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Abstract		

High	 throughput	 RNA	 sequencing	 technologies	 have	 provided	 invaluable	 research	

opportunities	across	distinct	scientific	domains	by	producing	quantitative	readouts	of	the	

transcriptional	activity	of	both	entire	cellular	populations	and	single	cells.	The	majority	of	

RNA-Seq	analyses	begin	by	mapping	each	experimentally	produced	sequence	(i.e.,	read)	

to	a	set	of	annotated	reference	sequences	for	the	organism	of	interest.	For	both	biological	

and	technical	reasons,	a	significant	fraction	of	reads	remains	unmapped.	In	this	work	we	

develop	 a	 read	 origin	 protocol	 (ROP)	 aimed	 at	 discovering	 the	 source	 of	 all	 reads,	

originated	 from	 complex	 RNA	 molecules,	 recombinant	 antibodies	 and	 microbial	

communities.	Our	approach	can	account	for	98.8%	of	all	reads	across	poly(A)	and	ribo-

depletion	protocols.	Furthermore,	using	ROP	we	show	that	immune	profiles	of	asthmatic	

individuals	are	significantly	different	from	the	control	individuals	with	decreased	average	

per	 sample	 T-cell/B-cell	 receptor	 diversity	 and	 that	 immune	 diversity	 is	 inversely	

correlated	 with	 microbial	 load.	 This	 demonstrates	 the	 potential	 of	 ROP	 to	 exploit	

unmapped	 reads	 to	 better	 understand	 the	 functional	 mechanisms	 underlying	 the	

connection	between	immune	system,	microbiome,	human	gene	expression,	and	disease	

etiology.	

The	ROP	pipeline	is	freely	available	at	https://sergheimangul.wordpress.com/rop/ 
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Introduction	

Advances	 in	 RNA	 sequencing	 (RNA-seq)	 technology	 have	 provided	 an	 unprecedented	

opportunity	to	explore	gene	expression	across	individuals,	tissues,	and	environments	1–3	

by	 efficiently	 profiling	 the	 RNA	 sequences	 present	 in	 a	 sample	 of	 interest4.	 RNA-seq	

experiments	currently	produce	tens	of	millions	of	short	read	subsequences	sampled	from	

the	complete	set	of	RNA	transcripts	provided	to	the	sequencing	platform.	An	increasing	

number	 of	 bioinformatic	 protocols	 are	 being	 developed	 to	 analyze	 reads	 in	 order	 to	

annotate	 and	 quantify	 the	 sample’s	 transcriptome5–7.	 When	 a	 reference	 genome	

sequence,	or	preferably	transcriptome,	of	the	sample	is	available,	mapping-based	RNA-

seq	analysis	protocols	attempt	to	align	the	RNA-seq	reads	to	the	reference	sequences,	

identify	novel	transcripts,	and	quantify	the	abundance	of	expressed	transcripts.			

	 	

	 A	 large	 and	 often-overlooked	 output	 of	 standard	 RNA-seq	 analyses	 are	 the	

unmapped	reads.	Even	in	carefully	executed	experiments,	these	“unmapped	reads”	can	

comprise	a	substantial	fraction	of	the	complete	set	of	reads	produced	(e.	g.,	9%-15%	in	

recent	 human	 RNA-seq	 projects8–10).	 Unmapped	 reads	 can	 arise	 due	 to	 technical	

sequencing	artifacts	resulting	in	low	quality	and	error	prone	copies	of	the	nascent	RNA	

sequence	being	sampled11.	Even	when	reads	are	error-free,	aligners	can	fail	to	map	some	

proportion	of	the	reads	for	several	reasons,	including	the	following:	shortcomings	of	the	

aligner’s	 	 efficient	 yet	 heuristic	 algorithms12,	 incomplete	 representation	 of	 all	 RNA	

transcripts	 in	 the	 reference	 set	 (e.g.,	 unknown	 transcripts13,	 variable	B/T-cell	 receptor	
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sequences14,15,	trans-splicing16,	gene	fusion17,	and	circular	RNAs18),	and	the	presence	of	

non-host	RNA	sequences19	(e.g.,	bacterial,	fungal,	and	viral	organisms).	

