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Abstract: 
Mutation Annotation Format (MAF) has become a standard file format for storing 
somatic/germline variants derived from sequencing of large cohort of cancer samples. MAF 
files contain a list of all variants detected in a sample along with various annotations associated 
with the putative variant. MAF file forms the basis for many downstream analyses and provides 
complete landscape of the cohort. Here we introduce maftools - an R package that provides 
rich source of functions for performing various analyses, visualizations and summarization of 
MAF files. Maftools uses data.table library for faster processing/summarization and ggplot2 
for generating rich and publication quality visualizations. Maftools also takes advantages of S4 
class system for better data representation, with easy to use and flexible functions. 
Availability and Implementation: maftools is implemented as an R package available at 
https://github.com/PoisonAlien/maftools 
Contact: csiamt@nus.edu.sg 
 
Introduction: 
With advances in cancer genomics and reduction in cost per base of sequencing technologies, 
sequencing large cohort of cancer patients has become an efficient way of determining genetic 
abnormalities associated with the disease [1-4]. Such cohort-based studies often results in large 
amount of data in the form of somatic/germline variants containing single nucleotide variants 
(SNP) and small insertion/deletions (INDELS). This data is generally stored in the form of 
Mutation Annotation Format and provides a complete genomic landscape of the cohort [5]. 
The Cancer Genome Atlas (TCGA) project has sequenced over 30 different types of cancer 
and resulting somatic variants are stored as MAF files, with several independent studies 
following the same [6]. 
 
MAF files provides baseline data for many downstream analyses such as driver gene detection, 
detecting mutually exclusive set of events, mutational signatures and tumor heterogeneity 
estimation [7-10]. Visualization also plays key role in genomic studies, with researchers often 
struggling to generate publication quality images, such as oncoplots (also known as waterfall 
plots), lollipop plots and oncoprints to name a few. As MAF files are getting standardized, 
current bioinformatic community lacks software to process them. Here, we developed maftools 
to process, summarize and analyze MAF files, resulting from large cohort based studies. 
Maftools provides various plotting functions to visualize data stored in MAF files to help 
researchers generate publication quality images. Functions are also implemented to perform 
some of the common analyses in cancer studies, including disease associated driver gene 
detection, mutual exclusivity analysis, and tumor heterogeneity estimation. Along with 
analysis of MAF files, maftools also provides functions to integrate and visualize of copy 
number data. Usage of maftools is straightforward with self-explanatory functions and is 
implemented as an open source R package. 
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Functions implemented in maftools can be broken down into four main categories as shown in 
Figure 1. 
 

 
Figure 1. List of available functions in maftools, classified into four main categories. Function 
names are in italics. 
 
Here we briefly demonstrate the application of maftools on TCGA acute myeloid leukemia 
cohort (LAML) [11]. All of the raw data and code used to generate following results are 
included in the installation package and demonstrated as a vignette. 
 
Visualization: 

• MAF summary and Oncoplots: Oncoplots are frequently used in cohort based cancer 
studies to display complete mutational landscape. Oncoplots consist of main matrix 
with each row representing a gene and each column representing a sample. Matrix is 
organized and sorted to display frequently mutated genes at the top. Occasionally these 
plots include top and side bar plots to show numbers associated with each row (gene) 
and column (sample). Oncoplot function from maftools, uses ComplexHeatmap 
Bioconductor package to draw such plots, while providing various customizable 
options [12]. Oncoplot generated using LAML MAF for top ten mutated genes is shown 
in Figure 2A. plotmafSummary is another function (Figure 2B) which shows overall 
summary of the cohort in terms of variants per sample and distribution of variants 
according to variant classification. 

 
• Lollipop plots: Mutations often affects the structure and functions of the protein and it 

is desirable to represent affected amino acid and conversions on the protein structure. 
These changes are usually represented by lollipop plots, by plotting protein conversions 
on to protein structures with underlying protein domains. lollipopPlot function takes 
protein change information and draws a lollipop plot. As an example, lollipop plot for 
one of the frequently mutated gene in leukemia, DNMT3A, is shown in Figure 2C [13]. 
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• Oncostrip: It is often the case to display a specific set of genes from the whole cohort, 
to display certain associated characteristics such as mutual exclusiveness. We 
implemented a function oncostrip, which plots given set of genes as a matrix, similar 
to popular oncoprinter tool on cBioPortal [14]. As an example, two genes NPM1 and 
RUNX1, which show strong exclusiveness in their mutation pattern, are drawn using 
function oncostrip (Figure 2D). 

