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ABSTRACT 
A wealth of transcriptomic and clinical data on solid tumours are under-utilized due to              
unharmonized data storage and format. We have developed the ​MetaGxData package           
compendium, which includes manually-curated and standardized clinical, pathological, survival,         
and treatment metadata across breast, ovarian, and pancreatic cancer data. ​MetaGxData is the             
largest compendium of curated transcriptomic data for these cancer types to date, spanning 86              
datasets and encompassing 15,249 samples. Open access to standardized metadata across           
cancer types promotes use of their transcriptomic and clinical data in a variety of cross-tumour               
analyses, including identification of common biomarkers, establishing common patterns of          
co-expression networks, and assessing the validity of prognostic signatures. Here, we           
demonstrate that ​MetaGxData is a flexible framework that facilitates meta-analyses by using it             
to identify common prognostic genes in ovarian and breast cancer. Furthermore, we use the              
data compendium to create the first gene signature that is prognostic in a meta-analysis across               
3 cancers. These findings demonstrate the potential of ​MetaGxData ​to serve as an important              
resource in oncology research and provide a foundation for future development of            
cancer-specific compendia. 
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Introduction 
Ovarian, breast and pancreatic cancers are among the leading causes of cancer deaths among              
women, and recent studies have identified biological and molecular commonalities between           
them​1–4​. These cancers are part of hereditary syndromes related to mutations in a number of               
shared susceptibility genes that contribute to their carcinogenesis, including ​BRCA1 and           
BRCA2​3,5​. As evidenced by epidemiological and linkage analysis studies, mutations and allelic            
loss in the ​BRCA1 locus confers susceptibility to ovarian, pancreatic and early-onset breast             
cancer.​5–8 The ​BRCA2 gene appears to account for a proportion of early-onset breast cancer              
that is roughly equal to that resulting from ​BRCA1​.​5,8 ​BRCA2​-mutation carriers with mutations             
within the ovarian cancer cluster region have been observed to exhibit greater risk for ovarian               
cancer.​5 In addition to common susceptibility genes, both tumours may express a variety of              
common biomarkers that include hormone receptors, epithelial markers (e.g., cytokeratin 7,           
Ber-EP4), growth factor receptors (Her2/neu) and other surface molecules. ​3  

Commonalities between breast, ovarian, and pancreatic cancers have been observed not           
only for specific susceptibility genes, but at system-wide levels as well. In particular, molecular              
profiling across transcriptomes, copy-number landscapes, and mutational patterns emphasize         
strong molecular commonalities between basal-like breast tumours, high-grade serous ovarian          
cancer (HG-SOC), and basal-like pancreatic adenocarcinomas (PDACs).​2,9,10 The growing list of           
parallels between Basal-like breast cancer, HG-SOC and basal-like PDACs include high           
frequency of ​TP53 mutations and ​TP53 loss, chromosomal instability, and widespread DNA            
copy number changes ​2,9–11​. Statistically significant subsets of both Basal-like breast tumors and             
HG-SOC also share ​BRCA1 inactivation, ​MYC amplification, and highly correlated mRNA           
expression profiles.​2,9 Subtype-specific prognostic signatures also reveal strong similarities         
between prognostic pathways in basal-like cancer and ovarian cancer, while ER-negative and            
ER-positive breast cancer subtypes exhibit different prognostic signatures ​12​. These ongoing           
studies promote identification of shared prognostic and predictive biomarkers across multiple           
cancer subtypes for future treatment.  

Continuous growth of publicly available databases of breast, ovarian and pancreas           
genome-wide profiles necessitates the development of large-scale computational frameworks         
that can store these complex data types, as well as integrate them for meta-analytical studies.               
Current bioinformatics initiatives provide extensive data repositories for microarray data retrieval           
and annotation of specific tumour types. These resources enable analysis of single datasets,             
but do not provide sufficient standardization across independent studies of single or multiple             
cancer types ​13–19 allow meta-analysis or other holistic analyses. This poses a challenge for              
meta-analytical investigations that aim to address global patterns across multiple forms of            
cancer, including for example, building multi-cancer gene signatures that generalize to new            
data​9,20,21​. Identifying robust prognostic signatures from transcriptomic data remains a major           
obstacle ​9,12,21​, and requires large sample sizes that can only be provided by large-scale              
meta-analysis ​20,22–26​. Additionally, most gene signatures derived from a single or small set of              
datasets are not generalizable to new data. In our recent systematic validation of ovarian              
signatures, primarily built from single datasets, we demonstrated that the concordance index of             
the best ovarian signatures only ranged from 0.54 to 0.58 ​27​, whereas a signatures trained by                
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meta-analysis could improve significantly on this performance ​28​. The resulting standardized           
database of ovarian cancer profiles ​29 enabled numerous subsequent meta-analyses and the            
development of statistical methodology. Efforts to standardize analyses of the transcriptomes of            
multiple cancer types have focused on coupling microarray repositories with graphical user            
interfaces to allow researchers to address targeted biologic questions on collective           
transcriptome datasets ​30–32​; however, these tools lack the generality to apply novel and             
potentially complex analyses. 