	

	 In	this	work,	we	aim	to	characterize	the	origin	of	every	read	obtained	by	RNA-

seq	 experiments	 in	 order	 to	 inform	 future	 development	 of	 read	 mapping	 methods,	

provide	 access	 to	 additional	 biological	 information	 about	 each	 sample,	 and	 generally	

resolve	the	irksome	puzzle	of	the	origin	of	unmapped	reads.	To	accomplish	this	objective,	

we	develop	the	Read	Origin	Protocol	 (ROP)	pipeline	that	 leverages	accurate	alignment	

methods	for	both	host	and	microbial	sequences.	The	ROP	pipeline	contains	a	combination	

of	existing	 tools	 focused	on	 specific	 categories	of	unmapped	 reads14,15,19–21,	 as	well	 as	

novel	 procedures	 developed	 to	 overcome	 challenges	 of	 jointly	 fitting	 all	 reads.	 The	

comprehensive	 nature	 of	 the	 ROP	pipeline	 prevents	 biases	 that	 can	 arise	when	 using	

targeted	analyses.		

	

	 We	apply	 the	ROP	pipeline	 to	RNA-seq	data	 from	53	asthmatic	 cases	and	33	

controls	 collected	 from	 three	 tissues,	 using	both	poly(A)	 selection	and	 ribosomal	RNA	

(rRNA)	depleted	library	preparation	protocols.	The	ROP	analysis	characterizes	the	origin	

of	98.8%	of	the	reads	compared	to	83.8%	by	conventional	reference-based	protocols.	We	

find	that	the	vast	majority	of	unmapped	reads	are	human	in	origin	and	come	from	diverse	

sources,	 including	 repetitive	 elements,	 circular	 RNAs	 (circRNAs),	 gene	 fusion	 events,	

trans-splicing	events,	recombined	B	and	T	cell	receptor	(BCR	and	TCR)	loci,	and	reads	that	

are	unmapped	due	to	shortcomings	of	mapping	algorithms.	In	addition	to	human	RNA,	a	
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large	number	of	reads	were	microbial	in	origin,	often	occurring	in	sufficient	numbers	to	

study	the	taxonomic	composition	of	microbial	communities.		

	

	 We	found	that	both	unmapped	human	reads	and	reads	with	microbial	origins	

are	useful	in	differentiating	between	types	of	tissue	and	disease	status.	For	example,	we	

found	that	the	immune	profiles	of	asthmatic	individuals	are	significantly	different	from	

the	controls	with	decreased	average	per	sample	immune	diversity.	Further,	we	used	our	

method	to	show	that	immune	diversity	is	inversely	correlated	with	microbial	load.	This	

case	study	highlights	the	potential	for	novel	discoveries	without	additional	TCR/BCR	or	

microbiome	 sequencing	 when	 the	 information	 in	 RNA-seq	 data	 is	 fully	 leveraged	 by	

incorporating	the	analysis	of	unmapped	reads.		

	

ROP	-	a	computational	protocol	to	explain	unmapped	reads	in	RNA-Sequencing	

Mapping-based	RNA-seq	analysis	protocols	overlook	reads,	which	fail	 to	map	onto	the	

human	 reference	 sequences	 (i.e.	 unmapped	 reads).	 We	 have	 designed	 a	 read	 origin	

protocol	(ROP)	to	identify	the	origin	of	both	mapped	and	unmapped	reads	(illustrated	in	

Fig.	 1).	 The	 protocol	 first	 identifies	 human	 reads	 by	mapping	 them	 onto	 a	 reference	

genome	and	transcriptome	using	a	standard	high-throughput	mapping	algorithm22.	We	

used	tophat	v.	2.0.12	with	ENSEMBL	GRCh37	transcriptome	and	hg19	build,	but	many	

other	mapping	tools	are	available	and	have	been	recently	reviewed	by	Engström,	Pär	G.,	

et	al.	23.	After	alignment,	reads	are	grouped	into	genomic	(e.g.,	CDS,	UTRs,	introns)	and	
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repetitive	(e.g.,	SINEs,	LINEs,	LTRs)	categories.	The	rest	of	the	ROP	protocol	characterizes	

the	remaining	unmapped	reads,	which	failed	to	map	to	the	human	reference	sequences.		