 
• Transitions and Transversions: titv function classifies each single nucleotide variant 

into either one of the four types of transversions or two types of transitions, referred by 
the pyrimdine of the mutated base pair and summarizes them in several ways. This 
summarized data can be plotted using function plotTiTv to display overall distribution 
of changes (Figure 2E). 

 
 

 
 
Figure 2. A) Oncoplot depicting top 10 mutated genes sorted and ordered by decreasing 
frequency. B) MAF summary plot shows a top stacked barplot of variants per sample and a 
bottom boxplot showing distribution of variants according to variant classification. C) Lollipop 
plot of DNMT3A. D) Oncostrip displaying two mutually exclusive mutated genes NPM1 and 
RUNX1. E) Transitions and Transversions - top left boxplot shows overall summary of SNVs 
classified into six substitution classes; top right boxplot shows distribution of SNVs classified 
into transitions and transversions. Bottom stacked barplot shows proportion of SNVs per 
sample classified into six substitution classes. 
 

• Integrating copynumber and somatic variants: plotCBSsegments function integrates 
copy number data (generated by circular binary segmentation) and somatic variants 
from MAF files, by mapping them on to copy number segments [15]. As an example, 
copy number data for TCGA barcode TCGA-AB-3009 along with the mapped somatic 
variants is shown in Figure 3A. This plot shows two genes NF1 and SUZ12, located on 
copy number deleted segments. 
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• Rainfall plots: Cancer genomes, particularly solid tumors are characterized by hyper 
mutated genomic regions [9, 10]. These regions also referred to as kataegis, can be 
displayed as ‘rainfall plots’ by plotting inter variant distances on a linearized genomic 
scale. rainfallPlot function draws such plot, and as an example, a rainfall plot for TCGA 
colon adenocarcioma sample, TCGA-AG-2002-01 is shown in Figure 3B.  

 
Analysis: 

• Differentially mutated genes: Cancers differs from each other by means of mutations 
in driver genes. This difference is also observable within subtypes of same cancer. 
Differences between two cohorts can be detected by function mafCompare, which 
performs Fisher’s exact test between two cohorts to detect differentially mutated genes. 
Recent study by Madan et. al, have shown that patients with relapsed acute 
promyelocytic leukemia (APL) often harbor therapy induced mutations in PML and 
RARA gene, which were largely absent during primary disease [16]. Comparing 
primary and relapsed APL cohorts using mafCompare, resulted in five genes (PML, 
RARA, RUNX1, ARID1B and FLT3) to be differentially mutated (P < 0.05). Results 
from this comparison are shown as forest plots (forestPlot) as well as co-oncoplots 
(coOncoplot). (Figure 3C, 3D). 

 
 

 
Figure 3. A) Copy number segments for sample TCGA-AB-2009 with the highlighted somatic 
variants. B) Rainfall plot for colon adenocarcinoma sample TCGA-AG-2002-01. Each dot 
represents a SNV and are color coded according to six substitution classes. Hyper mutated 
genomic regions are highlighted with black arrow heads. C) Forest plot for differentially 
mutated genes between primary APL and Relapse APL. X-axis shows log10 converted odds 
ratios. Description on each bar shows number of mutated samples in both cohorts. D) 
Alternative representation of differentially mutated genes as co-oncoplots. 
 

• Detecting cancer driver genes: Key component of cancer studies is to determine disease 
associated genes. Often referred to as ‘drivers’, these genes provide selective growth 
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advantage to cancer cells when mutated [2]. To detect such disease associated genes, 
we built a function oncodrive, which is a based on oncodriveCLUST algorithm 
originally implemented in Python framework [17]. Oncodrive takes advantage of the 
fact that majority of the mutations in oncogenes are clustered around mutational 
hotspots, whereas mutations on passenger genes are randomly distributed. On TCGA 
LAML cohort, oncodrive was able to detect 11 genes as significantly disease associated 
genes (Figure 4A). 

