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Abstract 

Several important and fundamental aspects of disease genetics models have yet to be 

described.  One such property is the relationship of disease association statistics at a 

marker site closely linked to a disease causing site.  A complete description of this two-

locus system is of particular importance to experimental efforts to fine map association 

signals for complex diseases.  Here, we present a simple relationship between disease 

association statistics and the decline of linkage disequilibrium from a causal site.  A 

complete derivation of this relationship from a general disease model is shown for very 

large sample sizes.  Quite interestingly, this relationship holds across all modes of 

inheritance.  Extensive Monte Carlo simulations using a disease genetics model applied 

to chromosomes subjected to a standard model of recombination are employed to better 

understand the variation around this fine mapping theorem due to sampling effects.  We 

also use this relationship to provide a framework for estimating properties of a non-

interrogated causal site using data at closely linked markers.  We anticipate that 

understanding the patterns of disease association decay with declining linkage 

disequilibrium from a causal site will enable more powerful fine mapping methods.     
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Introduction 

Genetic markers closely linked to disease-causing sites will exhibit association with 

disease through linkage disequilibrium.
1-4

 This is the central idea behind population-

based association mapping of disease genes using high density SNP arrays.
5,6

  However, 

the decay of disease association with declining linkage disequilibrium from a disease-

predisposing, functional site has not yet been completely described even though this is a 

fundamental property of disease genetics.  Doing so will provide much needed 

information concerning the properties of disease genetics and greatly aid experimental 

designs and statistical methods for identifying functional variants in regions that exhibit 

disease association.    

 Although many have argued that genome-wide association studies have been 

largely unsuccessful in that they have not revealed a large proportion of the heritability 

from most complex diseases,
7
 it is certainly clear that numerous loci with impressive 

statistical evidence for correlation with a wide variety of complex diseases have been 

identified and replicated.
8
  In a number of instances, these results have provided much 

needed insight into the biochemical pathways and cellular mechanisms responsible for 

increasing disease risk.
9-12

  However, the functional variants underlying the majority of 

these disease-associated regions have yet to be identified and fully described.
13

 The 

dearth of information concerning functional variants obviously presents a sizable 

impediment to further dissection of complex disease etiologies.  If genetic and statistical 

methods can aid in generating either supporting or opposing evidence for the role of 

functional motifs within a region of association, then the progression of human genetics 

studies can be made much more efficient and potent.   

When designing fine mapping genotyping experiments, it is important to select 

genetic variants and subregions so that adequately cover two types of disease models are 

adequately covered (i.e. the fine mapping design is well-powered to discover the 

functional variants).  The first class of model that should be covered by such efforts 

would be models of a causal variant driving a portion, or perhaps all of the disease 

association within a region. Under this model, varying levels of association signal at 

different sites are explained by different levels of linkage disequilibrium with causal 

variants.  Hence, given allele frequencies and linkage disequilibrium patterns, one can, in 
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principle, back-calculate the properties of putative functional variants that could be 

driving an initially observed disease association within the region of interest.  Known 

variants, including those that were not initially interrogated, fulfilling these calculated 

allele frequency and linkage disequilibrium properties with the initial markers should 

then be included in a fine-mapping panel.  The second model to be covered by a fine-

mapping panel of markers is one of allelic heterogeneity at a functional motif (e.g., a 

gene) that was originally found to exhibit a disease association signal.  Empirical data 

tends to strongly favor this type of model over an individual variant serving as the sole 

driving allele within a region.
14-18

 Indeed, it is quite typical for studies aiming to fine map 

regions harboring a GWAS-significant SNP to reveal multiple disease-correlated variants 

within the same gene.  This is not terribly surprising as the site frequency spectrum is 

expected to contain vast numbers of rare variants in outbred populations, which is 

accentuated in rapidly expanding demographics.
19-21

  Even if there is a small likelihood of 

any one of these rare variants to exhibit pathogenic effects, the sheer number of variants 

segregating at a gene trends to produce multiple functional alleles.  To cover this class of 

disease models, one would want to reliably identify the functional motifs tagged by an 

initial association signal and proceed by exhaustively interrogating variants within those 

functional motifs.  In practice, this two-model approach guiding fine mapping was 

employed successfully to identify alleles segregating at the TRAF1-C5 region conferring 

susceptibility to rheumatoid arthritis.
22,23

       