An integrative framework is thus needed to harness the breadth of transcriptomic and             
clinical data from multiple cancer types, and to serve as a resource for integrative analysis               
across these aggressive cancer types. There are growing efforts towards the development of             
curated and clinically relevant microarray repositories for breast cancer, ovarian cancer, and            
pancreatic cancer data ​4,29,33–36​. These studies provide a solid foundation for the development of              
a controlled language for clinical annotations and standardized transcriptomic data          
representation across the three cancer types. Here, we have developed the ​MetaGxData            
package compendium, which includes manually-curated and standardized clinical, pathological,         
survival, and treatment metadata for breast, ovarian, and pancreatic cancer transcriptome data.            
MetaGxData is the largest, standardized compendium of breast, ovarian and pancreas           
microarray data to date, spanning 86 datasets and encompassing 15,249 samples.           
Standardization of metadata across these cancer types promotes the use of their expression             
and clinical data in a variety of cross-tumour analyses, including identification of common             
biomarkers, establishing common patterns of co-expression networks, assessing the validity of           
prognostic signatures, and the identification of new consensus signatures that reflects upon            
common biological mechanisms. In this paper, we present our flexible framework, unified            
nomenclature, as well as applications that demonstrate the analytical power of integrative            
analysis of a large number of breast, ovarian, and pancreatic cancer transcriptome datasets. As              
an example of its application, we integrated breast and ovarian cancer data to develop a               
multi-cancer gene signature and assessed its prognostic value in pancreatic cancer,           
demonstrating the existence of a multi-cancer prognostic gene signature.  
 
Results 
MetaGxData characterization and curation. ​​The ​MetaGxData compendium integrates three         
packages containing curated and processed expression datasets for breast (​MetaGxBreast​),          
ovarian (​MetaGxOvarian​), and pancreatic (​MetaGxPancreas​) cancers. Our current framework         
extends upon the standardized framework we had already generated for curatedOvarianData ​29​.            
Our proposed enhancements facilitate rapid and consistent maintenance of our data packages            
as newer datasets are added, and provides enhanced user-versatility in terms of data rendering              
across single or multiple datasets (Fig. ​​1 ​). All of these datasets can be downloaded through the                
MetaGxBreast, MetaGxOvarian and MetaGxPancreas R data packages publicly available         
through the Bioconductor ExperimentHub ​37​. Vignettes outlining how to access the           
MetaGxBreast, MetaGxOvarian and MetaGxPancreas datasets in R are available through the           
Bioconductor website. 

We developed semi-automatic curation scripts to standardize gene and clinical annotations of             
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our breast, ovarian and pancreatic cancer datasets based on the nomenclature used in TCGA              
(Supplementary File S1) ​​2,29​. Such annotations include a host of relevant categorical variables             
that reflect upon tumour histology (stage, grade, primary site, etc.), as well as categorical and               
numerical variables crucial for survival analysis and prognostication in these cancers (overall            
survival, recurrence-free survival, distant-free survival, and metastasis-free survival)        
(Supplementary Fig. S2). Most importantly, we have provided a number of comparable and             
overlapping clinicopathological features across breast, ovarian and pancreatic cancer samples,          
such as age at diagnosis, tumour grade, or vital status (Fig. ​2​). Additional common variables               
between the datasets can be seen in the supplementary figures (Supplementary Fig. S3, S4,              
S5). We also provide tumour-specific and critical annotations for each tumour type, including, for              
example, biomarker identification status (HER2, ER, PR) in breast cancer, and TNM status for              
pancreatic datasets. Treatment information across the cancers is provided when available, and            
survival information is focused exclusively on overall survival for pancreatic cancer.  
 
Analysis of prognostic genes in breast and ovarian cancer. ​​The wealth and breadth of              
transcriptomic datasets in ​MetaGxData can be used as a framework for translational cancer             
research. As an example of the versatility of our packages, we conducted a meta-analysis of the                
prognostic value of well-studied prognostic genes in ovarian cancer and our previously            
published gene modules in breast cancer using the ​MetaGxBreast and ​MetaGxOvarian           
packages (Fig. ​3 ​, Fig. ​4​). The hazard ratio of the genes was determined by calculating the                
D.index, which is an estimate of the log hazard ratio comparing two equal sized groups.               
Furthermore, log rank tests were used to determine whether splits in the survival curves              
generated by using the genes to group patients into high and low score groups were statistically                
significant. A total of 13 genes and gene modules were tested, including 7 breast cancer gene                
modules (ESR1, ERBB2, STAT1, CASP3, PLAU, VEGF, and AURKA) and 6 ovarian cancer             
genes (PTCH1, TGFBR2, CXCL14, POSTN, FAP, and NUAK1).​22,23,27,28 Unsurprisingly, higher          
gene expression levels of the proliferation gene AURKA indicate poorer survival in breast             
cancer (log rank p = 1.1e-16, n = 4,161) (Fig. ​3c​). This supports previous findings regarding the                 
importance of this gene in biology-driven signatures of breast cancer, and its comparable             
prognostic effect with other multi-gene prognostic signatures.​22,23,35,38,39 We have also observed           
that the NUAK1 gene exhibits worst prognosis in ovarian cancer (log rank p = 6.2e-9, n = 2,450)                  
(Fig. ​4c​). We have previously demonstrated the utility of NUAK1 in the development of a               
debulking signature that can predict the outcome of cytoreductive surgery. ​28  

