process the data through270

the ensemble of fitted base-learners and shrink by ν, i.e., F pred
θ = Gθ(X) = νθ

∑
gk∈Gθ gk(X).271

The three regularization parameters mstop, νφ, νp must be tuned by minimizing the holdout-risk averaged272

over many out-of-sample test sets, i.e., our estimate of the expected loss (see 2.4).273
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2.3.2. CJSboost by Monte-Carlo approximation274

A second strategy to garner conditional independence of data-points (yj ,xj) and estimate the negative275

gradients is to integrate over the latent state distributions π(zi|yi,Fi) with a large sample drawn from the276

posterior. A fast and simple “forward-filtering and backward-sampling” algorithm is used (Rabiner, 1989;277

Murphy, 2012b), detailed in Appendix A.4. Within each boosting iteration m, we sample S sequences278

of zi. Per s sequence, we estimate a separate negative-gradient, and fit base-learners to it. After fitting279

all S samples, we update the prediction vectors with the best-fitting base-learners from each sequence,280

F
(m+1)
θ = F

(m)
θ + νθ

∑S
s f̂

(s). Over S ×m draws, this is approximately equivalent to the EM algorithm. For281

comparable results to CJSboost-EM, the shrinkage parameters νMC should be set equal to 1
S νEM, i.e., the282

contribution of any one sequence z(s) is small.283

I now describe the CJSboost-MC algorithm:284

1. Set parameters S, mstop, νφ, and νp.285

2. Initialize m = 1 and F (0).286

3. For s = 1 : S, do:287

(a) sample latent state sequence z
(s)
i ∼ π(z|yi,Fi) (see Appendix A.4);288

(b) estimate the negative gradients, conditional on z
(s)
i :

û
(m,s)
i,t,φ = − ∂`i,t

∂F
(m−1)
φ

=
1[z

(s)
i,t−1 =1, z

(s)
i,t =1]− 1[z

(s)
i,t−1 =1, z

(s)
i,t =0] · eF

(m−1)
i,t,φ

1 + eF
(m−1)
i,t,φ

û
(m,s)
i,t,p = − ∂`i,t

∂F
(m−1)
p

=
1[z

(s)
i,t−1 =1, z

(s)
i,t =1]

((
1 + eF

(m−1)
i,t,p

)
yi,t − eF

(m−1)
i,t,p

)
1 + eF

(m−1)
i,t,p

(c) for each component θ = {φ, p}:289

i. fit k base-learners independently to the gradients: bk

(
û

(m,s)
θ , Xk

)
⇒ g

(s)
k (Xk).290

ii. each fitted learner makes an estimate of the gradient, f̂
(s)
k = g

(s)
k (Xk)291

iii. select the best-fitting base-learner k(s)∗ = argmin
k

(û
(m,s)
θ − f̂ (s)

k )2 and append the fitted-learner292

to the ensemble Gθ ← g
(s)∗
k .293

4. For each θ = {φ, p}: update the fit vectors, overall s: F
(m)
θ = F

(m−1)
θ + νθ

∑S
s f̂

(s).294

5. Estimate the empirical risk on the training data L(Y,F (m)), or on a holdout test set L(Ytest,F (m)
test ).295

6. m = m+ 1296

7. Repeat steps 3 to 6 until m = mstop.297

Just as in the CJSboost-EM algorithm, we must tune ν and mstop through cross-validation or bootstrap-298

validation (Section 2.4).299

Notice that although the two algorithms have different specific negative-gradients and loss functions, the300

empirical risk is always the negative log-likelihood of the CJS model.301
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2.4. Hyperparameters302

In component-wise boosting, the three most important regularization parameters are mstop, νφ, νp. These303

must be tuned by some form of holdout-validation. As per Schmid et al. (2013), I suggest sampling with304

replacement (bootstrapping) individuals’ capture histories between 50 to 100 times, training a new model on305

each bootstrap sample. On average, each bootstrap leaves 36.5% of the capture-histories unused in the model306

fitting, which can then be used to estimate a holdout-risk. Averaged over all bootstraps, this is an estimate of307

the generalization error. Bootstrap-validation is preferable to k-fold or leave-one-out cross-validation because308

it is most similar to the multiple resampling/subsampling schemes of Shao (Monte-Carlo CV and Delete-d CV;309

1993, 1997) which are model-selection consistent under a wider variety of conditions (e.g., sparsity, tapering).310

Finally, the K-bootstrap can also give us an estimate of posterior inclusion probabilities via stability-selection311

(Meinshausen & Bühlmann, 2010; Murphy, 2012c), which I use in section 2.7.312

Because we can monitor the trajectory of the holdout-risk during each boosting iteration, we only need to313

perform one round of K-bootstrap-validation to find the optimal m. See Figure 1 for an example of monitoring314

the holdout-risk and estimatingmcv. Estimating optimal values of νφ and νp is more complicated because they315

are continuous; in practise we must discretize the set of plausible combinations, e.g., (10−4, 10−3, 10−2, 10−1)×316

(10−4, 10−3, 10−2, 10−1). Each combination requires a separate bootstrap-validation exercise. This is the317

most expensive step of CJSboost. See Appendix B for a suggestion on how to perform this task with only318

7-10 K-bootstrap-validation runs.319

The reader should note that other multivariate boosting techniques (such as gamboostLSS; Schmid et al.,320

2013; Mayr et al., 2012) instead have a single fixed ν for all parameters, and seek to optimize mθ per parameter321

θ. This is inversely related to what I propose: optimizing a global mstop for both parameters, while optimizing322

the ratio of νθ1 to νθ2 . The two methods are equivalent in their outcome. In other words, making νθ smaller323

for component θ is the same as decreasing mθ for fixed ν, and vice versa. More importantly, other authors324

have claimed that there is little benefit in optimizing m and ν for each component (Schmid et al., 2013).325

This is untrue for CJSboost, where the optimal estimate of νφ may be several orders of magnitude different326

than the optimal νp.327

There are theoretically many other hyperparameters, such as the base-learner parameters which control328

flexibility, e.g. the effective degrees-of-freedom of a spline, or the maximum tree-depth of a conditional329

inference tree (Hothorn et al., 2006). However, Bühlmann & Yu (2003) and Schmid & Hothorn (2008a)330

show that these can be safely fixed and one should instead focus on mstop. A more important consideration331

is the relative flexibility of competing base-learners: multi-covariate learners and unpenalized learners have332

a greater freedom to (over)fit the residual variation and will be preferentially selected in the algorithm.333

Therefore, one should use penalties to enforce a similar effective degrees-of-freedom among all base-learners,334

as well as decompose higher-order interactions and non-linear curves into their constituent components. For335

example, if one wishes to learn about the role of covariates x1 and x2 and the possibility of an interaction336

between x1 × x2, then one must add three PLS base-learners of equal effective-df : two for the main-effects337
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and a separate base-learner for their interaction. Readers should refer to the practise of “centring” in Kneib338

et al. (2009) and Hofner et al. (2012).339

2.5. Simulation 1: MC vs EM vs AICc vs MLE340

The goals of this simulation were to compare estimates of survival and capture probabilities among341

the two boosting algorithms (CJSboost-EM and CJSboost-MC) and benchmark them against MLEs and342

AICc model-averaging. The simulated dataset was inspired by the European Dipper dataset from (Lebreton343

et al., 1992). The simulated dataset included T = 10 primary periods, and n = 300 individuals in two344

groups (male and female). Individuals’ first-capture periods (t0i ) were random. The true processes were345

smoothly time-varying effects plus an individual covariate (sex-effect). The true data-generating processes346

were: p(t, sex) = logit−1
(

0.5 + t sin(t)
17

)
− 10 · 1[sex = 1] and φ(t, sex) = 0.91 − 0.01 · t − 0.05 · 1[t = 5, 6] +347

0.05 · 1[t = 9, 10]− 0.05 · 1[sex = 1]. Figure 3 graphs the true processes.348

A) Linear Models (MLE)

φ(·)
φ(t)
φ(sex)
φ(flood)
φ(t, sex)
φ(t× sex)
φ(flood, sex)
φ(flood× sex)


×



p(·)
p(t)
p(sex)
p(flood)
p(t, sex)
p(t× sex)
p(flood, sex)
p(flood× sex)


:

64 fixed-effects
models for

model-averaging

B) Equivalent Linear Model Base-learners

bOLS(uφ,1
NJ )

bPLS(uφ, Xt; df=1)
bOLS(uφ, Xsex)
bOLS(uφ, Xflood)

bPLS(uφ, Xt,sex; df=1)
bPLS(uφ, Xt×sex; df=1)
bPLS(uφ, Xflood,sex; df=1)
bPLS(uφ, Xflood×sex; df=1)

{
bspline(uφ, Xt; df=1)

bspline(uφ, Xt×sex; df=1)