 To address the statistical aspects of prioritizing potentially causal variants within 

a fine-mapped region, several methods have been developed including a useful Bayesian 

method was developed by Maller and colleagues,
24 

which uses Bayes Factor for each 

variant in the region and calculates the proportion of the total sum of Bayes Factors in the 

region that is attributable to that variant, producing a relative ranking of the strength of 

evidence for each variant within the disease-associated region being causal.  These 

calculations allow for the determination of a credible set of highest ranked variants that 

explains the large majority of the statistical evidence of disease association within the 

region of interest.  The Maller et al. method has been applied to fine mapping data for 

complex diseases, such as type 1 diabetes.
25

  Other important developments in fine 

mapping approaches include another Bayesian approach, Bim-Bam
26

, methods which 
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determine subsets of variants that likely contain causal sites, CAVIAR
27

 and 

CAVIARBF
28

, coalescent-based methods
29-31

 and PAINTOR
32

, which incorporates 

functional annotation data in a probabilistic manner.            

 Here, building upon previous work,
3,33-36

 we prove a simple, analytic relationship 

between case/control association statistics at two closely-linked sites and the linkage 

disequilibrium between the two sites under a generalized disease genetics model.  The 

result holds for very large sample sizes.  Interestingly, the result is invariant with mode of 

inheritance parameters.  Further, we posit that concurrently considering the patterns of 

disease-association and the genetic architecture within a region of interest may strengthen 

the ability to assess the likelihood that a particular variant is indeed causal with regard to 

inflating the risk of disease.  By doing so, one may be better able to prioritize variants for 

functional follow-up studies.  For finite sample sizes, dispersion around this relationship 

is expected and we therefore explore this variation in the result through the use of a 

Monte Carlo simulation.   

 

Approximation 

Under the Pritchard- Przeworski derivation
33

, the power to detect disease association at a 

causal site and marker site were found to be approximately the same if the sample size at 

a marker site is increased by a factor of (𝑟2)−1 over that used in interrogating the causal 

site.  𝑟2 is the standard measure of linkage disequilibrium between the causal site and the 

marker site.  While certainly an intriguing relationship between sample sizes, as it is, the 

finding may not always have utility in fine mapping applications as most association 

studies use the same number samples at all sites interrogated.  That said, this relationship 

can be used to motivate related and illuminating properties regarding how fast the disease 

association signal can be expected to decay as a function of declining linkage 

disequilibrium from a causal site.  Equating the power at the disease-predisposing site to 

that at the marker site, it follows that 

 

 (𝑍𝐷√𝑟2 − 𝑍1−𝛼 2⁄ ) ≈(𝑍𝑀 − 𝑍1−𝛼 2⁄ );     (1) 
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where 𝑍𝐷 and 𝑍𝑀 are the normally-distributed Z-scores for testing disease-association at 

the causal site and marker site, respectively; and is the significance level.  Taking the 

inverse functions and squaring yields the provocative approximation 

 

 
𝑀
2 ≈ 𝑟2

𝐷
2  ;         (2) 



where 
𝐷
2  and 

𝑀
2  are the chi-squared statistics for disease association at the disease and 

marker sites, respectively.  Plotting this approximation with the 2 disease-association 

statistic on the ordinate and 1 − 𝑟2 on the abscissa is a simple method of displaying the 

expected linear decay in the 2 values as the linkage disequilibrium with a causal site 

declines at different marker sites.  Figure 1 shows this relationship.  This decay pattern 