	

To	process	the	unmapped	reads,	we	apply	six	steps	of	the	ROP	protocol.	First,	we	

apply	a	quality	control	step	to	exclude	low-quality,	low-complexity,	and	reads	matching	

rRNA	repeat	units	among	the	unmapped	reads	(FASTQC24,	SEQCLEAN25).	Next,	we	employ	

Megablast26,	a	more	sensitive	alignment	method,	to	search	for	human	reads	missed	due	

to	the	heuristics	implemented	for	computational	speed	in	conventional	aligners	and	reads	

with	additional	mismatches.	These	include	reads	with	mismatches	and	short	gaps	relative	

to	 the	 reference	 set,	 but	 they	 can	 also	 include	 perfectly	 matched	 reads.	 	 We	 use	 a	

database	of	repeat	sequences	to	identify	lost	repeat	reads	among	the	unmapped	reads.	

Megablast,	and	similar	sensitive	alignment	methods,	are	not	designed	to	identify	‘non-

co-linear’	 RNA20	 reads	 from	 circRNAs,	 gene	 fusions,	 and	 trans-splicing	 events,	 which	

combine	sequence	from	distant	elements.	For	this	task,	we	independently	map	20bp	read	

anchors	onto	the	genome	(see	Supplementary	Text).	Similarly,	reads	from	BCR	and	TCR	

loci,	 which	 are	 subject	 to	 recombination	 and	 somatic	 hyper-mutation	 (SHM),	 require	

specifically	designed	methods,	and	we	use	IgBlast27	for	this	purpose.	The	remaining	reads	

that	did	not	map	to	any	known	human	sequence	and	are	potentially	microbial	in	origin.		

We	use	microbial	genomes	and	phylogenetic	marker	genes	to	identify	microbial	reads	and	

assign	 them	 to	 corresponding	 taxa28.	Microbial	 reads	 could	 have	 been	 introduced	 by	

contamination	or	the	natural	microbiome	of	the	sample,	which	includes	viral,	bacterial,	

or	other	microbial	species29.		
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	 Taken	together,	ROP	considers	five	classes	of	unmapped	reads:	(1)	lost	human	

reads,	(2)	lost	repeat	elements	(3)	reads	from	‘non-co-linear’	(NCL)	RNAs,	(4)	reads	from	

recombinations	of	BCR	and	TCR	segments	 (i.e.	V(D)J	 recombination),	and	 (5)	microbial	

reads.	While	 individual	methods	 have	 been	 previously	 proposed	 to	 examine	 some	 of	

these	classes	14,15,19–21,	we	find	that	performing	a	 joint	analysis,	 in	 the	order	described	

above,	 is	 critical	 in	 order	 to	 minimize	 misclassification	 of	 reads	 due	 to	 homologous	

sequences	between	the	different	classes.	Furthermore,	as	shown	in	the	Results	section	

below,	 only	 a	 comprehensive	 pipeline	 allows	 analysis	 across	 these	 classes.	 Complete	

details	 of	 ROP,	 including	 all	 parameters	 and	 threshold	 used,	 are	 provided	 in	 the	