}
+



bOLS(up,1
NJ )

bPLS(up, Xt; df=1)
bOLS(up, Xsex)
bOLS(up, Xflood)

bPLS(up, Xt,sex; df=1)
bPLS(up, Xt×sex; df=1)
bPLS(up, Xflood,sex; df=1)
bPLS(up, Xflood×sex; df=1)

{
bspline(up, Xt; df=1)

bspline(up, Xt×sex; df=1)

}
:

1 boosted model
with automatic

base-learner selection

C) Equivalent non-Linear Model Base-learners (CART)

btrees(uφ, Xt,sex,flood; depth=2) + btrees(up, Xt,sex,flood; depth=2) :
1 boosted model
with automatic

covariate selection

Figure 2: Different notation for multimodel inference of a Cormack-Jolly-Seber model, comparing fixed-effects model-averaging
and boosting. A) Each fixed-effect model includes one term for φ (left) and one for p (right). θ(·) is an intercept model; θ(t) has
different coefficients per T capture periods (with appropriate constraints on t=T ); θ(a, b) is a linear combination of covariate a
and b on the logit scale; θ(a× b) is an interaction effect between a and b on the logit scale. B) Equivalent linear base-learners
(Ordinary and Penalized Least Squares from mboost; Bühlmann & Hothorn, 2007) with penalties to constrain their effective-df
(ridge penalty). All terms are available in one model; selection of base-learners is by component-wise boosting. C) Non-linear
CJS model with CART-like trees, allowing complex interactions. Selection of covariates is by the ctree algorithm (Hothorn
et al., 2006).
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Figure 2A shows all combinations of p and φ parametrizations, which has 64 possible fixed-effect models349

for estimation by Maximum Likelihood and AICc model-averaging. The true model is best represented as350

φ(t, sex)p(t, sex). Flood is a dummy categorical variable that groups the captures periods {4, 5, 6} (corre-351

sponding to a trough in either process): it simulates an analyst’s hypothesis that high flood years (in periods352

4,5,6) may influence dipper survival and capture probability. The MLE and AICc model-averaging analyses353

were conducted with Program MARK (White & Burnham, 1999) and RMark (Laake, 2013).354

For the boosting analyses, four techniques were compared: i) linear-model CJSboost-EM (using OLS355

and PLS base-learners); ii) non-linear CJSboost-EM (using a CART-like base-learner called “conditional-356

inference trees”; Hothorn et al., 2006); iii) linear-model CJSboost-MC; and iv) non-linear CJSboost-MC.357

For the linear-models, the OLS and PLS base-learners included all base-learners listed in Figure 2B. See358

the mboost R package (Bühlmann & Hothorn, 2007; Hofner et al., 2012). Variable selection occurs as a359

consequence of the internal competition among base-learners to fit the gradient, per boosting iteration. The360

effective degrees-of-freedom of each base-learner were constrained with ridge penalties, as per Section 2.4.361

The non-linear CJSboost models had just one CART-like base-learner per φ and p. Variable-selection and362

interactions are implemented internally to the ctree algorithm, much like a black-box.363

All 4 models used 70-times bootstrap-validation to estimate optimal values of mstop, νφ and νp, as per364

section 2.4.365

2.6. Analysis: dipper example366

Using CJSboost-EM, I reanalyzed the European Dipper dataset from (Lebreton et al., 1992). I compared367

the results to the MLEs of the fully-saturated model (φ(t× sex)p(t× sex)) as well as to AICc model-averaged368

estimates. The dataset has 294 individuals in T = 7 capture periods. Covariates included time, sex, and369

flood, similar to Section 2.5. The model-building framework was the same as in Figure 2. A 70-times370

bootstrap-validation was used for optimizing mstop, νφ and νp.371

Interested readers can repeat this analysis using the online tutorial at http://github.com/faraway1nspace/372

HMMboost/.373

2.7. Simulation 2: high-dimensional example374

The final simulation addressed the issue of high-dimensionality and the ability of CJSboost (EM) to find375

a sparse set of important covariates out of many spurious covariates. This is a variant of the “small n big p”376

problem often studied in machine learning. However, this challenge is extraordinarily difficult for capture-377

recapture analysis, because one must consider all combinations of covariates for different parameters (φ, p).378

In this section, I simulated 21 multi-colinear, individual-level covariates (18 continuous, three discretized)379

drawn from a multivariate Gaussian with marginal variances of 1. The general model can be represented as:380

logit(θi,t) = βθ,0 +
21∑
k=1

Xi,kβθ,k︸ ︷︷ ︸
individual effects

+
T∑
τ=2

βθ,τ1[τ= t]︸ ︷︷ ︸
capture period effect
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The intercepts were drawn randomly from βp,0 ∼ U(0.4, 0.6) and βφ,0 ∼ U(0.55, 0.8). The true models381

were deliberately sparse, such that only three covariates’ coefficients (β∗θ ) were non-zero. For continuous382

variables, β∗θ had a norm of 1 (on the logit scale), while the categorical-variables had norms of 3, resulting383

in individual marginal effects spanning 0.8−0.9 probability-units. Time-as-a-categorical-variable was also384

included as a possible influential covariate. The number of individuals varied randomly from n = 200: 300, in385

T =10 capture periods. The simulation was repeated 30 times, each time with new covariates and coefficients.386

Such a model-averaging exercise cannot be performed in MARK, because there are more than 4 trillion387

different fixed-effects models (excluding two-way interactions or higher). Furthermore, the AIC is known to388

do poorly when the simulated true model is sparse by design (Burnham, 2004).389

For each simulated dataset, the boosting analyses used 23 different PLS base-learners (df = 2) for all390

continuous and categorical covariates, and included capture-period t as a categorical variable (a.k.a, the θ(t)391

model). A 70-times bootstrap-validation was performed to optimize mstop, νp, and νφ. After optimization,392

the performance of the fitted models were assess by calculating 2 point-wise statistics between the true393

(simulated) processes and the estimates of logit(φ) and logit(p): i) Pearson correlation ρ(F
(true)
θ , F̂θ); and ii)394

the slope between s(F
(true)
θ , F̂θ) from a simple linear regression, whereby s = 1 suggests that the estimates395

are unbiased. ρ̂θ is a measure of the precision of the linear relationship between the true and fitted values,396

while ŝθ can be likened to angular bias.397

An extra topic explored in the online tutorial, but not in this paper, was the performance of CART-like398

trees (see http://github.com/faraway1nspace/HMMboost/).399

In addition to studying the precision and bias of estimates, I also demonstrate the usefulness of inclusion400

probabilities (the probability that a covariate is selected in the model) to infer the importance of covariates. I401

used the technique of stability selection from Meinshausen & Bühlmann (2010), integrated within the 70-times402

bootstrap-validation. Stability selection probabilities Ŝ are estimated by scoring whether a kth covariate Xk403

is selected in a b bootstrap before m iterations, Ŝ
(m)
θ,k = 1

70

∑70
b=1 1[Xk∈G(m,b)

θ ]; Ŝ
(m)
θ,k is evaluated per m, per404

covariate Xk and per parameter θ ∈ {φ, p}. The average over all (reasonable) regularization hyperparame-405

ters yields a Frequentist approximation to posterior inclusions probabilities, π(iθ,k|D) ≈ 1
mmax

∑mmax

m=1 S
(m)
θ,k406

(Murphy, 2012c). Ideally, influential covariates should have very high inclusion probabilities (� 0.5, and407

perhaps close to 1). Such posterior probabilities are an important means of inference about the covariates,408

and are more intuitive than other familiar tools for inference, like 95%CI (Hoekstra et al., 2014; Morey et al.,409

2016). Also, the stability paths (Figure 8) can be a valuable graphical tool for interpreting the importance of410

covariates (Meinshausen & Bühlmann, 2010).411

Stability selection can also serve in a second-stage of “hard-thresholding” to find a sparse set of truly412

influential covariates (Bach, 2008; Meinshausen & Bühlmann, 2010). One picks an inclusion probability413

threshold between 0.5−0.99, and discards non-influential covariates below this threshold. One can proceed414

to “debias” the coefficients by running a final boosting model using only the selected covariates (Murphy,415

2012c) and setting m → ∞. Choosing an appropriate threshold is a classic trade-off between Type I errors416
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and Power: a high threshold ≈ 1 should correctly reject the non-influential covariates (low False Discovery417

Rate) but may wrongly reject some of the truly influential covariates (high False Rejection Rate); a low418

threshold < 0.5 will result in a higher False Discovery Rate but low False Rejection Rate. Ideally, there419

should be a wide range of thresholds between 0.5-1 where both the FDR and FRR are close to zero.420