was first used empirically in 2008 to fine map the IL23R region in psoriasis
37

 and has 

subsequently been used in other applications.
38

  Although this approximation is very 

useful in understanding the decay of disease association with declining linkage 

disequilibrium from a causal site, several simplifying assumptions were made in the 

original Pritchard-Przeworski derivation and therefore it is not known how violations of 

the original assumptions might produce departures from Eqn 2.  Hence, an exact 

relationship between disease association statistics and 𝑟2 values with a causal site would 

aid in clarifying this relationship and motivate statistical approaches to harnessing this 

pattern for the purpose of fine-mapping functional alleles.  Additionally, the allele 

frequencies are treated as parameters instead of random variables with sampling 

variances.  So, understanding the dispersion around the decay patterns for finite sample 

sizes would further elucidate the relationships studied.        

 

Full Derivation 

Defining the Chi-Squared test statistics following the Pritchard-Przeworski derivation, 

 


𝐷
2  =

[𝑝𝐷−𝑝𝐶]2[2𝑛(
𝑛𝐷

𝑛𝐷+𝑛𝐶
)(

𝑛𝐶
𝑛𝐷+𝑛𝐶

)]

𝑝(1−𝑝)
 ,     (3) 

 


𝑀
2  =

[𝑞𝐷−𝑞𝐶]2[2𝑛(
𝑛𝐷

𝑛𝐷+𝑛𝐶
)(

𝑛𝐶
𝑛𝐷+𝑛𝐶

)]

𝑞(1−𝑞)
;     (4) 
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Where 𝑝, 𝑝𝐷, and 𝑝𝐶 are the frequencies of the 𝐴1 allele in the combined population, 

disease-affected population, and the control population, respectively and where 𝑞, 𝑞𝐷, 

and 𝑞𝐶 are the frequencies of the 𝐵1 allele in the combined population, disease-affected 

population, and the control population, respectively. 𝑛𝐷 and 𝑛𝐶  are the sample sizes for 

diploid cases and controls, respectively, and 𝑛 = 𝑛𝐷 + 𝑛𝐶.  For this work, we will assume 

that cases and controls are drawn from the general population such that the cases and 

controls are drawn with probabilities corresponding to the disease and healthy 

proportions. 

 

𝑀
2  

𝐷
2 =

𝑝(1−𝑝)(𝑞𝐷−𝑞𝐶)2

𝑞(1−𝑞)(𝑝𝐷−𝑝𝐶)2
      (5) 

 

Noting that  

 

𝑝 = 𝑝𝐷𝐾 + 𝑝𝐶(1 − 𝐾) and 𝑞 = 𝑞𝐷𝐾 + 𝑞𝐶(1 − 𝐾),  

 

we can substitute  𝑝𝐶 =
𝑝−𝐾𝑝𝐷

1−𝐾
  and  𝑞𝐶 =

𝑞−𝐾𝑞𝐷

1−𝐾
 into Eqn (5), resulting in 

 

𝑀
2  

𝐷
2 =

𝑝(1−𝑝)(𝑞−𝑞𝐷)
2

𝑞(1−𝑞)(𝑝−𝑝𝐷)
2        (6) 

 

The next aim in the derivation is to substitute quantities for the allele frequencies in the 

affected population at both sites in terms of penetrances, disease prevalence, and general 

population allele frequencies,   

 

𝑝𝐷 =
𝑝

𝐾
[𝑓11𝑝 + 𝑓12(1 − 𝑝)]      (7) 

 

𝑞𝐷 =
𝑃11

𝐾
[𝑓11𝑝 + 𝑓12(1 − 𝑝)] +

𝑃21

𝐾
[𝑓12𝑝 + 𝑓22(1 − 𝑝)];  (8) 