 
Meta-analysis of gene expression prognosis across breast and ovarian cancer. ​​Our           
single-gene prognostic analysis can easily be extended to a genome-wide meta-analysis. To            
this end, we determined the prognostic capability of 22,410 genes that are common to both the                
ovarian and breast cancer datasets (Fig. ​5​, Supplementary File S6). We identified 30 genes that               
are significantly prognostic across both tumours (False Discovery Rate [FDR] < 5%). Of these,              
we identified 3 genes for which elevated expression values indicate worse prognosis in both              
cancers (HR>1), and 9 genes for which it indicates better prognosis (HR<1)., Such analyses              
can be used to test pan-cancer hypotheses across much larger sample sizes than previously              
possible, and will allow deeper study of relationships between cancer subtypes such as . will be                
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integral in future studies of parallels between cancer subtypes, such as those comparing             
basal-like breast cancer, high-grade serous ovarian cancer (HG-SOC), and basal-like pancreatic           
cancer ​40​. 
 
MetaGx gene signature creation and prognosis in breast, ovarian and pancreatic cancer.            
We developed a gene signature that is prognostic in both breast and ovarian cancers by running                
a single-gene, genome-wide prognostic analysis on 22,410 genes as above, but excluding            
several large breast and ovarian datasets for use as validation cohorts. Meta-analysis of the              
training datasets identified 53 genes with significant hazard ratios in both cancers (FDR < 5%,               
HR > 1.125 or HR < 0.875) which were used to form the MetaGx signature (Table ​1​). The                  
direction of association of the genes comprising the signature were chosen based on the hazard               
ratios (HR > 1 positive direction). The top 5 signatures from our recent review of ovarian gene                 
signatures were evaluated alongside the MetaGx signature, and each signature was tested in             
the molecular subtypes identified by The Cancer Genome Atlas Research Network           
(immunoreactive, proliferative, mesenchymal, differentiated subtypes) ​1,27 ​. The MetaGx        
signature was the most prognostic of the ovarian signatures tested in an analysis containing all               
the patients (HR 2.02, n = 1,069) and was the only signature providing statistically significant               
prognostic capabilities within each subtype (log rank tests p < .05). Although the D index was                
prognostic in the differentiated subtype (HR 1.85, n = 427) and the most prognostic of the                
signatures tested in the Mesenchymal subtype (HR 1.95, n = 229), the MetaGx signature did not                
yield statistically significant D indices in the immunoreactive and proliferative subtypes (Fig. ​6             
a-e ​). 

In breast cancer, the signature was benchmarked against the clinically relevant mammaprint             
and oncotype DX signatures.​41–43 Our three gene (ER, HER2, and AURKA) subtype            
classification model (SCM) was chosen to classify patients into the ER+/HER2-, ER-/HER2-,            
and HER2+ subtypes​35​. The MetaGx signature was highly prognostic in the analysis using all              
patients (HR 1.60, n = 1,971) (Fig. ​6f​) ​​and had the largest D index in the ER-/HER2- subtype                  
(HR 1.61, n = 393) (Supplementary Fig. S7).  

We further tested the prognostic value of the MetaGx signature in pancreatic cancer and               
benchmarked it against pancreatic signatures from the literature, using a signed average            
approach for evaluation. ​44–47 Of the 5 signatures tested, the MetaGx signature was the most               
prognostic in the analysis of all the patients (HR 1.64, n = 903) and was the only signature that                   
yielded a statistically significant difference in survival within both the basal (log rank p = 1.1e-3,                
n = 375) and the classical (log rank p = 1.3e-2, n = 528) pancreatic cancer molecular subtypes                  
identified by Moffitt et al (Table ​2​, Fig. ​6 j-l ​).​48 ​​Recent studies have shown that most published                 
gene signatures often perform no better than 1000 random signatures of equal length. To test               
this observation, the MetaGx signature was tested in the pancreatic cancer, ovarian cancer and              
breast cancer test datasets against 1000 random signatures of equal size.​49 In all three cases,               
the magnitude of the hazard ratio from the MetaGx signature was larger than the random               
signatures’ hazard ratio (p = 0.001 for all three cancers) (Supplementary Fig. S8). 
 