When the FDR and FRR are zero, a procedure is called “model-selection consistent”: it can correctly421

shrink the coefficients of non-influential covariates to zero. It is also an “oracle” if it can accurately estimate422

coefficients as if the true model was known in advance (Zou, 2006). The Lasso, Ridge-regression, and Boosting423

do not have these properties (Zou, 2006; Bach, 2008; Bühlmann & Hothorn, 2010): there is a pernicious trade-424

off between predictive-performance and model selection consistency (Zou, 2006; Meinshausen & Bühlmann,425

2006; Murphy, 2012c) which has to do with one’s values (Vrieze, 2012). The AIC is also not model-selection426

consistent (Shao, 1997; Vrieze, 2012). Instead, the AIC and Boosting are motivated by good prediction427

performance and minimizing the expected loss, rather than the belief in a sparse true model. Many authors428

laud this latter perspective, and declare sparsity to be a purely human construct that is irrelevant to natural429

phenomena (Burnham, 2004; Vrieze, 2012). Philosophical notions aside, there may be a strong practical430

imperative in capture-recapture to favour sparser solutions than what AIC or boosting can provide, as431

we demonstrate with the stability paths. Towards this goal, stability selection and inclusion probabilities432

can transform an `1 regularizer into a model-selection consistent procedure (Bach, 2008; Meinshausen &433

Bühlmann, 2010). Further debiasing can give it oracle properties. Such a multi-stage procedure is no longer434

strictly about prediction; rather, it considers regularization as an intermediary step towards an ultimate goal435

to recover a true sparse model.436

One caveat to using stability selection for CJSboost is that base-learners must have equal flexibility/degrees-437

of-freedom; otherwise, the more complex base-learners (and their constituent covariates) will have a greater438

probability of being selected (Kneib et al., 2009). See Section 2.4.439

A final note on debiasing and convexity of the loss function: after thresholding, the final model may not440

have a unique MLE, such as as the φ(t)p(t) model. In such cases, one must impose constraints (such as441

φT = φT ) before attempting to debias the results and run the gradient descent until convergence m→∞.442

Regularized CJSboosting does not have this problem because of early-stopping and model-selection.443

3. Results444

3.1. Simulation 1: EM vs MC vs AICc vs MLE445

Figure 3 compares the estimates from CJSboost-EM versus AICc model-averaging and MLEs from the446

full-model φ(t×sex)p(t×sex), as well as the true processes. Figure 4 does the same for the CJSboost-MC.447

The results can be summarized as follows:448

i) The Expectation-Maximization algorithm and the Monte-Carlo algorithm yielded approximately the449

same estimates for the linear models (bPLS), but slightly different results for the non-linear CART-like450

base-learners (bTrees).451
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Figure 3: Simulation 1, demonstrating the CJSboost estimates from the Expectation-Maximization technique. A comparison of
capture probability estimates p̂(t×sex) and survival estimates φ̂(t×sex) from models composed of linear base-learners (OLS and
PLS; in orange) and non-linear base-learners (CART-like trees; in red), as well AICc model-averaging (blue) and MLE (dashed
black).

ii) None of the four methods (MLE, AICc, bPLS-boost or btrees-boost) did a convincing job of approximating452

the true underlying processes (for both φ and p), although each model did uncover some aspect of the453

true processes.454

iii) The similarities between the three predictive methods (AIC, bPLS-boost, btrees-boost) were thus:455

(a) all three methods showed the same pattern for both for φ and p: low values during the flood periods456

(t=4, 5, 6), and a moderate sex effect (group 1 had higher values than group 2);457

(b) the bPLS-boost model was most similar to AICc model-averaging;458
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Figure 4: Simulation 1, demonstrating CJSboost estimates from the Monte-Carlo approximation technique. A comparison of
capture probability estimates p̂(t×sex) and survival estimates φ̂(t×sex) from models composed of linear base-learners (OLS and
PLS; in orange) and non-linear base-learners (CART-like trees; in red), as well AICc model-averaging (blue) and MLE (dashed
black).

(c) the estimates from both boosted models were shrunk to the mean relative to model-averaged esti-459

mates; i.e., high model-averaged estimates were generally greater than the boosted estimates, and460

low model-averaged estimates were generally lower than the boosted estimates;461

(d) the non-linear btrees estimates showed more shrinkage to the mean than the linear bPLS estimates;462

iv) The MLEs of the full-model φ̂(t×sex)p̂(t×sex) showed the most extremes values.463
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Figure 5: Dipper analysis of survival φ and capture probability p by CJSboost-EM using least-squares base-learners, plus
comparison with AICc model-averaging and MLE

(
φ̂(t×sex)p̂(t×sex)

)
. The regularization pathway of the estimates is visualized

with the spectrum-coloured lines, starting at the intercept-only model (0% decent) and growing more complex as the gradient
descent algorithm proceeds. The final estimates are achieved at 100% of the descent, when the boosting iteration mCV is
reached.

3.2. Results: Dipper example464

This section shows the reanalysis of the European Dipper dataset from Lebreton et al. (1992). Figure465

1 shows an example of the gradient descent of the empirical risk and the holdout-risk from the 70-times466

bootstrap-validation used to estimate the optimal mstop. Comparisons were between the linear bPLS-boost-467

EM model (Figure 5) and the non-linear bTrees-boost-EM model (Figure 6), as well as AICc model-averaging468

and MLEs from the full-model φ(t× sex)p(t× sex). Both Figures also show the “regularization pathway” of469
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Figure 6: Dipper analysis of survival φ and capture probability p by CJSboost-EM using non-linear base-learners (CART-like

trees), plus comparison with AICc model-averaging and MLE
(
φ̂(t×sex)p̂(t×sex)

)
. The regularization pathway of the estimates

is visualized with the spectrum-coloured lines, starting at the intercept-only model (0% decent) and growing more complex as
the gradient descent algorithm proceeds. The final estimates are achieved at 100% of the descent, when the boosting iteration
mcv is reached.

their respective boosted model: the movement of the estimates from their initial uniform intercept model (at470

m= 0) to their final values at m=mCV, stratified by the percentage of the total reduction in the empirical471

risk. The results can be summarized thus:472

i) For both survival φ and capture probability p, all three predictive methods (AICc, bPLS-boost or btrees-473

boost) were much more similar to each other than to the MLEs from the full-model.474

ii) For survival, all three predictive methods yielded the same estimates: a survival probability of 0.48-0.5475
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during the flood years (t=3, 4) and no sex-effect.476

iii) For capture probability, the model-average estimates suggested a slight sex effect of about 1.5 probability477

units, whereas both boosted models shrunk the capture-probability to a constant; in contrast, the MLEs478

varied wildly.479

iv) Regarding the regularization pathways, the linear bPLS-boosted estimates converged very quickly (within480

25% of the gradient decent) to their final estimates; whereas the movement of the non-linear bTrees-481

boosted estimates moved much more gradually.482

3.3. Simulation 2: high-dimensional example483
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Figure 7: Comparing true vs estimated survival φi,t and capture probability pi,t for individuals i at capture-period t. Boosted
estimates incur some downward bias (evident in the difference between the 1:1 line and the estimates’ red trend-line) due to
shrinkage of coefficients to the intercept-only model.

Over the 30 simulations, the Pearson correlation between the true and estimated survival had the following484

descriptive statistics: mean of 0.979, minimum of 0.955, Q0.05 of 0.959, and a maximum of 0.997. For capture485
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Figure 8: Demonstration of stability selection probabilities for one high-dimensional simulation. As the boosting iteration (m)
gets large, regularization gets weaker, and all covariates have a higher selection probability S (estimated from a bootstrap).
Lines in red are truly influential covariates. Lines in gray are non-influential covariates. Lines in pink are not-influential for
θ, but are influential in the other parameter ¬θ. Lines in blue represent the time-as-a-categorical-variable base-learner, a.k.a
θ(t), which in this simulation was non-influential.

probability, the same statistics were: 0.961, 0.708, 0.911 and 0.998. The slope statistic, a measure of bias486

between estimated and true survival, had the following statistics: mean of 0.778, minimum of 0.618, Q0.05487

of 0.647, and maximum of 1.018. For capture probabilities, these slope statistics were: 0.782, 0.404, 0.542,488

0.962. Figure 7 shows the results of one example simulation to demonstrate the high-precision and slight-bias489

that is characteristic of boosting algorithms and other `1 regularizers.490

Regarding the stability selection results, Figure 8 shows an example of the stability paths over m (for the491
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same simulations shown in Figure 7). Readers can view an online animated GIF which shows the stability492

paths for all 30 simulations, at http://github.com/faraway1nspace/HMMboost/ and in the Supplementary493