 

where 𝑓11, 𝑓12, and 𝑓22 are the prevalences of the 𝐴1𝐴1, 𝐴1𝐴2, and 𝐴2𝐴2 genotypes, 

respectively, such that 𝑓𝑖𝑗 = 𝑃(𝐶𝑎𝑠𝑒|𝐴𝑖𝐴𝑗); 𝐾 = 𝑃(𝐶𝑎𝑠𝑒), which, under this monogenic 

model and assuming Hardy-Weinberg Equilibrium in the general population, 𝐾 =

𝑓11𝑝
2 + 2𝑓12𝑝(1 − 𝑝) + 𝑓22(1 − 𝑝)2; and haplotype frequencies 𝑃11 = 𝑃(𝐴1𝐵1), and 

𝑃21 = 𝑃(𝐴2𝐵1).  Applied to complex diseases, it may be useful to think of this disease 
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model as the subset of individuals with a common disease that is primarily driven by a 

particular locus.  With the substitution into Eqn 6,  

 

𝑀
2  

𝐷
2 =

𝑝(1−𝑝){𝑞−
𝑃11
𝐾

[𝑓11𝑝+𝑓12
(1−𝑝)]−

𝑃21
𝐾

[𝑓12𝑝+𝑓22
(1−𝑝)]}

2

𝑞(1−𝑞){𝑝−
𝑝

𝐾
[𝑓11𝑝+𝑓12

(1−𝑝)]}
2  (9) 

 
In Eqn 9, the R.H.S. numerator can be simplified to  

 

𝑝(1 − 𝑝) (
1

𝐾2) (𝑃11 − 𝑝𝑞)2[𝑓11𝑝 + 𝑓12(1 − 2𝑝) − 𝑓22(1 − 𝑝)]2, 

 

whereas the denominator in Eqn 9 can be simplified to 

 

𝑞(1 − 𝑞) (
1

𝐾2) 𝑝2[𝐾 − 𝑓11𝑝 − 𝑓12(1 − 𝑝)]2  

 

Hence, Eqn 9 can be written as 

 

𝑀
2  

𝐷
2 =

𝐷2(1−𝑝)

𝑝𝑞(1−𝑞)

[𝑓11𝑝+𝑓12
(1−2𝑝)−𝑓22

(1−𝑝)]
2

[𝐾−𝑓11𝑝−𝑓12
(1−𝑝)]

2 ;   (10) 

 

where 𝐷 = 𝑃11𝑃22 − 𝑃12𝑃21 = 𝑃11 − 𝑝𝑞.   

 

Substituting 𝐾 = 𝑓11𝑝
2 + 2𝑓12𝑝(1 − 𝑝) + 𝑓22(1 − 𝑝)2, 

 

𝑀
2  

𝐷
2 =

𝐷2(1−𝑝)

𝑝𝑞(1−𝑞)

[𝑓11𝑝+𝑓12
(1−2𝑝)−𝑓22

(1−𝑝)]
2

[(1−𝑝)(−𝑓11𝑝−𝑓12
(1−2𝑝)−𝑓22

(1−𝑝))]
2  (11) 

 

 =
𝐷2

𝑝𝑞(1−𝑝)(1−𝑞)
[
𝑓11𝑝+𝑓12(1−2𝑝)−𝑓22(1−𝑝)

𝑓11𝑝+𝑓12(1−2𝑝)−𝑓22(1−𝑝)
]
2
     

 

 =
𝐷2

𝑝𝑞(1−𝑝)(1−𝑞)
 

 

 = 𝑟2          (12) 
 

Therefore, we have shown the exact relationship under our model 

 


𝑀
2 = 𝑟2

𝐷
2          (13) 
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Not only is this relationship an exact result under the model employed, but it is universal 

in that there is no dependence on the penetrances.  Thus, we may expect that from a true 

disease-susceptibility site, that there should be a linear decay in the Chi-squared statistics 

for disease association with declining 𝑟2 values with the causal site.  Figure 1 shows the 

expected disease association decay with declining linkage disequilibrium from the causal 

site for additive, multiplicative, recessive and dominant sets of models.  The patterns 

arising from various relative risks are presented. Similarly, Figure 2 presents the patterns 

expected as a function of sample sizes.  Aside from Eqn 13 illuminating a central aspect 

of disease genetics, we suspect that it carries utility in fine mapping applications – we 

hypothesize that identifying this type of pattern in fine mapping data will better enable 

the pinpointing of truly causal sites through harnessing correlated data.           