Discussion 
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Meta-analysis of multiple cancer types is an area of high interest, with ongoing research               
continually supporting the growing relationship between these malignancies and suggesting          
common patterns of tumour biology ​50​. We provide an integrative, standardized, and            
comprehensive platform to facilitate analysis between breast, ovarian, and pancreatic cancer.           
This platform provides a flexible framework for data assimilation and unified nomenclature, with             
standardized data packages hosting the largest compendia of breast, ovarian, and pancreatic            
cancer transcriptomic and clinical datasets available to date. 

Integration of genomic data into standardized frameworks is challenged by the           
inconsistency of the clinical curations across datasets and across tumour types. Annotation of             
clinicopathological variables may vary widely due to different protocols in different laboratories,            
institutions, and across international boundaries. We have standardized, as much as possible,            
the catalog of clinical variables within each tumour type. For characteristics pertaining to a              
specific tumour type, including ER, PGR, and HER2 IHC status in breast cancer samples, we               
have generated a semantic positive/negative variable to reflect IHC status. This facilitates            
searching across all patients irrespective of the original assay annotations that may have binary,              
numeric, or qualitative. Similarly, a binary variable has been assigned to ovarian cancer patients              
to reflect whether they had been treated with platinum, taxol, or neoadjuvant therapy. Many of               
the annotated variables (ex: stage and tumour grade in MetaGxOvarian) have also been             
standardized to facilitate comparisons across multiple studies. Further analyses using our           
previously developed packages (curatedOvarianData) have indicated good consistency across         
datasets, and ultimately facilitated uniform and consistent investigations on the prognostic effect            
of biomarkers in ovarian cancer survival ​51,52​. 

The scale of MetaGxData facilitates identification of gene signatures that are prognostic            
across multiple forms of cancer. Using this compendium, we developed a gene signature that is               
prognostic for breast, ovarian, and pancreatic cancers. Requiring genes to be prognostic across             
multiple datasets should help distinguish between general and disease-specific processes          
affecting patient survival. allow signatures to generalize better to new datasets, in comparison to              
conventional signature creation methods that select genes based on cox proportional hazard            
models in a single dataset. We have demonstrated that the This multi-cancer MetaGx signature              
outperformed the top ovarian signatures identified in our previous review in an analysis             
conducted on all patients with overall survival as the endpoint. It was also more prognostic than                
the clinically-relevant Mammaprint and OncotypeDX signatures in the ER-/HER2- breast cancer           
subtype, and more prognostic than pancreas-specific signatures in pancreatic cancer.          
Furthermore, it was the only signature that was prognostic in each molecular subtype of              
pancreatic cancer, and was highly prognostic in the basal-like subtype  

To our knowledge, the MetaGx signature represents the first signature demonstrated to            
be prognostic in a meta-analysis across three cancers. This includes pancreatic cancer, which             
was not used in any way for training. This signature includes notable genes such as PLAU,                
which we have previously shown to be associated with tumor invasion/metastasis, as well as              
epidermal growth factor receptor.​23,53 Our signature provides additional support for the role of             
CLDN4 in pancreas, breast and ovarian malignancies. Higher expression levels of this gene             
placed patients in the high score group that had poorer outcomes in all 3 of these cancers. This                  
is in line with numerous studies that have shown CLDN4 to be overexpressed in pancreatic,               
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ovarian, and breast tumors relative to normal tissue.​54–58  
In conclusion, the MetaGxBreast, MetaGxOvarian and MetaGxPancreas packages follow a           

unified framework that facilitates integration of oncogenomic and clinicopathological data. We           
have demonstrated how our packages facilitate easy meta-analysis of gene expression and            
prognostication in breast, ovarian and pancreatic cancer. We have also demonstrated that            
leveraging this data in meta-analysis can lead to gene signatures that outperform clinically             
relevant breast signatures in ER-/HER2- patients, top ovarian signatures developed from single            
datasets, and a number of published pancreatic cancer signatures. These packages have the             
potential to serve as an important resource in oncology and methodological research and             
provide a foundation for future development of cancer-specific compendia.  
 
 
Methods 
Breast cancer data acquisition. ​​Breast cancer datasets were extracted from our previous            
meta-analysis of breast cancer molecular subtypes, which includes 39 microarray datasets from            
a variety of commercially available microarray platforms published from 2002 to 2014 ​35​.             
Additional datasets were extracted from the Gene Expression Omnibus (GEO) and manually            
curated. Gene expression and clinical annotation for Metabric were downloaded from EBI            
ArrayExpress and combined into a dataset of 2,136 samples ​59​. The cgdsr R ​package was used                 
to extract 1,098 tumour samples from The Cancer Genome Atlas (TCGA), and matching clinical              
annotations for these samples were downloaded from the TCGA Data Matrix portal            
(​https://tcga-data.nci.nih.gov/tcga/​) ​2,60​. Combining these studies produced a total of 39 breast           
cancer microarray expression datasets spanning 10,004 samples. Of these 10,004 samples,           
survival information is available for 6,847 patients, including overall survival (n=4425),           
metastasis free survival (n=2695), and relapse free survival (n=1858). 
 