 
• Mutually exclusive events: Many disease-causing genes in cancer show strong mutual-

exclusiveness in their mutation pattern.  mutExclusive function performs an exact test 
on all combinations of genes, to detect a pair showing significant exclusiveness [18]. 
As an example one of such pair detected in TCGA LAML, NPM1 and RUNX1 are 
shown as an oncostrip in Figure 2D. 

 
• Pfam domains: Each cancer is characterized by enriched mutations in a particular 

protein domain [19, 20]. pfamDomains function maps protein conversion foci to protein 
domains and summarizes them according to frequency of mutation. On LAML dataset, 
most frequently mutated domains include ‘PKC_Like’ (Protein Kinase Catalytic 
Domain, mutated 54 times across 5 genes), ‘PTZ00435’ (isocitrate dehydrogenase, 
mutated 38 times across two genes) and ‘AdoMet_MTases’ (S-adenosylmethionine-
dependent methyltransferases, mutated 31 times in just one gene -DNMT3A). (Figure 
4B). This function is similar to pfam annotation module from Mutational Significance 
in Cancer (MuSiC) package [8]. 

 
• Tumor heterogeneity: It is now well established that tumors are heterogeneous, made 

up of multiple clones and are constantly evolving [21]. This heterogeneity can be 
inferred by clustering variants according to their allele frequencies [22, 23]. 
inferHeterogeneity function uses density based finite or infinite (dirichlet process) 
mixture models, to cluster and classify variants into sub clones [24, 25]. An example 
of inferHeterogeneity is shown on LAML barcode TCGA-AB-2972 (Figure 4C), which 
clearly shows the presence of two clones, a major clone at a mean variant allele fraction 
of 0.45 and a minor clone at 0.25 VAF. Options are also included to exclude variants 
on copy number altered regions. 

 
• Tumor heterogeneity Scores: Mroz et al, have recently shown that the extent of tumor 

heterogeneity can be measured in terms of  numerical values and they introduced 
MATH (Mutant Allele Tumor heterogeneity) scores; which in short, measures the 
width of VAF distribution [26]. It has also been shown that tumors with higher MATH 
scores are prone to poor prognosis and survival [27]. We implemented math.score 
function, which calculates MATH scores based on the distribution of VAFs. Using 
LAML MAF file, MATH scores for two samples are shown in Figure 4D. Tumor with 
higher MATH score (sample TCGA-AB-2849; MATH score = 20.59) shows a wider 
peak, whereas lower MATH score sample (TCAG-AB-2972; MATH score = 11.62) 
shows a sharp and narrower peak. 
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Figure 4. A) Disease associated genes identified in LAML based on positional clustering 
of variants. Each dot represents a gene and size of the dot represents number clusters 
(mentioned inside square brackets) within which, a fraction (X-axis) of total variants are 
accumulated. For example, IDH1 with a cluster score and cluster size of one indicates all 
of IDH1 mutations are clustered within a single cluster. B) Mutated pfam domains in 
LAML cohort. X-axis shows number of mutations associated with the domain, Y-axis 
shows number genes with the mutated domain. Size of each dot is proportional to the 
number of genes in which the domain is mutated. C) Density plot of VAFs for barcode 
TCGA-AB-2972. Variants are separated into two clusters. Top horizontal boxplot shows 
independent distribution of VAFs for each identified cluster. D) Density plot of VAFs for 
two samples with MATH scores. Each dot represents a variant; vertical bar indicates 
median value of VAF distribution.  
 

 
Variant Annotation and Summarization: 
Maftools also includes functions for variant annotation and format conversions. Function 
oncotate, takes input variants and annotates them using Broad’s Oncotator web API, and 
converters them into MAF format [28]. Another function annovarToMaf converts annotations 
generated by popular annotation program – annovar, into MAF files [29]. Other functions such 
subsetMaf, allows user to filter and subset MAF files on the fly. 
 
Conclusion:   
maftools provides a wide range of functions to carry out routinely performed analyses and 
visualizations in cohort based cancer studies. Maftools was developed while keeping in mind 
to reduce the burden and hassle of using various software’s/packages, which often requires 
researcher to change the input data format, and provides a single package on a well-established 
platform.  
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