Material. The results can be summarized as:494

i) The stability paths of the truly influential covariates (in red, Figure 8) were visually very different from495

the rest of the non-influential covariates (grey). In particular, the truly influential covariates reached496

high stability selection probabilities S for small values of m. For φ, they reach S
(mCV)
φ =1 by the optimal497

mCV in all simulations; while for p, 94.6% of the covariates reached S
(mCV)
p = 1 by mCV. On average,498

their posterior inclusion probabilities (over all m) were 0.98 and 0.96 for φ and p, respectively.499

ii) For the non-influential covariates, the stability selection probabilities at mCV were low, S(mCV) . 0.5,500

and rarely achieved a S(mCV) > 0.8 by mCV. Only 1.2% of such covariates achieved S(mCV) ≥ 0.95 by501

mCV, for both φ and p. On average, their inclusion probabilities were 0.32 for φ and 0.38 for p.502

iii) The stability path of the time-as-a-categorical-variable (a.k.a θ(t), in blue, Figure 8) showed a greater503

tendency for inclusion and achieved high stability selection probabilities, particularly for p. For p, it504

achieved S
(mCV)
p ≥0.95 by mCV in 60% of simulations (in which it was not truly influential). Its inclusion505

probabilities were 0.49 for φ and 0.75 for p, averaged over all simulations. This has important implications506

for model-selection consistency (or lack thereof). This may explain the anecdotal experience that, to have507

good-fitting capture-recapture models, one must usually incorporate time-varying capture-probabilities.508

iv) The stability paths of covariates which were important in one parameter (like φ) but unimportant in the509

other parameter (like p) seemed to achieve higher inclusions probabilities (in pink, Figure 8), more so510

than the other non-influential covariates in grey. For p, such covariates achieved S
(mCV)
p ≥ 0.95 in 10%511

of simulations, and in 3.3% of simulations for φ. This suggests an underlying structural correlation and512

may have implications for model-selection consistency.513

Table 1 shows the coefficients of a prediction-optimal CJSboost model for one simulation (same as Figures514

7 and 8). As expected, the regularized regression coefficients placed highest weight on the 6 truly influential515

covariates, albeit with a downward bias that is characteristic of `1 regularization (the true values were ‖βk‖ =516

1). The model shrunk the remaining non-influential coefficients to low values, but not to zero, incurring a517

False Discovery Rate of 0.34. Table 1 also demonstrates the effects of coefficient hard-thresholding using the518

posterior inclusion probabilities estimated in Figure 8. At higher thresholds (0.80-0.95), the model succeeds519

in having a FDR and FRR of zero, as well as accurate unbiased estimates of the coefficients (seemingly an520

“oracle”, for this one simulation). The optimal threshold seems to be in the of 0.80-0.95, similar to the521

threshold suggested by Bach (2008) and Meinshausen & Bühlmann (2010). After “debiasing” (Murphy,522

2012c; here, meaning running m→∞ after hard-thresholding), the CJSboost estimates become nearly equal523

to the oracle MLEs (a benchmark model run with 100% foresight about the true model). Thresholding at low524

values (< 0.8) and debiasing added too much weight on some non-influential covariates (i.e., no shrinkage),525

whereas thresholding at extremely high values (> 0.95) incurred a False Rejection.526
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Table 1: Estimates of coefficients from CJSboost, for one high-dimensional model-selection problem, under
different degrees of hard-thresholding

Survival Φ

Parameter
Prediction Inclusion Probability Threshold‡ MLE SE

Optimal† 0.55 0.65 0.75 0.8 0.85 0.9 0.95 0.99 Oracle§ Oracle

β̂φ(time:1) -0.002 -0.01 0 0 0 0 0 0 0 0 0

β̂φ(time:2) -0.041 -0.238 0 0 0 0 0 0 0 0 0

β̂φ(time:3) -0.036 -0.271 0 0 0 0 0 0 0 0 0

β̂φ(time:4) -0.026 -0.285 0 0 0 0 0 0 0 0 0

β̂φ(time:5) 0.017 0.205 0 0 0 0 0 0 0 0 0

β̂φ(time:6) 0.006 -0.005 0 0 0 0 0 0 0 0 0

β̂φ(time:7) 0.015 0.124 0 0 0 0 0 0 0 0 0

β̂φ(time:8) 0.022 0.196 0 0 0 0 0 0 0 0 0

β̂φ(time:9) 0.025 0.264 0 0 0 0 0 0 0 0 0

β̂φ(time:10) -0.001 -0.091 0 0 0 0 0 0 0 0 0

β̂φ(a) -0.083 -0.173 0 0 0 0 0 0 0 0 0

β̂φ(b) 0.828 0.982 1.064 1.045 1.067 1.067 1.067 1.067 1.074 1.068 0.143

β̂φ(c) -0.021 0 0 0 0 0 0 0 0 0 0

β̂φ(d) -0.761 -0.93 -0.991 -0.983 -0.965 -0.965 -0.965 -0.965 -0.919 -0.967 0.123

β̂φ(e) 0.175 0.262 0.288 0.303 0 0 0 0 0 0 0

β̂φ(f) 0 0 0 0 0 0 0 0 0 0 0

β̂φ(g) 0 0 0 0 0 0 0 0 0 0 0

β̂φ(h) 0 0 0 0 0 0 0 0 0 0 0

β̂φ(i) -0.051 -0.107 0 0 0 0 0 0 0 0 0

β̂φ(j) 0 0 0 0 0 0 0 0 0 0 0

β̂φ(k) -0.717 -0.838 -0.975 -0.968 -0.953 -0.953 -0.953 -0.953 -0.868 -0.955 0.119

β̂φ(l) 0 0 0 0 0 0 0 0 0 0 0

β̂φ(m) 0 0 0 0 0 0 0 0 0 0 0

β̂φ(n) 0 0 0 0 0 0 0 0 0 0 0

β̂φ(o) 0 0 0 0 0 0 0 0 0 0 0

β̂φ(p) 0 0 0 0 0 0 0 0 0 0 0

β̂φ(q) 0 0 0 0 0 0 0 0 0 0 0

β̂φ(r) -0.048 -0.151 0 0 0 0 0 0 0 0 0

β̂φ(s:1) -0.034 -0.109 0 0 0 0 0 0 0 0 0

β̂φ(s:2) 0.028 0.093 0 0 0 0 0 0 0 0 0

β̂φ(t:1) 0 0 0 0 0 0 0 0 0 0 0

β̂φ(t:2) 0 0 0 0 0 0 0 0 0 0 0

β̂φ(u:1) -0.061 -0.165 0 0 0 0 0 0 0 0 0

β̂φ(u:2) 0.059 0.166 0 0 0 0 0 0 0 0 0

Capture Probability p

β̂p(time:1) 0 0.002 0 0 0 0 0 0 0 0 0

β̂p(time:2) 0 0.266 0 0 0 0 0 0 0 0 0

β̂p(time:3) 0 -0.23 0 0 0 0 0 0 0 0 0

β̂p(time:4) 0 -0.041 0 0 0 0 0 0 0 0 0

β̂p(time:5) 0 -0.098 0 0 0 0 0 0 0 0 0

β̂p(time:6) 0 0.159 0 0 0 0 0 0 0 0 0

β̂p(time:7) 0 -0.04 0 0 0 0 0 0 0 0 0

β̂p(time:8) 0 0.123 0 0 0 0 0 0 0 0 0

β̂p(time:9) 0 -0.056 0 0 0 0 0 0 0 0 0

β̂p(time:10) 0 -0.062 0 0 0 0 0 0 0 0 0

β̂p(a) 0 0 0 0 0 0 0 0 0 0 0

β̂p(b) 0.942 1.129 1.149 1.184 1.176 1.176 1.176 1.176 0.846 1.178 0.144

β̂p(c) 0 0 0 0 0 0 0 0 0 0 0

β̂p(d) 0 0 0 0 0 0 0 0 0 0 0

β̂p(e) 0 0 0 0 0 0 0 0 0 0 0

β̂p(f) -0.933 -1.142 -1.181 -1.189 -1.186 -1.186 -1.186 -1.186 -0.856 -1.189 0.135

β̂p(g) 0 0 0 0 0 0 0 0 0 0 0

β̂p(h) 0 0 0 0 0 0 0 0 0 0 0

β̂p(i) 0 0 0 0 0 0 0 0 0 0 0

β̂p(j) 0 0 0 0 0 0 0 0 0 0 0

β̂p(k) 0 0 0 0 0 0 0 0 0 0 0

β̂p(l) 0 0 0 0 0 0 0 0 0 0 0

β̂p(m) 0.042 0 0 0 0 0 0 0 0 0 0

β̂p(n) 0.01 0 0 0 0 0 0 0 0 0 0

β̂p(o) 0.81 0.993 1.033 1.047 1.059 1.059 1.059 1.059 0 1.061 0.124

β̂p(p) 0 0 0 0 0 0 0 0 0 0 0

β̂p(q) -0.027 0 0 0 0 0 0 0 0 0 0

β̂p(r) -0.063 0 0 0 0 0 0 0 0 0 0

β̂p(s:1) -0.15 -0.202 -0.243 0 0 0 0 0 0 0 0

β̂p(s:2) 0.116 0.161 0.197 0 0 0 0 0 0 0 0

β̂p(t:1) 0 0 0 0 0 0 0 0 0 0 0

β̂p(t:2) 0 0 0 0 0 0 0 0 0 0 0

β̂p(u:1) 0 0 0 0 0 0 0 0 0 0 0

β̂p(u:2) 0 0 0 0 0 0 0 0 0 0 0

False Discovery Rate: 0.342 0.237 0.053 0.026 0 0 0 0 0
False Rejection Rate: 0 0 0 0 0 0 0 0 0.167