Ovarian cancer data acquisition. ​​Ovarian microarray expression datasets were obtained from           
our recent update of the curatedOvarianData data package, onto which we have added 5              
expression datasets to the originally published version ​29​, for a total of 26 microarray datasets               
spanning 3,526 samples. To obtain these datasets we first used the curatedOvarianData            
pipeline to generate the “FULLcuratedOvarianData” version of the package, which differs from            
the public version in that probe sets for same gene are not merged             
(​https://bitbucket.org/lwaldron/curatedovariandata​). Of the 3,526 samples, survival information is        
available for 2,726 patients, including overall survival (n=2,,712) and relapse free survival            
(n=1928).  
 
Pancreatic cancer data acquisition. ​​Pancreatic ductal adenocarcinoma (PDAC) datasets were          
obtained by curating datasets available from the literature. A total of 21 datasets were curated               
for a total of 1,719 patient transcriptomic profiles. Of the 21 datasets, overall survival data was                
present for 12 studies. Consequently, of the 1,719 samples survival information is available for              
1000 patients, including overall survival (n=1000) and no relapse free survival data. 
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Processing of gene expression datasets​​. The processing of breast and ovarian cancer            
microarray datasets was previously described ​29,35​. The pancreatic cancer datasets were           
processed in the manner described within the original studies from which they were obtained;              
the only exception is the Kirby dataset, which had been aligned using Kallisto and whose               
expression values are calculated using the logarithm of the transcripts per kilobase million             
(TPM). Across all datasets, we used GEO platform descriptions as the primary source of probe               
and gene annotations when available, otherwise original annotations as published by the            
authors were used for non-standard gene expression profiling platforms. The full set of gene              
annotation platforms across all expression sets can be found in the metadata files associated              
with each Bioconductor package. Gene symbols and Entrez Gene identifiers that matched the             
probeset ids of a given expression set were subsequently saved as part of the featureData               
(fData) pertaining to that expression set. For genes with multiple probesets, only the probe with               
the highest variance across the dataset was used to calculate the prognostic value of the gene.  
 
MetaGxData package implementation​​. The breast, ovarian, and pancreatic cancer datasets          
are available through the MetaGxBreast, MetaGxOvarian, and MetaGxPancreas R data          
packages hosted on Bioconductor’s ExperimentHub. The MetaGxData packages allow users to           
select and filter the finalized curated datasets using the loadOvarianEsets, loadBreastEsets and            
loadPancreasEsets functions of MetaGxOvarian, MetaGxBreast and MetaGxPancreas,       
respectively. Users are provided options for filtering samples based on clinical parameters,            
availability of survival data, and sample replicates (patients with highly correlated transcriptomic            
profiles; spearman correlation > 0.98). Users are also provided other options including, but not              
limited to, the ability to remove datasets based on the number of samples and the number of                 
survival events present in the data. Importantly, users have the ability to specifically select for               
only primary tumour samples or several tissue types (primary tumours, healthy tissue, etc.)             
using the sample type info found in the clinical data.  

Collectively, our data compendium, referred to as ​MetaGxData​, encompasses 86 processed            
gene expression datasets, containing in total 15,249 breast, ovarian and pancreas samples.            
Information pertaining to the breast, ovarian, and pancreas datasets can be found in in the               
supplementary files (Supplementary Table S9, S10, and S11). Expression datasets are           
represented as SummarizedExperiment objects with attached clinical data (pData), and feature           
data (fData) and can be loaded into R with a single function call allowing for fast and flexible                  
analysis.​61 Hosting the datasets within the Bioconductor ExperimentHub facilitates rapid          
integration of new datasets into the existing framework and allows for easy extension of newer               
studies into the package in future iterations of ​MetaGxData​.  
 
Prognostication of breast and ovarian cancer genes and signature generation. ​​Cox           
proportional hazards analysis was performed using the R package ​survcomp (version 1.29.4) to             
estimate the prognostic value (hazard ratio) and significance (corresponding p-value) of the            
genes in the various datasets.​62 Overall survival was used as the primary endpoint and              
meta-estimates of the hazard ratio were calculated using the random-effects model ​63​. When             
stratifying samples into groups to generate survival curves, samples within each dataset were             
stratified into two groups based on the median expression of the gene or the median gene                
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signature/module score for all the samples within that dataset. For the gene signatures, risk              
prediction scores were determined using the signed average of the patients’ gene expression             
with the sign being determined as their direction of association with the survival outcome (HR >                
1 positive direction). In order to generate the MetaGx gene signature, the aforementioned             
analysis was performed on the genes within MetaGxData while removing the METABRIC            
dataset (n=2136 samples) from MetaGxBreast, and 5 of the largest ovarian datasets (GSE9891,             
GSE32062, GSE49997, GSE26712, GSE51088, totalling 1,116 samples) for use as the           
validation cohort. The 53 genes with significant hazard ratios in both cancers (FDR < 5%, HR >                 
1.125 or HR < 0.875) were selected for the MetaGx gene signature 
 
Statistical analysis. ​​Risk predictions for the signature along with the patients' corresponding            
survival times and overall survival status were used in the R survcomp package in order to                
compute a D index in each dataset.​62,64 Meta-analyses were also conducted via survcomp to              
obtain a single best estimate of the D index (random effects model) using the D indices                
computed for each individual dataset. The patient groups, survival times and overall survival             
status of the patients from all the datasets were used within the survival package in order to                 
generate a Kaplan-Meir survival curve and determine the log-rank test p values.​65 D index and               
log-rank test p values less than 0.05 were considered to be statistically significant and all               
analyses were conducted using R. 
 
