Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Soft selective sweeps in evolutionary rescue

Benjamin A. Wilson, Pleuni S. Pennings, Dmitri A. Petrov
doi: https://doi.org/10.1101/052993
Benjamin A. Wilson
1Department of Biology, Stanford University, Stanford, CA 94305 USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Pleuni S. Pennings
2Department of Biology, San Francisco State University, San Francisco, CA 94132 USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dmitri A. Petrov
1Department of Biology, Stanford University, Stanford, CA 94305 USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Evolutionary rescue occurs when a population that is declining in size because of an environmental change is rescued by genetic adaptation. Evolutionary rescue is an important phenomenon at the intersection of ecology and population genetics. While most population genetic models of evolutionary rescue focus on estimating the probability of rescue, we focus on whether one or more adaptive lineages contribute to evolutionary rescue. We find that when evolutionary rescue is likely, it is often driven by soft selective sweeps where multiple adaptive mutations spread through the population simultaneously. We give full analytic results for the probability of evolutionary rescue and the probability that evolutionary rescue occurs via soft selective sweeps in our model. We expect that these results will find utility in understanding the genetic signatures associated with various evolutionary rescue scenarios in large populations, such as the evolution of drug resistance in viral, bacterial, or eukaryotic pathogens.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted May 12, 2016.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Soft selective sweeps in evolutionary rescue
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Soft selective sweeps in evolutionary rescue
Benjamin A. Wilson, Pleuni S. Pennings, Dmitri A. Petrov
bioRxiv 052993; doi: https://doi.org/10.1101/052993
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Soft selective sweeps in evolutionary rescue
Benjamin A. Wilson, Pleuni S. Pennings, Dmitri A. Petrov
bioRxiv 052993; doi: https://doi.org/10.1101/052993

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Evolutionary Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4838)
  • Biochemistry (10738)
  • Bioengineering (8016)
  • Bioinformatics (27182)
  • Biophysics (13939)
  • Cancer Biology (11083)
  • Cell Biology (15987)
  • Clinical Trials (138)
  • Developmental Biology (8758)
  • Ecology (13238)
  • Epidemiology (2067)
  • Evolutionary Biology (17316)
  • Genetics (11665)
  • Genomics (15885)
  • Immunology (10991)
  • Microbiology (25995)
  • Molecular Biology (10608)
  • Neuroscience (56354)
  • Paleontology (417)
  • Pathology (1728)
  • Pharmacology and Toxicology (2999)
  • Physiology (4530)
  • Plant Biology (9590)
  • Scientific Communication and Education (1610)
  • Synthetic Biology (2671)
  • Systems Biology (6960)
  • Zoology (1507)