Supplementary	Text.		
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Figure	1.	Schematic	of	the	Read	Origin	Protocol	(ROP).	Human	reads	are	identified	by	mapping	all	reads	

onto	 the	 reference	 sequences	 using	 a	 standard	 high-throughput	 mapping	 algorithm.	 ROP	 protocol	

categorizes	mapped	reads	into	genomic	(red	colors)	and	repetitive	(green	colors)	categories.		Unmapped	

reads	that	fail	to	map	are	extracted	and	further	filtered	to	exclude	low	quality	reads,	low	complexity	reads,	

and	reads	from	rRNA	repeats	(brown	color).	ROP	protocol	is	able	to	identify	unmapped	reads	aligned	to	

human	references	using	a	more	sensitive	alignment	tool	(lost	human	reads:	red	color),	unmapped	reads	

aligned	to	the	repeat	sequences	(lost	repeat	elements:	green	color),	unmapped	reads	spanning	sequences	

from	 distant	 loci	 (non-co-linear:	 orange	 color),	 unmapped	 reads	 spanning	 antigen	 receptor	 gene	

rearrangement	in	the	variable	domain	(V(D)J	recombination	of	BCR	and	TCR:	violet	color),	and	unmapped	

reads	aligned	to	the	microbial	reference	genomes	and	marker	genes	(microbial	reads:	blue	color).	

	

RNA-Seq reads

In-silico separation

Lost	repeat	elements

V(D)J	recombination	(BCR/TCR)	

Microbial	communities

Non-co-linear	RNAs	

Lost	human	reads

QC

Human	references

Mapped	human		reads

Unmapped	reads

ROPCDS,	UTR,	introns

LTR,	LINE,	SINE
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The	ROP	protocol	is	able	to	account	for	98.8%	of	all	reads		

To	 test	 ROP,	 we	 applied	 it	 to	 RNA-Seq	 performed	 on	 RNA	 from	 86	 individuals	 (53	

asthmatics	and	33	controls),	from	three	tissues:	peripheral	blood,	nasal	and	large	airway	

epithelium/	 RNA-seq	 libraries	 were	 prepared	 from	 total	 RNA	 with	 two	 types	 of	 RNA	

enrichment	methods:	 (1)	Poly(A)	enrichment	 libraries,	applied	 to	RNA	 from	peripheral	

blood	and	nasal	epithelium	(n=38),	and	(2)	ribo-depletion	libraries,	applied	to	RNA	from	

large	 airway	 epithelium	 (n=49).	 The	 RNA-Seq	was	 based	 on	 paired-end	 protocol	 with	

100bp	reads.	In	total,	3.8	billion	paired-end	reads	(760	Gbp)	were	available	for	ROP	(Table	

S1	and	Supplementary	Text).		

	

	 Our	 initial	 high-throughput	 mapping	 using	 tophat222	 recovered	 83.8%	 of	 all	

reads	(Fig.	2a).		From	the	unmapped	reads,	we	first	excluded	low-quality/low-complexity	

reads	and	reads	mapping	to	the	rRNA	repeating	unit,	which	together	accounted	for	4.8%	

and	3.6%	of	all	reads	respectively	(Fig.	2b).	We	were	then	able	to	align	unmapped	reads	

to	human	reference	sequences	(6.1%	of	all	reads,	Fig.	2c),	reference	repeat	sequences	

(0.02%	of	all	reads,	Fig.	2d),	reads	identified	as	‘non-co-linear’(NCL)	RNAs	(circRNAs,	gene	

fusion	or	trans-splicing)	 (0.1%	of	all	 reads,	Fig.	2e),	 	and	reads	mapped	to	recombined	

sequences	of	BCR	and	TCR	loci	 (0.01%	off	all	reads,	Fig.	2f).	The	remaining	reads	were	

mapped	to	the	microbial	sequences	(0.3%	off	all	reads,	Fig.	2g).	Following	the	six	steps	of	

ROP,	the	origin	of	98.8%	of	reads	was	identified.		
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Figure	2.		The	percentage	of	reads	mapping	to	various	classes	for	poly(A)	enrichment	and	ribo-depletion	

libraries.	Percentages	are	calculated	as	a	fraction	from	the	total	number	of	reads.	Bars	of	the	plot	are	not	

scaled.	RNA-Seq	libraries	were	prepared	from	total	RNA	using	poly(A)	enrichment	(n=38)	and	ribo-depletion	