Research reproducibility​​. All the code required to reproduce the single-gene prognosis           
analysis, as well as the genome-wide meta-analysis and signature results, is publicly available             
on the CodeOcean (​codeocean.com​, analysis at http://bit.ly/2Muk5io). The CodeOcean contains          
an executable version of the code, in the form of a standalone docker, that can be used to                  
generate all of the results in the present work. This work complies with the guidelines outlined in                 
66–68​. 
 
Data Availability 
The datasets used in this manuscript are all publicly available for download through R              
Bioconductor’s ExperimentHub (​https://bioconductor.org/packages/release/data/experiment/​).   
The breast, ovarian, and pancreas datasets can be found in MetaGxbreast, MetaGxOvarian,            
and MetaGxPancreas, Respectively 
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Figure Legends 
 
Figure 1. ​​ Diagrammatic representation of the enhancements in data integration and annotation 
within the MetaGxData framework. The process of downloading a dataset, and subsequent 
curation, annotation and integration into MetaGxData is depicted. 
 
Figure 2. ​​Schematic representation of some of the common clinical variables (pData) that are 
available across gene expression datasets in MetaGxBreast, MetaGxOvarian, and 
MetaGxPancreas. The Stacked bar plots indicate the percentage of samples in every dataset 
annotated with a particular variable designation. Continuous numeric values are represented by 
box plots. 
 
Figure 3. ​​Assessment of the prognostic value of seven key gene modules in breast cancer, 
using the MetaGxBreast package. (A) Heatmap representation hazard ratios for each gene 
module, across 9 gene expression datasets. The estimate is presented as a hazard ratio for 
each gene. Ratios greater than 1 (red) indicate worse prognosis for elevated expression levels 
of that gene in the respective datasets. (B) Random effects meta-estimates of the hazard ratios 
for each gene, calculated by pooling the hazard ratios from each individual gene expression 
dataset. (C) Kaplan-Meier curve of the most prognostic gene with p < 0.05, in this case AURKA.  
 
Figure 4. ​​Assessment of the prognostic value of six key genes in ovarian cancer, using the 
MetaGxOvarian package. (A) Heatmap representation of hazard ratios for each gene, across 17 
gene expression datasets. The estimate is presented as a hazard ratio for each gene. Ratios 
greater than 1 (red) indicate worse prognosis for elevated expression levels of that gene in the 
respective datasets. (B) Random effects meta-estimates of the hazard ratios for each gene, 
calculated by pooling the hazard ratios from each individual gene expression dataset. (C) 
Kaplan-Meier curve of NUAK1.  
 
Figure 5. ​​Genome-wide assessment of the prognostic value of 22,410 genes common to both 
the MetaGxBreast and MetaGxOvarian datasets. A Venn diagram of significant genes 
(FDR<5%) in each tumour following calculation of the Hazards Ratio is indicated (top). A total of 
695 and 654 significantly prognostic genes were identified for ovarian and breast cancer, 
respectively. Common significant genes between both tumour types (n=30) were further 
subdivided by their log hazard ratio, for each tumour type. Genes for which elevated expression 
levels are prognostic (HR>1) across both tumours, or genes for which down-regulated 
expression is prognostic (HR<1) are indicated.  
 
Figure 6. ​​Survival curves for the MetaGx signature with patients stratified by molecular 
subtypes. (a-e) Survival curves in ovarian cancer. (f-i) Survival curves in breast cancer. (j-l) 
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Survival curves in pancreatic cancer. The asterisks above the D indices indicate whether the D 
index was statistically significant (p < 0.05).  
 
Table Legends 
 
Table 1. ​​Genes present in the MetaGx gene signature 
 
Table 2. ​​ Prognostic value of pancreatic gene signatures 
 
Supplementary Files 
 
Supplementary File S1. ​​Explanation of curated clinical annotations (phenotype data variables) 
in MetaGxBreast (sheet 1), MetaGxOvarian (sheet 2), and MetaGxPancreas (sheet 3). 
 
Supplementary Figure S2. ​​Heatmap representation of clinical variables availability across 
gene expression datasets of MetaGxBreast, MetaGxOvarian, and MetaGxPancreas. Datasets 
are represented as rows and clinical variables as columns. The percentage of samples in each 
dataset that is annotated with a particular variable is represented.  
 