Covariates a-r are continuous; covariates s-u are categorical; β(time:t) is equivalent to a θ(t) sub-model.
Bold coefficients show oracle-properties.
† CJSboost-EM model with mstop tuned by bootstrap-validation.
‡ Debiased CJSboost-EM model (unregularized; m→∞) after discarding covariates with inclusion probabilities below a
threshold.
§ MLEs when the true model is known in advance.
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4. Discussion527

This study presents a boosted ensemble method for the Cormack-Jolly-Seber capture-recapture model,528

called CJSboost. I compared its estimates to AICc model-averaging. While univariate boosting is well-known529

in applied ecology (Elith et al., 2008; Hothorn et al., 2010; Tyne et al., 2015), the naive application of boosting530

for capture-recapture was not possible because of the serially-dependent nature of capture-histories. In531

response to this challenge, this paper presents two modifications to the Component-wise Boosting procedure,532

one based on Expectation-Maximization (first suggested in the appendix of Ward et al., 2009) and another533

based on Monte-Carlo imputation of HMM latent states. Both lead to equivalent inferences (up to an534

approximation error) and serve to validate each other. Code and a tutorial are available on the Github site535

http://github.com/faraway1nspace/HMMboost. The framework can be easily extended to other capture-536

recapture systems, thereby introducing new machine-learning techniques to capture-recapture practitioners,537

such as CART-like trees, splines and kernels.538

The motivation for boosted capture-recapture models are many:539

1. automatic variable selection and step-wise multimodel inference (without the sometimes-impossible task540

of fitting all possible fixed-effects models, as in AIC-based model averaging);541

2. regularization and sparse estimation, which deflate the influence of unimportant covariates;542

3. shrinkage of estimates away from extreme values and inadmissible values (e.g., φ = 1);543

4. a smoother way to address parameter non-identifiability issues, via regularization and step-wise esti-544

mation, rather than arbitrary constraints (e.g., fixing φT = φT−1);545

5. highly extensible (see the wide variety of base-learners available under the mboost package, Bühlmann546

& Hothorn, 2007; Hofner et al., 2012);547

6. inference based on predictive performance.548

Through simulation and an analysis of the European Dipper dataset (Lebreton et al., 1992), this study549

is primarily concerned with comparisons of CJSboost to AICc model-averaging. This is not because of550

theoretical connections between the two (although some do exist); rather, AIC model-selection and model-551

averaging are the incumbent multimodel inference techniques in capture-recapture practise. It is therefore552

very reassuring that estimates from CJSboost and AICc model-averaging are qualitatively comparable, re-553

vealing strikingly similar patterns. This was apparent among simple least-squares base-learners as well as554

purely-algorithmic base-learners like CART. One distinction was that the CJSboost models were slightly more555

conservative and had more shrinkage on coefficients. This is desirable, especially during the current crisis556

of reproducibility (Simmons et al., 2011; Yaffe, 2015), because the AIC is thought to be overly permissive557

(Shao, 1993, 1997; Burnham, 2004; Vrieze, 2012; Hooten & Hobbs, 2015).558

Secondly, the AIC serves as a useful conceptual bridge for introducing practitioners to the notion of559

regularization and predictive performance. For instance, the AIC is itself a specific type of regularized560

objective function (fixed-penalty `0 regularizer) nested within a more general class of regularizers, within561
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which Component-wise Boosting is generally considered a `1 regularizer (Efron et al., 2004; Bühlmann &562

Hothorn, 2007). The AIC also has a cross-validation interpretation (Stone, 1977; Shao, 1993, 1997). There-563

fore, capture-recapture practitioners, who are already (perhaps unwittingly) using predictive-performance564

and regularization, should expand their concept of “model parsimony” and multi-model inference to include565

boosting. There has been a call for ecologists to embrace algorithmic means of inference (Oppel et al., 2009),566

and now this is available to capture-recapture practitioners.567

4.1. Inference under boosting568

One potential problem boosted capture-recapture models is the new thinking required to understand what569

it is and how to describe its results. With origins in machine-learning, such algorithmic inference procedures570

may seem incomprehensible to ecologists: they may begrudge the lack of familiar inference tools like p-values571

and 95%CI (although, these are frequently misused; Hoekstra et al., 2014; Morey et al., 2016) or AIC weights.572

I offer two ways to understand boosting: comparison with other regularizers, and as a type of multi-model573

inference optimized for prediction.574

In univariate analyses, boosting has some relationships to other procedures (see Meir & Rätsch, 2003, for575

an overview). For linear-models with Gaussian error, component-wise boosting is generally equivalent to the576

Lasso (Efron et al., 2004; Bühlmann & Hothorn, 2007). The Lasso can be viewed as simultaneously optimizing577

a goodness-of-fit term (i.e., a loss function) and a penalty on model complexity (the `1-norm on regression578

coefficients). This form should be immediately familiar to most ecologists: the AIC also has a goodness-of-579

fit term and a fixed-penalty on model complexity (−2`0-norm of regression coefficients). Hooten & Hobbs580

(2015) unify these ideas in a Bayesian framework: regularization is merely a strong prior disfavouring model581

complexity; more formally, regularized risk minimization is equivalent to Bayesian Maximum A-posteriori582

Probability (MAP) estimation (Murphy, 2012a), when the loss function is the negative log-likelihood. This is583

a helpful perspective, because inasmuch as capture-recapture practitioners are turning to Bayesian solutions584

under sparse data (Schofield et al., 2009; Schofield & Barker, 2011; Rankin et al., 2014, 2016), the CJSboost585

framework is allied and should be seriously considered. The above equivalences are more difficult to motivate586

using quixotic base-learners like CART-like trees, but which otherwise have great empirical performance587

under complex interactions and non-linear associations.588

A second view of boosting is as an ensemble of many small models, like model-averaging. The terminology589

of a “learner” hails from its machine-learning origins, but base-learners are really just familiar analytic590

techniques commonly used for standalone modelling, like Ordinary Least Squares regression or CART. The591

influence of any one model is weighted according to the step-wise gradient descent procedure known as592

Boosting. Consider the case of Ordinary Least Squares base-learners: under extreme regularization (m=1),593

the boosted estimates are the MLE of a simple intercept model
(
e.g. φ̂(·)p̂(·)

)
. At weaker regularization594

m → ∞, the estimates tend to the MLEs of the fully-saturated model (Mayr et al., 2012). In between595

these extremes, at mstop = mCV, the estimates are shrunken, and somewhat qualitatively similar to AICc596

model-averaging. The size of the ensemble and its complexity is governed by predictive performance (through597
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cross-validation or bootstrap-validation). Thus, the resulting multimodel prediction function is that which598

minimizes the expected loss, and is therefore constrained from over-fitting. Unsurprisingly, the estimates599

have a slight downward bias but are more stable across outliers and different realizations of the data (i.e.600

favouring low-variance in the classic “bias-variance” trade-off; Bühlmann & Yu, 2003; Murphy, 2012a).601

But what can one say about “significance” or “biological importance”? The answer is the interpretation602

of the additive coefficients (assuming they are similarly scaled): coefficients with the largest absolute values603

are the most influential on survival or capture probability. Using bootstrap stability-selection, we can also use604

approximate posterior inclusion probabilities as a type of uncertainty statistic: covariates/base-learners with605

high inclusion probabilities are more probably more important; covariates with low inclusion probabilities606

(< 0.5) are probably not that important. Probabilities lead to straight-forward inference. The stability607

paths (Figure 8) may also help visually discriminate between important covariates and noisy non-influential608

covariates, as suggested by Meinshausen & Bühlmann (2010): they notice a visual pattern whereby the609

true-model covariates enter the ensemble earlier and peal away from the unimportant covariates.610

The above interpretations are hardly more difficult than understanding the AIC and model-averaging. In611

the applied ecological literature, there are few authors who formally justify a preference for the AIC versus612

other regularization and prediction techniques. Neither do ecologists seem to weigh in on philosophical613

arguments in favour of a prediction-optimal model versus a sparse model. Such matters are confused by a614

literature that is unclear about the underlying justification for AIC weighting and averaging (compare, for615

example, statements by Burnham, 2004, vs Raftery, 1995 and Hooten & Hobbs, 2015, about AIC weights616

as model probabilities). Commonly, ecologists cite “model parsimony” and Kullback-Leibler divergence as a617

justification for the AIC. This particular view of parsimony, however, favours certain outcomes.618