(n=49)	 protocols.	 	 (a)	 Human	 reads	 (black	 color)	 mapped	 to	 reference	 genome	 and	 transcriptome	 via	

tophat2.		Mapped	reads	are	categorized	into	genomic	(CDS,	UTR,	introns)	and	repetitive	(SINEs,	LINEs,	LTRs)	

categories.	Unmapped	reads	are	shown	 in	grey.	 (b)	Low	quality/low-complexity	 (light	brown)	and	reads	

matching	rRNA	repeating	unit	(dark	brown)	were	excluded.	(c)	ROP	identifies	lost	human	reads	(red	color)	

from	unmapped	reads	using	a	more	sensitive	alignment	(d)	ROP	 identifies	 lost	repeat	sequences	 (green	

color)	 by	mapping	 unmapped	 reads	 onto	 the	 reference	 repeat	 sequences	 (e)	 Reads	 arising	 from	 trans-
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spicing,	gene	 fusion	and	circRNA	events	 (orange	color)	are	captured	by	a	 custom	pipeline	 (nclSplice)	 (f)		

IgBlast	 is	used	to	 identify	reads	spanning	BCR/TCR	receptor	gene	rearrangement	 in	the	variable	domain	

(V(D)J	recombinations)		(violet	color).	(g)	Microbial	reads	(blue	color)	are	captured	by	mapping	the	reads	

onto	the	microbial	reference	genomes	and	phylogenetic	marker	genes.		

	

The	 ROP	 protocol	 can	 identify	 lost	 human	 reads	 and	 complement	 transcriptome	

profiling	by	non-co-linear	RNAs	

The	heuristic	nature	of	high	throughput	aligners	limits	their	ability	to	map	all	the	human	

reads	onto	the	reference	genome12,31.	We	use	the	slower	yet	more	sensitive	Megablast	

aligner,	which	allows	extraction	of	an	additional	6.1%	of	human	reads.	One-fourth	of	the	

lost	human	reads	are	within	the	tophat2	threshold	(edit	distance	less	or	equal	to	2).	Other	

reads	missed	by	tophat2	contained	additional	mismatches	and/or	short	gaps	(Fig.	S1).		

	

We	 first	 compared	 the	 composition	 of	 mapped	 and	 lost	 human	 reads	 across	

libraries	by	categorizing	human	reads	 into	genomic	categories	 (e.g.,	CDS,	UTR,	 intons).		

Similar	 to	Li,	S.	et	al32	we	observed	that	 library	preparation	has	a	strong	effect	on	the	

fraction	of	both	mapped	and	lost	human	reads	mapping	to	CDS	and	intronic	regions	(Fig.	

S2).	 ROP	 also	 identifies	 and	 categorizes	 repetitive	 sequences	 among	 the	mapped	 and	

unmapped	reads.	Consistent	with	repEnrich35,	we	observe	the	differences	in	proportions	

of	L1	and	Alu	elements	between	poly(A)	and	ribo-depletion	libraries.	Among	the	repeat	

reads,	poly(A)	samples	have	the	highest	fraction	of	reads	mapped	to	Alu	elements,	ribo-

depleted	 samples	 have	 the	 highest	 fraction	mapped	 to	 L1	 elements.	We	 consistently	

observed	this	effect	 in	the	unmapped	reads	(Fig.	S3).	However,	 the	tissue	type	(whole	
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blood	versus	nasal	epithelium)	appears	 to	have	no	effect	on	 the	genomic	profiles	and	

repeat	profiles	(Tables	S2,	S3).	

