Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Efficient Maximum-Likelihood Inference For The Isolation-With-Initial-Migration Model With Potentially Asymmetric Gene Flow

Rui J. Costa, Hilde Wilkinson-Herbots
doi: https://doi.org/10.1101/052894
Rui J. Costa
Department of Statistical Science, University College London, Gower Street, London WC1E 6BT, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hilde Wilkinson-Herbots
Department of Statistical Science, University College London, Gower Street, London WC1E 6BT, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

The isolation-with-migration (IM) model is commonly used to make inferences about gene flow during speciation, using polymorphism data. However, Becquet and Przeworski (2009) report that the parameter estimates obtained by fitting the IM model are very sensitive to the model's assumptions (including the assumption of constant gene flow until the present). This paper is concerned with the isolation-with-initial-migration (IIM) model of Wilkinson-Herbots (2012), which drops precisely this assumption. In the IIM model, one ancestral population divides into two descendant subpopulations, between which there is an initial period of gene flow and a subsequent period of isolation. We derive a very fast method of fitting an extended version of the IIM model, which also allows for asymmetric gene flow and unequal population sizes. This is a maximum-likelihood method, applicable to data on the number of segregating sites between pairs of DNA sequences from a large number of independent loci. In addition to obtaining parameter estimates, our method can also be used to distinguish between alternative models representing different evolutionary scenarios, by means of likelihood ratio tests. We illustrate the procedure on pairs of Drosophila sequences from approximately 30,000 loci. The computing time needed to fit the most complex version of the model to this data set is only a couple of minutes. The R code to fit the IIM model can be found in the supplementary files of this paper.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted May 11, 2016.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Efficient Maximum-Likelihood Inference For The Isolation-With-Initial-Migration Model With Potentially Asymmetric Gene Flow
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Efficient Maximum-Likelihood Inference For The Isolation-With-Initial-Migration Model With Potentially Asymmetric Gene Flow
Rui J. Costa, Hilde Wilkinson-Herbots
bioRxiv 052894; doi: https://doi.org/10.1101/052894
Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Efficient Maximum-Likelihood Inference For The Isolation-With-Initial-Migration Model With Potentially Asymmetric Gene Flow
Rui J. Costa, Hilde Wilkinson-Herbots
bioRxiv 052894; doi: https://doi.org/10.1101/052894

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Evolutionary Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (2428)
  • Biochemistry (4784)
  • Bioengineering (3328)
  • Bioinformatics (14656)
  • Biophysics (6629)
  • Cancer Biology (5162)
  • Cell Biology (7417)
  • Clinical Trials (138)
  • Developmental Biology (4355)
  • Ecology (6869)
  • Epidemiology (2057)
  • Evolutionary Biology (9903)
  • Genetics (7338)
  • Genomics (9509)
  • Immunology (4545)
  • Microbiology (12657)
  • Molecular Biology (4936)
  • Neuroscience (28280)
  • Paleontology (199)
  • Pathology (804)
  • Pharmacology and Toxicology (1388)
  • Physiology (2019)
  • Plant Biology (4487)
  • Scientific Communication and Education (976)
  • Synthetic Biology (1297)
  • Systems Biology (3909)
  • Zoology (725)