Burnham (2004) offers a formal defence of the AIC and AIC model-averaging based on a notion of619

covariate “tapering”: the view that a response variable should theoretically have many small influences,620

possibly infinite, and our analyses should increasingly reveal more of these minor influences as we collect621

more data. They argue that natural phenomena are not “sparse”, unlike the systems studied by computer622

scientists, nor is there ever a “true model” (an oxymoron). This view is echoed by Vrieze (2012). The tapered623

worldview seems compelling for analyzing complex biological systems, where everything influences everything624

else. It is also, conveniently, the scenario in which the AIC and LOOCV are asymptotically prediction optimal625

and model-selection consistent (Shao, 1993, 1997; Burnham, 2004; Vrieze, 2012).626

4.2. Tapering vs sparsity627

Nonetheless, I offer four arguments for capture-recapture methods to be more conservative. First, in628

an era of “Big Data” (geo-spatial, genetic, bio-logging, etc.) analysts increasingly have access to dozens of629

inventive potential covariates, many of which are different operationalizations of the same physical phenomena630

(e.g., consider the many ways one can measure Sea-Surface Temperature at multiple space-time scales).631

This Big Data deluge requires sparser discrimination among covariates, and if not, may encourage fishing632

for significance. Second, in an era of questionable scientific reproducibility (Simmons et al., 2011; Yaffe,633
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2015), we need better control on False Discoveries (among other things). This is a huge challenge, because634

from an optimal-prediction perspective, a False Rejection is much more costly to the expected loss than a635

shrunken False Discovery (Shao, 1993), thus making procedures overly liberal, including both the AIC and `1636

regularizers. Third, there may be structural correlations in capture-recapture procedures that strongly favour637

certain outcomes, and which may preclude any hope for sparse, model-selection consistent estimates. I offer638

no theory to back this claim, but based on high-dimensional simulations, this study reveals high posterior639

inclusions probabilities for p(t) models (even when it is not the true model), as well as for covariates which640

are significant in one component, but not the other. This is likely not a feature of CJSboost, but a more641

widespread capture-recapture phenomenon (see Bailey et al., 2010 and Rankin et al., 2016, for problems of642

partial-identifiability of parameter estimates in capture-recapture). It can be expected to be more severe643

under low-detection probabilities. Fourth, in the author’s experience, the AIC/AICc seems to favour over-644

parametrized models that would be inadmissible under a Bayesian or a prediction paradigm, such as 100%645

survival and (the more ambiguous) 100% capture probability. Here, shrinkage on extreme values under646

regularization is similar to a Bayesian weak prior against boundary values.647

To be clear, prediction-optimal `1 regularization, like L2boosting and the Lasso, are not very sparse,648

nor are they model-selection consistent (Meinshausen & Bühlmann, 2006; Zou, 2006; Bühlmann & Hothorn,649

2010). They do, however, have more shrinkage on complexity than the AICc (Shao, 1997; Bühlmann &650

Hothorn, 2007) and AICc model-averaging, which is demonstrated in this study through simulation and an651

analysis of a real dataset. For more sparse model selection, the technique of bootstrapped stability selection652

(Meinshausen & Bühlmann, 2010; Murphy, 2012c) can be used to hard-threshold covariates which have low653

posterior inclusion probabilities (.0.8−0.95).654

4.3. Multimodel inference: build-up or post-hoc?655

A boosted ensemble is built from the simplest intercept model and then “grows” more complex in a656

step-wise manner. This is the reverse of many multimodel inference techniques that do post-hoc weighting657

of models, such as AIC model-averaging and Bayesian model-averaging. However, the post-hoc approach658

becomes unmanageable with just a few covariates and parameters, given the combinatorial explosion in the659

number of plausible fixed-effect models. There is a risk that well-intentioned researchers will take short-cuts,660

such as a step-wise search strategy (Pérez-Jorge et al., 2016; Taylor et al., 2016), which may be susceptible661

to local-minima.662

In conventional boosting, use of a convex loss function ensures that the gradient descent does not get stuck663

in a local minima. For non-convex problems, such as gamboostLSS (Mayr et al., 2012) and CJSboost, forced664

weakness/constraints on base-learners makes the problem more defined, but inevitably the start-values will665

dictate the direction of the gradient descent. However, for CJS and most capture-recaptures models, there666

is usually a well-defined intercept-only model that can serve as a principled way to initialize the predictions,667

such that if a unique MLE exists for the fully-saturated model, the boosting algorithm will reach it as m→∞.668

If there are parameter non-identifiability issues (such as for {φT , pT }), early stopping will ensure that the669

28

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 11, 2016. ; https://doi.org/10.1101/052266doi: bioRxiv preprint 

https://doi.org/10.1101/052266
http://creativecommons.org/licenses/by-nc-nd/4.0/


shrinkage is in the direction of the intercept-only model. Or, classic constraints can be imposed within the670

base-learners, such as fixing φT = φT−1.671

4.4. Extensions and future considerations672

This study is merely the first step in developing and introducing boosting for HMM and capture-recapture.673

Many of the properties which hold for univariate Component-wise Boosting will need theoretical and empirical674

validation. Many questions arise, for example, how do the selection properties vary by sample-size, especially675

in reference to BIC and AIC model-averaging? How sensitive are the results to low detection probabilities?676

Does the EM technique and/or the MC technique generalize to multi-state models? How important is tuning677

both hyperparameters m and ν? Does the algorithm always reach the MLE of the fully-saturated model678

as m→∞ and under what conditions does it fail? Is CJSboost and AICc-selection minimax optimal for679

mark-recapture?680

By validating the boosting technique for a simple open-population model, this study paves the way for681

more popular capture-recapture models, such as POPAN and the PCRD, which have more model parameters682

in the likelihood function, like temporary-migration processes. With more parameters, a boosting algorithm683

will require more efficient ways of tuning hyperparameters. See Appendix B.2 for ideas in this regard.684

One major benefit of the CJSboost framework is its extensibility. It can easily accommodate phenomena685

such as individual heterogeneity, spatial capture-recapture and cyclic-splines. These are possible because686

the CJSboost code is written for compatibility with the mboost family of R packages, and leverages their687

impressive variety of base-learners (Bühlmann & Hothorn, 2007; Hofner et al., 2012). For example, the688

brandom base-learner can accommodate individual random effects for addressing individual heterogeneity in689

a manner similar to Bayesian Hierarchical models (Rankin et al., 2016). Kernels (brad) and spatial splines690

(bspatial) can be used for smooth spatial effects (Kneib et al., 2009; Hothorn et al., 2010; Tyne et al., 2015)691

offering an entirely new framework for spatial capture-recapture. The largest advantage is that users can692

add these extensions via the R formula interface, rather than having to modify deep-level code. CJSboost,693

therefore, offers a unified framework for many types of capture-recapture ideas that would otherwise require694

many different analytical paradigms to study the same suite of phenomena.695

5. Conclusions696

1. Boosting, the regularized gradient-descent and ensemble algorithm from machine learning, can be ap-697

plied to capture-recapture by reformulating the models as Hidden Markov Models, and interweaving an698

Expectation-Maximization E-step within each boosting iteration. An alternative boosting algorithm,699

based on stochastic imputation of HMM latent states, yields approximately equivalent estimates.700

2. Boosting negotiates the “bias-variance” trade-off (for minimizing an expected loss) by incurring a slight701

bias in all coefficients, but yields estimates that are more stable to outliers and over-fitting, across702

multiple realizations of the data. In contrast, Maximum Likelihood estimates are unbiased, but are703

highly variable.704
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3. CJSboost allows for powerful learners, such as recursive-partitioning trees (e.g., CART) for automatic705

variable-selection, interaction detection, and non-linearity. This flexibility seems to come at a cost of706

slightly more conservative estimates (if the underlying true model is linear).707

4. Both AICc model-selection and boosting are motivated by good predictive performance: minimizing an708

expected loss, or generalization error. When using least-squares or CART-like base-learners, the esti-709

mates from CJSboost are qualitatively similar to AICc model-averaging, but with increased shrinkage710

on coefficients.711

5. CJSboost seems to perform very well in high-dimensional model selection problems, with an ability to712

recover a sparse set of influential covariates. Typically, there is a small and non-zero weight on some713

unimportant covariates (especially p(t) base-learners). This pattern is consistent with the performance714

of univariate component-wise boosting and other `1 regularizers.715

6. If the goal of a capture-recapture analysis is not prediction, but to recover a sparse “true model”, then716

CJSboosted models can be hard-thresholded via stability-selection. Hard-thresholded CJSboost models717

show some promise towards model-selection consistency and oracle-properties, but there may be some718

structural correlations in capture-recapture likelihoods that make this generally untrue.719
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Bühlmann, P., & Yu, B. (2003). Boosting with the L2 loss: regression and classification. Journal of the749