  

Corollary 

Consider the situation where there is a disease-susceptibility site and other sites in 

differing levels of linkage disequilibrium with the disease-susceptibility site.  From large-

scale genotyping or sequencing studies, we often know the matrix of pairwise 𝑟2 values, 

and allele frequencies at each site in the general population, broadly defined.  An 

interesting question arises: If one has genotyped a marker site in a case/control sample set 

and calculated 
𝑀
2  testing for disease association, can we infer the expected effect size at 

a non-interrogated causal site?  Using Eqn 13, and substituting allele frequencies at the 

causal site, 

 

 
𝑀
2

𝑟2 =
𝑛𝑒(𝑝𝐷−𝑝𝐶)2

2𝑝(1−𝑝)
;         (14) 

 

Where 𝑛𝑒 =
2𝑛𝐷𝑛𝐶

𝑛𝐷+𝑛𝐶
, the effective total number of independent diploid samples.  For an 

allelic odds ratio at the causal site, 𝑅, the allele frequency in the cases can be written as 

 

𝑝𝐷 =
𝑅𝑝𝐶

1−𝑝𝐶+𝑅𝑝𝐶
   

 

Therefore,  
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 (
𝑅𝑝𝐶

1−𝑝𝐶+𝑅𝑝𝐶
− 𝑝𝐶 )

2

= 2𝑝(1 − 𝑝)
𝑀
2

𝑛𝑒𝑟2     (15) 

 

To simplify the derivation, we will assume that the disease studied is not very common 

such that the allele frequency in controls is well-approximated by the allele frequency in 

the general population, 𝑝𝐶 ≅ 𝑝.  This is also true if samples drawn from the general 

population are serving as the controls.  Hence,   

 

 
𝑅𝑝

1−𝑝+𝑅𝑝
= 𝑝 + (

𝑍𝑀

𝑟
)√

2𝑝(1−𝑝)

𝑛𝑒
     (16) 

 

Solving for 𝑅, 

 

𝑅 = (
1−𝑝

𝑝
)

[
 
 
 
 𝑝+√

2𝑝(1−𝑝)𝑀
2

𝑛𝑒𝑟2

1−𝑝−√
2𝑝(1−𝑝)𝑀

2

𝑛𝑒𝑟2 ]
 
 
 
 

      (17)  

 

To illustrate the use and implications of Eqn 17, suppose that we have genotyped a site in 

500 diploid cases and 500 diploid controls and calculated the test statistic 2 = 20, 

corresponding to p-value = 7.74E-06.  Further assume that this region has previously 

been subjected to next-generation sequencing in individuals derived from the same 

source population as the cases and controls which has yielded the discovery of numerous 

additional variants closely linked to the genotyped site, allele frequencies at those 

variants, and an array of pairwise linkage disequilibrium values across the region of 

interest.  Under that scenario, one would typically have access to good estimates of the 

general population allele frequencies and 𝑟2 values at sites neighboring the genotyped 

site that produced the original finding.  Suppose that one of these adjacent sites has a 

general population allele frequency 𝑝 = 0.03 and a linkage disequilibrium value with the 

genotyped site of 𝑟2 = 0.2.  Under the two-site model, we would therefore estimate the 

odds ratio at the putative, non-genotyped, causal site to be 5.17.  Put another way, the 

putative causal site, having the general population allele frequency and linkage 

disequilibrium values above, would have to have an odds ratio of 5.17 in order to 
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generate a Chi-Squared statistic at the genotyped site of 20 given 500 cases and 500 

controls.  Indirect inference of the properties of non-interrogated causal sites can be 

helpful in subsequent experimental efforts to identify disease-predisposing sites in a fine-

mapped region.  Figure 3 displays the relationship between the inferred odds ratio at the 

causal site from disease association data at the marker site as a function of linkage 

disequilibrium between the two sites.  Graphs for various p-values at marker site are 

shown.     