Supplementary Figure S3. ​​Schematic representation of the clinical variables (pData) that are 
available across gene expression datasets in MetaGxBreast. The Stacked bar plots indicate the 
percentage of samples in every dataset annotated with a particular variable designation. 
Continuous numeric values are represented by box plots. 
 
Supplementary Figure S4. ​​Schematic representation of the clinical variables (pData) that are 
available across gene expression datasets in MetaGxOvarian. The Stacked bar plots indicate 
the percentage of samples in every dataset annotated with a particular variable designation. 
Continuous numeric values are represented by box plots.  
 
Supplementary Figure S5. ​​Schematic representation of the clinical variables (pData) that are 
available across gene expression datasets in MetaGxPancreas. The Stacked bar plots indicate 
the percentage of samples in every dataset annotated with a particular variable designation. 
Continuous numeric values are represented by box plots. 
 
Supplementary File S6. ​​Genome-wide analysis of the prognostic value of 22,410 genes in 
breast and ovarian gene expression datasets. (sheet 1) List of the computed Hazard Ratio of all 
genes, using MetaGxBreast. (sheet 2) List of the computed Hazard Ratio of all genes, using 
MetaGxOvarian. 
 
Supplementary Figure S7. ​​Survival curves for the metaGx, mammaprint signature, and 
oncotype signature in the ER-/HER2- breast cancer patients stratified by molecular subtypes. 
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The asterisks above the D indices indicate whether the D index was statistically significant (p < 
0.05). 
 
Supplementary Figure S8. ​​Density plots comparing the prognostic value of the gene signature 
in breast, ovarian, and pancreatic cancer to 1000 random signatures of the same length. The 
dashed line represents the location of the D index of the signature. 
 
Supplementary Table S9. ​​Breast cancer dataset information 
 
Supplementary Table S10. ​​Ovarian cancer dataset information 
 
Supplementary Table S11. ​​Pancreatic cancer dataset information 
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Figures and Tables

Figure 1: Diagrammatic representation of the enhancements in data integration and annotation within
the MetaGxData framework. The process of downloading a dataset, and subsequent curation, anno-
tation and integration into MetaGxData is depicted.
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Figure 2: Schematic representation of some of the common clinical variables (pData) that are avail-
able across gene expression datasets in MetaGxBreast, MetaGxOvarian, and MetaGxPancreas. The
Stacked bar plots indicate the percentage of samples in every dataset annotated with a particular
variable designation. Continuous numeric values are represented by box plots. .
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Figure 3: Assessment of the prognostic value of seven key gene modules in breast cancer, using the
MetaGxBreast package. (A) Heatmap representation hazard ratios for each gene module, across 9
gene expression datasets. The estimate is presented as a hazard ratio for each gene. Ratios greater
than 1 (red) indicate worse prognosis for elevated expression levels of that gene in the respective
datasets. (B) Random effects meta-estimates of the hazard ratios for each gene, calculated by pooling
the hazard ratios from each individual gene expression dataset. (C) Kaplan-Meier curve of the most
prognostic gene with p < 0.05, in this case AURKA.
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Figure 4: Assessment of the prognostic value of six key genes in ovarian cancer, using the MetaGxO-
varian package. (A) Heatmap representation of hazard ratios for each gene, across 17 gene expres-
sion datasets. The estimate is presented as a hazard ratio for each gene. Ratios greater than 1 (red)
indicate worse prognosis for elevated expression levels of that gene in the respective datasets. (B)
Random effects meta-estimates of the hazard ratios for each gene, calculated by pooling the hazard
ratios from each individual gene expression dataset. (C) Kaplan-Meier curve of NUAK1.
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Figure 5: Genome-wide assessment of the prognostic value of 22,410 genes common to both the
MetaGxBreast and MetaGxOvarian datasets. A Venn diagram of significant genes (FDR<5%) in each
tumour following calculation of the Hazards Ratio is indicated (top). A total of 695 and 654 significantly
prognostic genes were identified for ovarian and breast cancer, respectively. Common significant
genes between both tumour types (n=30) were further subdivided by their log hazard ratio, for each
tumour type. Genes for which elevated expression levels are prognostic (HR>1) across both tumours,
or genes for which down-regulated expression is prognostic (HR<1) are indicated.
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Figure 6: Survival curves for the MetaGx signature with patients stratified by molecular subtypes. (a-
e) Survival curves in ovarian cancer. (f-i) Survival curves in breast cancer. (j-l) Survival curves in
pancreatic cancer. The asterisks above the D indices indicate whether the D index was statistically
significant (p < 0.05).
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Gene Symbol Description Entrez ID Direction
1 ACKR3 atypical chemokine receptor 3 57007 1
2 ACTN4 actinin alpha 4 81 1
3 ARHGAP21 Rho GTPase activating protein 21 57584 1
4 C12orf49 chromosome 12 open reading frame 49 79794 1
5 CACNB3 calcium voltage-gated channel auxiliary subunit beta 3 784 1
6 CAMK1D calcium/calmodulin dependent protein kinase ID 57118 1
7 CAMSAP3 calmodulin regulated spectrin associated protein family member 3 57662 -1
8 CBFB core-binding factor beta subunit 865 1
9 CDC37L1 cell division cycle 37 like 1 55664 -1