American Statistical Association, 98 , 324–339. doi:10.1198/016214503000125.750

Carothers, A. (1973). The effects of unequal catchability on Jolly-Seber estimates. Biometrics, 29 , 79–100.751

doi:10.2307/2529678.752

Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004). Least angle regression. The Annals of Statistics,753

32 , 407–499. doi:10.1214/009053604000000067.754

Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to boosted regression trees. The Journal755

of Animal Ecology , 77 , 802–813. doi:10.1111/j.1365-2656.2008.01390.x.756

Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: a statistical view of boosting757

(with discussion). The Annals of Statistics, 28 , 337–374. doi:10.1214/aos/1016218223.758

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of Statistics,759

29 , 1189–1232.760

Hand, D. J., & Vinciotti, V. (2003). Local versus global models for classification problems: fitting models761

where it matters. The American Statistician, 57 , 124–131. doi:10.1198/0003130031423.762

Hoekstra, R., Morey, R. D., Rouder, J. N., & Wagenmakers, E.-J. (2014). Robust misinterpretation of763

confidence intervals. Psychonomic Bulletin & Review , 21 , 1157–1164. doi:10.3758/s13423-013-0572-3.764

Hofner, B., Kneib, T., & Hothorn, T. (2014). A unified framework of constrained regression. Statistics and765

Computing , 26 , 1–14. doi:10.1007/s11222-014-9520-y.766

31

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 11, 2016. ; https://doi.org/10.1101/052266doi: bioRxiv preprint 

http://dx.doi.org/10.2307/2533961
http://dx.doi.org/10.1890/13-1066.1
http://dx.doi.org/10.1177/0049124104268644
http://dx.doi.org/10.1093/biomet/65.3.625
http://dx.doi.org/10.1214/07-STS242
http://dx.doi.org/10.1007/s11222-009-9148-5
http://dx.doi.org/10.1198/016214503000125
http://dx.doi.org/10.2307/2529678
http://dx.doi.org/10.1214/009053604000000067
http://dx.doi.org/10.1111/j.1365-2656.2008.01390.x
http://dx.doi.org/10.1214/aos/1016218223
http://dx.doi.org/10.1198/0003130031423
http://dx.doi.org/10.3758/s13423-013-0572-3
http://dx.doi.org/10.1007/s11222-014-9520-y
https://doi.org/10.1101/052266
http://creativecommons.org/licenses/by-nc-nd/4.0/


Hofner, B., Mayr, A., Robinzonov, N., & Schmid, M. (2012). Model-based Boosting in R: A Hands-on767

Tutorial Using the R Package mboost . Technical Report 120 Department of Statistics, Ludwig-Maximilians-768

Universität Munich. URL: http://epub.ub.uni-muenchen.de/12754/.769

Hooten, M., & Hobbs, N. T. (2015). A guide to Bayesian model selection for ecologists. Ecological Monographs,770

85 , 3–28. doi:10.1890/14-0661.1.771

Hothorn, T., Hornik, K., & Zeileis, A. (2006). Unbiased recursive partitioning: a conditional inference frame-772

work. Journal of Computational and Graphical Statistics, 15 , 651–674. doi:10.1198/106186006X133933.773
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APPENDICES877

Appendix A. Algorithms for Filtering and Sampling HMM Latent States878

The CJSboost algorithm depends on conditional independence of data pairs (yi,t, Xi,t) for individuals i879

in capture period t, in order to estimate the negative-gradient in the descent algorithm. This is possible if880

we impute information about the latent state sequences z for pairs of capture periods at t and t−1. The881

two CJSboost algorithms, CJSboost-EM and CJSboost-MC, achieve this same idea with two different, but882

related, techniques. In both cases, we will use a classic “forwards-backwards” messaging algorithm to gain883

information about the probability distribution of the latent state sequences. In CJSboost-EM, we calculate884

the two-slice marginal probabilities p(zt−1 =u, zt = v|y1:T , φ, p), per boosting iteration; in CJSboost-MC, we885

will sample z from its posterior distribution π(z1:T |y1:T , φ, p). See Rabiner (1989) and Murphy (2012b) for886

accessible tutorials.887

Both algorithms use a forwards algorithm and backwards algorithm. We will drop the indices i, and focus888

on the capture history of a single individual. y is the time-series of binary outcomes of length T . z is a889

vector of latent states z ∈ {dead, alive}. We condition on an individual’s first capture at time t = t0, and are890

only concerned with the sequence zt0:T . Survival from step t−1 to t is φt. Conditional on zt, the capture891
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probabilities are p(yt = 1|alive) = pt, and p(yt = 1|dead) = 0. In HMM notation, the CJS processes can be892

presented as the following column-stochastic matrices:893

Φt =


dead alive

dead 1 1−φt
alive 0 φt

 Ψt =


dead alive

no capture 1 1−pt
capture 0 pt

 (A.1)

In HMM parlance, Φ is the Markovian transition process; we denote the probability p(zt=u|zt−1 =u) as894

Φt(u, v). Ψ is the emission process governing capture probabilities; we denote the probability p(yt=1|zt=v)895

as Ψt(v) .896

Appendix A.1. Forward-algorithm897

The forward messaging algorithm involves the recursive calculation of αt(v), per time t and state zt=v.898

αt is the filtered belief state of zt given all the observed information in y from first capture t0 until t. Notice,899

that for clarity, we drop the notation for conditioning on φ and p, but these are always implied.900

at(v) := p(zt=v|yt0:t)

=
1

Zt
p(yt|zt=v)p(zt=v|yt0: t−1)

=
1

Zt
p(yt|zt=v)

∑
u

p(zt=v|zt−1 =u)p(zt−1 =u|yt0: t−1)

=
1

Zt
Ψt(v)

∑
u

Φ(u, v)αt−1(u)

(A.2)

Zt =
∑
v

(
Ψt(v)

∑
u

Φ(u, v)αt−1(u)

)
,
∑
v

αt(v) = 1

The algorithm is initialized at time t0 (an individual’s first capture) with αt0(alive) = 1. Conditional on the901

values of αt(v) for all v, one can proceed to calculate the next values of αt+1(v), and so on, until t=T .902

Appendix A.2. Backwards-algorithm903

Messages are passed backwards in a recursive algorithm starting at t= T and moving backwards until904

t= t0, the first-capture period, while updating entries in βt(v).905

βt−1(u) := p(yt:T |zt−1 = u)

=
∑
v

p(yt+1:T |zt = v)p(yt|zt=v)p(zt=v|zt−1 =u)

=
∑
v

βt(v)Ψt(v)Φt(u, v)

(A.3)

The algorithm is initialized βT (·) = 1 for all states v (notice that the entries do not need to sum to 1).906

Having calculated the backwards and forwards messages, we can now proceed to characterize the latent state907

distributions.908
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Appendix A.3. Two-slice marginal probabilities for Expectation-Maximization909

Expectation-Maximization is an iterative technique for maximizing a difficult objective function by work-910

ing with an easy “complete-data” objective function log p(y, z|θ). EM works by cycling through an M-step911

and an E-step. In boosting-EM, the M-step corresponds to the usual update of the prediction vectors912

F
(m)
θ = F

(m−1)
θ + νθf̂ (conditional on z), and are used to estimate θ̂. The E-step imputes expectations of the913

latent states z, conditional on the data and current estimates of θ̂(m).914

In the CJSboost-EM algorithm, we require expectations for the joint states (zt−1, zt). We substitute in915

the two-slice marginal probabilities p(zt−1, zt|yt0:T , φ, p). These can be easily evaluated for a capture history916

yi using the outputs (α, β) from the forward-backwards algorithm.917

wt(u, v) := p(zt−1 =u, zt=v|yt0:T )

=
1

ξt
p(zt−1|yt0:t−1)p(zt|zt−1,yt:T )

=
1

ξt
p(zt−1|yt0:t−1)p(yt|zt)p(yt+1:T |zt)p(zt|zt−1)

=
1

ξt
αt−1(u)Ψt(v)βt(v)Φt(u, v)

(A.4)

ξt =
∑
u

∑
v

αt−1(u)Ψt(v)βt(v)Φt(u, v),
∑
u

∑
v

wt(u, v) = 1

The E-step is completed after evaluating the set
{
wi,t(alive, alive), wi,t(alive,dead), wi,t(dead,dead)

}
, for918

each capture period t > t0i and for each individual capture history {yi}ni=1. This is an expensive operation;919

computational time can be saved by re-evaluating the expectations every second or third boosting iteration920

m, which, for large mstop > 100 and small ν, will have a negligible approximation error.921

Appendix A.4. Sampling state-sequences from their posterior922

For the CJSboost Monte-Carlo algorithm, we sample a latent state sequence zi from the posterior923

π(z1:T |y1:T , φ, p), for each individual i per boosting step. Conditional on the latent states, the negative-924

gradients are easily evaluated and we can proceed to boost the estimates and descend the risk gradient.925