The results detailed in Eqns 1-17 do not treat any of the parameters, such as 

haplotype frequencies, as random variables. Clearly, haplotype counts in cases and 

controls should be treated with sampling processes from a larger population.  To address 

this issue, we have constructed a Monte Carlo simulation program to generate haplotypes 

under a probabilistic model.  Under this program we are able to explore the variation 

around Eqn 13 and to observe effects that may be produced by different sets of 

parameters.   

     

Monte Carlo Simulations 

In an effort to understand the variation in the patterns of disease association decay as a 

function of linkage disequilibrium with a causative site, we constructed a Monte Carlo 

simulation using a generalized disease model (penetrances for each of the three genotypes 

at the causal site are parameterized) and treating the haplotype counts in cases and 

controls as random variables.  Recombination was introduced between a causal site and a 

closely linked marker as a realistic method of generating different sets of 2-site 

haplotypes for the general population.
39

  For a rate of recombination, 𝑐, and generation 

time 𝑡, we used the following set of recursions (Haldane model of recombination):  

 

 𝑃11,𝑡 = 𝑃11,𝑡−1(1 − 𝑐) + 𝑐𝑝𝑞       (18) 

 𝑃12,𝑡 = 𝑃12,𝑡−1(1 − 𝑐) + 𝑐𝑝(1 − 𝑞)      (19) 

 𝑃21,𝑡 = 𝑃21,𝑡−1(1 − 𝑐) + 𝑐(1 − 𝑝)𝑞      (20) 

 𝑃22,𝑡 = 𝑃22,𝑡−1(1 − 𝑐) + 𝑐(1 − 𝑝)(1 − 𝑞)     (21) 

 

The corresponding general population allele frequency at the causal site is  
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 𝑝1 = 𝑃11,𝑡 + 𝑃12,𝑡        (22) 

 

Similarly, the general population allele frequency at the linked marker is  

 

 𝑞1 = 𝑃11,𝑡 + 𝑃21,𝑡        (23) 

 

In the absence of sampling (i.e., for an infinite population size), these will be invariant 

under the model considered.  Assuming Hardy-Weinberg equilibrium in the general 

population at both sites, the proportion of individuals affected by the disease attributable 

to this locus, is calculated through the law of total probability, 

 

 𝐾 = 𝑝1
2𝑓11 + 2𝑝1(1 − 𝑝1)𝑓12 + (1 − 𝑝1)

2𝑓22    (24) 

 

To calculate the expected haplotype frequencies in cases, we used the above general 

population frequencies modified through the use of Bayes theorem.
35

 Hence, the expected 

frequency of the 𝐴1𝐵1 haplotype in cases is 

 

 𝑉11 =
𝑃11

𝐾
[𝑓11𝑝1 + 𝑓12(1 − 𝑝1)]      (24) 

 

In an analogous manner, the remaining haplotype frequencies in cases, where the 

subscript indicates the haplotype, are 

 

 𝑉12 =
𝑃12

𝐾
[𝑓11𝑝1 + 𝑓12(1 − 𝑝1)]      (25) 

 𝑉21 =
𝑃21

𝐾
[𝑓12𝑝1 + 𝑓22(1 − 𝑝1)]      (26) 

 𝑉22 =
𝑃22

𝐾
[𝑓12𝑝1 + 𝑓22(1 − 𝑝1)]      (27) 

 

The haplotype frequencies in controls are 
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 𝑈11 =
(𝑃11−𝑉11𝐾)

1−𝐾
        (28) 

 𝑈12 =
(𝑃12−𝑉12𝐾)

1−𝐾
        (28) 

 𝑈21 =
(𝑃21−𝑉21𝐾)

1−𝐾
        (28) 

 𝑈22 =
(𝑃22−𝑉22𝐾)