10 CDK19 cyclin dependent kinase 19 23097 1
11 CLDN4 claudin 4 1364 1
12 CMBL carboxymethylenebutenolidase homolog 134147 1
13 COP1 COP1, E3 ubiquitin ligase 64326 1
14 CRABP2 cellular retinoic acid binding protein 2 1382 1
15 CSE1L chromosome segregation 1 like 1434 1
16 DARS2 aspartyl-tRNA synthetase 2, mitochondrial 55157 1
17 DDB2 damage specific DNA binding protein 2 1643 -1
18 DPP4 dipeptidyl peptidase 4 1803 1
19 EGFR epidermal growth factor receptor 1956 1
20 FAM189A2 family with sequence similarity 189 member A2 9413 -1
21 GSTZ1 glutathione S-transferase zeta 1 2954 -1
22 IMPDH1 inosine monophosphate dehydrogenase 1 3614 1
23 IRF3 interferon regulatory factor 3 3661 1
24 KATNAL1 katanin catalytic subunit A1 like 1 84056 1
25 KIF11 kinesin family member 11 3832 1
26 LATS2 large tumor suppressor kinase 2 26524 1
27 LOXL2 lysyl oxidase like 2 4017 1
28 MOCS1 molybdenum cofactor synthesis 1 4337 -1
29 MREG melanoregulin 55686 -1
30 MSC musculin 9242 1
31 MYADM myeloid associated differentiation marker 91663 1
32 MYLK3 myosin light chain kinase 3 91807 -1
33 NAE1 NEDD8 activating enzyme E1 subunit 1 8883 1
34 NID2 nidogen 2 22795 1
35 OPRM1 opioid receptor mu 1 4988 1
36 PLAU plasminogen activator, urokinase 5328 1
37 PPEF1 protein phosphatase with EF-hand domain 1 5475 1
38 PWP1 PWP1 homolog, endonuclein 11137 1
39 RALY RALY heterogeneous nuclear ribonucleoprotein 22913 1
40 RARRES3 retinoic acid receptor responder 3 5920 -1
41 REX1BD required for excision 1-B domain containing 55049 1
42 SERPINB2 serpin family B member 2 5055 1
43 SIPA1L2 signal induced proliferation associated 1 like 2 57568 1
44 STK3 serine/threonine kinase 3 6788 1
45 TERF2 telomeric repeat binding factor 2 7014 1
46 TEX261 testis expressed 261 113419 1
47 TGFBI transforming growth factor beta induced 7045 1
48 TNFRSF18 TNF receptor superfamily member 18 8784 -1
49 TPD52L2 tumor protein D52 like 2 7165 1
50 UTP6 UTP6, small subunit processome component 55813 1
51 ZFAND2A zinc finger AN1-type containing 2A 90637 1
52 ZNF204P zinc finger protein 204, pseudogene 7754 -1
53 ZSCAN32 zinc finger and SCAN domain containing 32 54925 -1

Table 1: Genes present in the MetaGx gene signature.
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Gene Signature - Subtype D Index D Index 95% CI D Index P Log Rank Test P
1 MetaGx - All Patients 1.64 (1.37, 1.90) 1.9e-04 2.3e-06
2 MetaGx - basal 1.75 (1.31, 2.19) 1.1e-02 1.1e-03
3 MetaGx - classical 1.43 (1.09, 1.77) 3.7e-02 1.3e-02
4 Newhook PLos one - All Patients 1.22 (0.97, 1.47) 1.1e-01 1.2e-01
5 Newhook PLos one - basal 1.01 (0.80, 1.23) 9e-01 7.9e-01
6 Newhook PLos one - classical 0.99 (0.77, 1.20) 9e-01 6.2e-01
7 Haider Gen Med - All Patients 1.56 (1.23, 1.88) 6.8e-03 4.7e-06
8 Haider Gen Med - basal 1.22 (0.88, 1.57) 2.4e-01 2.2e-01
9 Haider Gen Med - classical 1.43 (1.15, 1.71) 1e-02 9.5e-02

10 Grutzmann Oncogene - All Patients 1.35 (1.22, 1.49) 1.3e-05 2.1e-06
11 Grutzmann Oncogene - basal 1.29 (0.91, 1.67) 1.7e-01 7.8e-03
12 Grutzmann Oncogene - classical 1.23 (1.01, 1.46) 6.2e-02 1.1e-01
13 Stratford PLos med - All Patients 1.39 (1.09, 1.68) 2.9e-02 6.3e-03
14 Stratford PLos med - basal 1.22 (1.01, 1.43) 6.4e-02 2.6e-01
15 Stratford PLos med - classical 1.29 (0.94, 1.63) 1.4e-01 6.7e-02

Table 2: Prognostic value of pancreatic cancer gene signatures.
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