	

The	 ROP	 protocol	 is	 able	 to	 detect	 ‘non-co-linear’	 reads	 from	 three	 classes	 of	

events:	reads	spliced	distantly	on	the	same	chromosome	supporting	trans-splicing	events;	

reads	 spliced	across	different	 chromosomes	 supporting	gene	 fusion	events;	 and	 reads	

spliced	 in	 a	 head-to-tail	 configuration	 supporting	 circRNAs.	 We	 observed	 471	 trans-

splicing,	 1732	 fusion,	 and	 1268	 circular	 events	 on	 average	 per	 individual	 sample	

supported	by	more	than	one	read.		Over	90%	of	non-co-linear	events	were	supported	by	

fewer	 than	 10	 samples	 (Fig.	 S4).	We	 used	 a	 liberal	 threshold	 because	 our	 interest	 is	

mapping	all	reads.	However,		a	more	stringent	cut	off,	as	has	been	previously	used36,	is	

recommended	 for	 confident	 identification	 of	 non-co-linear	 events.	 	 The	 library	

preparation	technique	had	a	strong	effect	on	capture	rate	of	non-co-linear	transcripts.	To	

compare	number	of	NCL	events,	we	sub-sampled	unmapped	reads	to	4,985,914	for	each	

sample,	which	corresponded	to	the	sample	with	the	smallest	number	of	unmapped	reads.		

We	 observe	 an	 average	 increase	 of	 46%	 of	 ‘non-co-linear’	 (NCL)	 events	 detected	 in	

samples	prepared	by	ribo-depletion	compared	to	poly(A)	protocol	(p-value<8	x	10-3	)	(Fig.	

S5).	However,	because	the	tissues	differed	between	protocols	(nasal	versus	large	airway	

epithelium),	this	effect	might	be	due	in	part	to	tissue	differences	in	NCL	events.	We	view	

this	possibility	as	unlikely	given	the	differences	in	RNA	sampled	from	each	protocol.	There	

were	no	statistically	significant	differences	between	NCL	events	in	cases	and	controls.		
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ROP	can	identify	microbial	and	immune	reads	and	differentiate	tissue	types	and	disease	

status	

Both	mapped	and	unmapped	reads	were	used	to	survey	the	human	antibody	repertoire	

in	health	and	disease.		We	first	used	the	mapped	reads	to	extract	reads	entirely	aligned	

to	BCR	and	TCR	genes.	 	Using	 IgBlast27,	we	 identified	unmapped	 reads	with	extensive	

somatic	hyper	mutations	 (SHM)	and	 reads	arising	 from	V(D)J	 recombination.	After	we	

identified	 the	 reads	 with	 human	 origin,	 we	 found	 microbial	 reads	 by	 mapping	 the	

remaining	reads	onto	the	microbial	reference	genomes	and	phylogenetic	marker	genes.		

Here,	the	total	number	of	microbial	reads	obtained	from	the	sample	is	used	to	estimate	

microbial	 load.	 	We	use	MetaPhlAn228	 to	assign	 reads	on	microbial	marker	genes	and	

determine	the	taxonomic	composition	of	the	microbial	communities.		

	

We	 compare	 immunological	 and	 microbial	 profiles	 across	 asthmatics	 and	

unaffected	controls	for	the	three	tissues.	A	total	of	30	bacterial	taxa	were	assigned	with	

Metaphlan228.	 Consistent	 with	 previous	 studies,	 we	 observe	 the	 nasal	 epithelium	 is	

dominated	 by	 Actinobacteria	 phyla	 (particularly	 Propionibacterium	 genus)37,	 and	 the	

large	airway	epithelium	is	dominated	by	Proteobacteria	phyla	38	(Table	S4).			

	

As	expected,	analysis	of	blood	 tissue	produced	 the	highest	 fraction	of	 immune	

reads	 (blood:	5075	 immune	 reads	per	million	 reads	 (RPM);	nasal:	114	RPM;	and	 large	

airway:	17	RPM)	(Table	S5).	The	overall	immune	profiles	suggest	differences	in	fraction	of	

BCR	and	TCR	reads	across	tissues.	Blood	samples	show	a	larger	fraction	of	reads	mapped	
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to	BCR	genes,	while	nasal	and	large	airway	epithelium	produce	a	larger	fraction	of	reads	

mapped	 to	 TCR	 genes	 (Fig.	 S6).	 Consistent	 with	 previous	 findings,	 we	 observe	 an	

increased	fraction	of	reads	mapped	to	IgM	(produced	by	B	cells)	in	blood	relative	to	other	

tissues39,40	(Fig.	S7).		