1−𝐾
        (28) 

Sampling of the haplotypes from the expected frequencies is accomplished through two 

independent multinomial variates (one for the cases and one for the controls), such that 

the joint densities are given by  

                

𝑃(𝑋11 = 𝑥11, 𝑋12 = 𝑥12, 𝑋21 = 𝑥21, 𝑋22 = 𝑥22) = 𝑛𝐷! (
𝑈11,𝑡

𝑥11𝑈12,𝑡
𝑥12𝑈21,𝑡

𝑥21𝑈22,𝑡
𝑥22

𝑥11! 𝑥12! 𝑥21! 𝑥22!
) 

           (29) 

𝑃(𝑌11 = 𝑦11, 𝑌12 = 𝑦12, 𝑌21 = 𝑦21, 𝑌22 = 𝑦22) = 𝑛𝐶! (
𝑉11,𝑡

𝑥11𝑉12,𝑡
𝑥12𝑉21,𝑡

𝑥21𝑉22,𝑡
𝑥22

𝑥11! 𝑥12! 𝑥21! 𝑥22!
) 

           (30) 

Hence, the sample frequency of the causal allele in cases and controls, respectively, are  

  

 𝑝̂𝐷 = (𝑛𝐷)−1(𝑋11 + 𝑋12) and  𝑝̂𝐶 = (𝑛𝐶)−1(𝑌11 + 𝑌12)  (31 and 32) 

 

 

(Plot of mean values) 

(Plot of confidence intervals) 

 

 

Conclusion and Discussion 

One of the most fundamental patterns in disease genetics is the nature of the decay of 

disease association with declining linkage disequilibrium from a causal site.  Motivated 

by the Lai et al and Pritchard-Przeworski derivations for the approximate increase in 

sample size to attain the equivalent statistical power at a marker site in linkage 

disequilibrium with a causal site, we first showed how this result could be used to 

produce an approximation showing a linear relationship in the Chi-Squared association 
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statistics testing disease association at a marker and a causal site and that the ratio of the 

two was approximately 𝑟2 (Eqn 2).  Next, using a general two-site model with 

penetrances, we showed that this is indeed an exact result and invariant to the mode of 

inheritance model (Eqn 13).     

 

Future work focusing on imputing additional properties of a non-interrogated causal 

variant, or multiple causal variants, within a disease-associated region using the linkage 

disequilibrium patterns and disease association statistics would provide valuable insights 

into design and interpretation of fine mapping studies.    
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Figure 1. The Expected Decay of Disease Association with Declining Linkage 

Disequilibrium for Four Modes of Inheritance. The standard recursive haplotype frequencies 

under recombination were used to generate a series of haplotype combinations. The disease-

predisposing allele at the causal site was set at a general population frequency of 0.01.  The 

penetrance f22 was set to 0.001 and the remaining two penetrances varied according to the modes 

of inheritance examined and the relative risks cited in the Figures. Sample sizes were set at 

nD=2000 and nC=2000.  Fig. 1a displays the results for an additive model, such that f12 is the 

arithmetic mean of f22 and f11. Fig. 1b shows the results under a multiplicative model. Fig 1c 

shows the results under a general recessive model. Fig 1d shows the results under a general 

dominant model. 
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Figure 2.  Effect of Sample Size on the Expected Decay of Disease Association with 

Declining Linkage Disequilibrium.   
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Figure 3. Inferred Odds Ratio. The relationship between the inferred odds ratio at a causal site 

and the level of linkage disequilibrium with an interrogated marker is presented in Fig. 3a and 

Fig. 3b.  Eqn 17 is used for the calculations.  The seven curves show the patterns of expected 

odds ratios for disease association at the causal site under different observed p-values calculated 

at the marker site. Sample size was set at ne=5000. Fig. 3a shows results assuming that the 

disease-predisposing allele at the causal site has frequency of 0.10 in the general population, 

whereas Fig. 3b sets that frequency at 0.01.              
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