However, because the algorithm is stochastic, we must avoid getting trapped in a local minima by sampling926

many sequences (e.g., S ≈ 10−20), thereby approximating the full posterior distribution of z. Over all S927

samples, the average gradient will probably be in the direction of the global minima. For large m and small928

ν, the approximation error is small.929

The algorithm uses backwards-sampling of the posterior under the chain rule:

p(zt0:T |yt0:T ) = p(zT |yt0:T )
t0∏

t=T−1

p(zt|zt+1,yt0:T ) (A.5)

We start with a draw at time t = T , z
(s)
T ∼ p(zT = v|yt0:T ) = αT (v), and condition earlier states on930
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knowing the next-step-ahead state, proceeding backwards until t = t0.931

z
(s)
t ∼ p(zt= u|zt+1 =v,yt0: t)

=
p(zt, zt+1|yt0: t+1)

p(zt+1|yt0: t+1)

∝ p(yt+1|zt+1)p(zt, zt+1|yt0: t)

p(zt+1|yt0: t+1)

=
p(yt+1|zt+1)p(zt+1|zt)p(zt|yt0: t)

p(zt+1|yt0: t+1)

=
Ψt+1(v)Φt+1(u, v)αt(u)

αt+1(v)

(A.6)

Thus, knowing α, β, Φ and Ψ, we can easily generate random samples of z that are drawn from its932

posterior distribution. The backwards sampling step is repeated for each t > t0i capture period, for each s933

sequence, for each i capture history, for each m boosting iteration.934

Appendix B. Tuning Hyperparameters m and ν935

This section will present a simple work-flow for finding approximately optimal values of mstop, νφ and936

νp. Our objective is to minimize the expected loss L, or generalization error. We estimate L through B-937

times bootstrap-validation. For each b bootstrap, we create a CJSboost prediction function, G(b)(X;m, νφ, νp)938

which is trained on the bootstrapped data and is a function of the hyperparameters νφ, νp andm. We calculate939

the holdout-out risk using the out-of-bootstrap bc capture-histories and covariate data, (Y(bc),X(bc)). The940

average hold-out risk over B bootstraps, Lcv, is our objective to minimize.941

L ≈ Lcv = argmin
m,νφ,νp

1

B

B∑
b=1

L
(
Y(bc), G(b)(X(bc);m, νφ, νp)

)
For a given νφ and νp, the hold-out risk can be monitored internally to the boosting algorithm for each942

step m. Therefore, a single B-bootstrap run is all that is necessary to find the optimal m, given νφ and943

νp. But since νφ and νp are continuous, one must discretize the range of possible values and re-run separate944

B-bootstrap-validation exercises per combination of νφ and νp. This is very expensive, and one must accept945

some approximation error.946

Appendix B.1. Algorithm 1 for tuning ν947

For just two parameters, the pertinent quantity to optimize is the ratio λ =
νp
νφ

, for a fixed mean νµ =948

1
2 (νφ + νp). Therefore, a univariate discrete set of Λ =

{
λ(1), λ(2), ..., λ(J)

}
can be searched for the smallest949

Lcv(λ).950

This is less daunting than it may seem, because the range of λ is practically bounded. For example,951

if mstop = 1000 and λ = 100, φ is effectively shrunk to its intercept starting value, and higher values of952

λ have little effect. Also, Bühlmann & Yu (2003) suggest that the generalization error has a very shallow953

minima around the optimal values of m, which means that our hyperparameters need only get within the954
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vicinity of their optimal values, rather than strict numerical convergence. Finally, Lcv(λ) is typically convex955

for varying λ (so long as the same bootstrap-weights are recycled for all new estimates of Lcv(λ)). Therefore,956

we can employ any convex optimization algorithm for non-differentiable functions to iteratively search for957

the optimal λ. The thrust of any such algorithm is a multiplicative “stepping-out” procedure to quickly find958

the correct order of magnitude for λ. For example, starting a λ(0) =1, we need only 7 doubling steps to grow959

λ to 128× λ(0); further refinements will have little practical impact on the final model estimates.960

An example algorithm is the following.961

1. set νµ=0.01 and λ(0) = 1; generate the B bootstrap samples; initialize the set Λ = {λ(0), 1
2λ

(0)};962

2. for each λ in Λ, estimate Lcv(λ) and store the values in the list  L = {L(0), ...};963

3. for j in 1 : J , do:964

(a) get the current best value for the ratio λmin = argmin
λ∈Λ

Lcv(λ)965

(b) estimate a new candidate λ∗:966

if λmin = min(Λ), then λ∗ = 1
2min(Λ);967

else if λmin = max(Λ), then λ∗ = 2 ·max(Λ);968

else λ∗ = λmin + k · α, where k is the step direction and α is the step size.969

(c) calculate the shrinkage weights: ν
(j)
φ =

2·νµ
λ∗+1 ; ν

(j)
p = λ∗ · ν(j)

φ ;970

(d) perform bootstrap-validation to estimate L
(j)
cv (λ∗);971

(e) append Λ← λ∗ and append  L← L
(j)
cv ;972

The algorithm continues until a pre-defined convergence criteria is met, or, practically, a maximum number973

of iterations is reached. The final values of νφ, νp, and mcv are those which correspond to the minimum974

Lcv ∈  L.975

There are various convex optimization algorithms that differ in how to calculate the k and α. In CJSboost,976

most of the optimization benefits occur during the “stepping-out” procedure, and so exact values of k and α977

are less important, so long as they guarantee convergence. I suggest the following triangle-midpoint procedure,978

which convergences slowly but quickly rules out large chunks of bad values of λ.979

1. Define the triplet set Γ composed of the current best estimate of λmin as well as the values just to the980

left and right, such that λ−1
min < λmin < λ+1

min;981

2. Sort the entries of Γ according to the order Lcv(γ
(1)) < Lcv(γ

(2)) < Lcv(γ
(3));982

3. Estimate the step size and direction:983

if ‖γ(1) − γ(2)‖ ≥ ‖γ(1) − γ(3)‖:984

then α = 1
2‖γ

(1) − γ(2)‖ and k = sign(γ(1) − γ(2));985

else α = 1
2‖γ

(1) − γ(3)‖ and k = sign(γ(1) − γ(3));986

4. λ∗ = λmin + k · α987

Typically seven or ten iterations are necessary in order to find suitable values of λ, νφ and νp. Unfortunately,988

this strategy is only for a two-parameter likelihood with a single ratio to optimize. For other capture-recapture989

models with more parameters (e.g., POPAN, PCRD), a different tuning strategy will be necessary.990
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Appendix B.2. Algorithm 2 for tuning ν991

With more parameters in the capture-recapture likelihood, the number of necessary steps in algorithm992

1 will increase exponentially. I suggest a second iterative algorithm whose number of iterations may only993

increase linearly with the number of parameters. The principle of this second algorithm is based on the994

observation that when the ratio
νp
νφ

is poorly optimized, then additional boosting steps along the gradient995

∂`
∂Fθ

will result in increases in the holdout-risk, and will do so asymmetrically for Fφ vs Fp. When
νp
νφ

is996

optimized, the number of boosting steps which increase the hold-out risk will be roughly the same for p and997

φ, averaged over all bootstrap hold-out samples. I suggest using this ratio as an estimate of λ̂ =
νp
νφ

.998

Call ∆
(m)
θ a boosting step along the partial derivative of ∂`

∂Fθ
which successfully reduces the holdout-risk.999

λ̂(j) = λ̂(j−1)Q

(∑mk
m=1 ∆

(m)
p∑mk

m=1 ∆
(m)
φ

)
(B.1)

where Q is a robust measure of central tendency over all B bootstraps (median, trimmed-mean), and mk1000

is some boosting step mk >mcv. The first estimate λ̂(1) is typically an underestimate, so the algorithm is1001

iterated, each time using the previous λ̂(j−1) for a current estimate of νp and νφ with which to perform a1002

bootstrap-validation exercise, and then updating λ̂(j) by (B.1). λ̂(J) typically converges to a single value1003

within approximately 10 iterations. λ̂(J) is not the optimal λ as estimated by algorithm 1, but it is in the1004

vicinity (Figure B.9).1005

Clearly, for just two parameters and one ratio, this second algorithm is not competitive with algorithm1006

1. But, when there are more than two parameters in the likelihood, this algorithm can simultaneously1007

estimate all pertinent ratios. Further refinements will be necessary, but simulations demonstrate that there1008

is information in the risk gradient trajectories that can help optimize the hyperparameters.1009
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Figure B.9: Two algorithms for tuning the shrinkage weight hyperparameters νφ and νp, and their ratio λ, in order to minimize
the expected loss (estimated via bootstrap-validation). Forty simulations compare the two algorithms, where algorithm 1 is
considered optimal.
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