	

We	assess	 combinatorial	 diversity	 of	 the	 antibody	 repertoire	 by	 looking	 at	 the	

recombinations	 of	 the	 of	 VJ	 gene	 segments	 of	 BCR	 and	 TCR	 loci.	 The	 blood	 yields	

increased	number	of	combinations	of	gene	segments,	with	191	combinations,	on	average,	

per	 sample	 for	 immunoglobulin	 kappa	 locus	 (IGK)	 (Fig.	 3.a).	 Similar	 to	 NCL	 analysis,	

unmapped	 reads	were	 sub-sampled	 to	 4,985,914	 for	 each	 sample	 corresponding	 to	 a	

sample	with	smallest	number	of	unmapped	reads.	We	used	per	sample	alpha	diversity	

(Shannon	entropy)	to	incorporate	the	total	number	of	VJ	combinations	and	their	relative	

proportions	into	a	single	diversity	metric.	We	observed	a	mean	alpha	diversity	of	4.2	for	

blood,	2.5	for	nasal,	and	1.0	for	large	airway	(Fig.	S8).	Decreased	alpha	diversity	in	large	

airway	samples	could	correspond	to	an	overall	decrease	in	percentage	of	immune	reads.	

This	 effect	 can	 be	 attributed	 to	 the	 ribo-depletion	 protocol	 not	 enriching	 for	

polyadenylated	antibody	transcripts.	Alternatively,	it	may	result	from	clonal	expansion	of	

certain	clonotypes	responding	to	the	cognate	antigen.		

	

Our	 comprehensive	 ROP	 protocol	 presents	 several	 advantages	 over	 previous	

methods	examining	features	of	unmapped	reads.	First,	our	method	is	able	to	interrogate	

relationships	between	features.	To	explore	the	interaction	between	the	immune	system	
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and	microbiome,	we	compared	immune	diversity	against	microbial	load.	Microbes	trigger	

immune	 responses,	 eliciting	 proliferation	 of	 antigen-specific	 lymphocytes.	 Such	 a	

dramatic	expansion	 skews	 the	antigen	 receptor	 repertoire	 in	 favor	of	a	 few	dominant	

clonotypes	 and	 decreases	 immune	diversity41.	Therefore,	 we	 reasoned	 that,	 in	 the	

presence	of	microbial	 insults,	antigen	receptor	diversity	should	shrink.	 In	 line	with	our	

expectation,	 we	 observed	 that	 combinatorial	 immune	 diversity	 of	 IGK	 locus	 was	

negatively	correlated	with	the	viral	load	(Pearson	coefficient	r=-0.55,	p-value	=2.4	x	10-6),	

consistent	also	for	bacteria	and	eukaryotic	pathogens	across	BCR	and	TCR	loci.	

	

		 We	also	compared	the	combinatorial	 immune	diversity	of	asthmatic	 individuals	

(n=9)	and	healthy	 controls	 (n=10).	 The	 combinatorial	profiles	of	 antibody	 receptors	 in	

blood	and	large	airway	tissue	provide	no	differentiation	between	case	control	statuses.		

Among	nasal	samples,	we	observed	decreased	alpha	diversity	for	asthmatic	individuals	

relative	to	healthy	controls	(p-value=10-3)	(Fig.	3.b).		Additionally,	we	used	beta	diversity	

(Sørensen–Dice	index)	to	measure	compositional	similarities	between	samples,	including	

gain	 or	 loss	 of	 VJ	 combinations	 of	 IGK	 locus.	 	 We	 observed	 higher	 beta	 diversity	

corresponding	 to	 a	 lower	 level	 of	 similarity	 across	 the	 nasal	 samples	 of	 asthmatic	

individuals	in	comparison	to	samples	from	unaffected	controls	(Fig.	3.c,	p-value<3.7x10-

13).		Moreover,	nasal	samples	of	unaffected	controls	are	significantly	more	similar	to	each	

other	 than	 to	 samples	 from	 the	 asthmatic	 individuals	 (Fig.	 3.c,	 p-value<2.5x10-9).	

Recombination	profiles	of	 immunoglobulin	 lambda	 locus	(IGL)	and	T	cell	 receptor	beta	

and	gamma	(TCRB	and	TCRG)	 loci	yielded	a	similar	pattern	of	decreased	beta	diversity	
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across	 nasal	 samples	 of	 asthmatic	 individuals	 (Fig.	 S9-S11).	 Together	 the	 results	

demonstrate	the	ability	of	ROP	to	interrogate	additional	features	of	the	immune	system	

without	the	addition	of	expensive	TCR/BCR	sequencing.		

	

	

		

			

Figure	3.	Combinatorial	diversity	of	immunoglobulin	kappa	locus	(IGK)	locus	differentiates	disease	status.	

(a)	Heatmap	depicting	 the	 percentage	 of	 RNA-Seq	 samples	 supporting	 of	 particular	 VJ	 combination	 for	

whole	blood	(n=19),	nasal	epithelium	of	healthy	controls	(n=10)	and	asthmatic	individuals	(n=9).	Each	row	

corresponds	to	a	V	gene,	and	each	column	correspond	to	a	J	gene.			(b)	Alpha	diversity	of	nasal	samples	is	

measured	using	the	Shannon	entropy	and	incorporates	total	number	of	VJ	combinations	and	their	relative	

proportions.	 	Nasal	epithelium	of	asthmatic	 individuals	exhibits	decreased	combinatorial	diversity	of	 IGK	
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locus	 compared	 to	 healthy	 controls	 (p-value=1x10-3)	 (c)	 Compositional	 similarities	 between	 the	 nasal	

samples	in	terms	of	gain	or	loss	of	VJ	combinations	of	IGK	locus	are	measured	across	pairs	of	sample	from	

the	same	group	 (Asthma,	Controls)	and	pairs	of	 sample	 from	different	groups	 (Asthma	versus	Controls)	

using	 Sørensen–Dice	 index.	 	 Lower	 level	 of	 similarity	 is	 observed	 between	 nasal	 samples	 of	 asthmatic	

individuals	compared	to	unaffected	controls	(p-value<7.3	x	10-13).		Nasal	samples	of	unaffected	controls	are	

more	similar	to	each	other	than	to	the	asthmatic	individuals	(p-value<2.5	x	10-9).		

	

Discussion	

Our	study	is	the	first	that	systematically	accounts	for	almost	all	reads	in	RNA-seq	

studies.	We	demonstrate	the	value	of	analyzing	unmapped	reads	present	in	the	RNA-

seq	data	to	study	the	non-co-linear,	immunological	and	microbiome	profiles	of	a	tissue	

of	interest.	We	developed	a	new	ROP	pipeline	that	leverages	accurate	alignment	

methods	and	accounts	for	98.8%	of	the	reads,	compared	to	the	83.8%	rate	produced	by	

conventional	reference-based	protocols.	The	‘dumpster	diving’	profile	of	unmapped	

reads	output	by	our	method	is	not	limited	to	RNA-Seq	technology	and	may	apply	to	

whole-exome	and	whole-genome	sequencing.	We	anticipate	that	‘dumpster	diving’	

profiling	will	find	broad	future	applications	in	studies	involving	different	tissue	and	

disease	types.		

	

We	 observed	 large	 effects	 of	 library	 preparation	 protocol	 on	 non-co-linear,	

immunological,	 and	 microbial	 profiles.	 For	 example,	 the	 poly(A)	 protocol	 can	 better	

capture	antibody	transcripts	by	enriching	for	polyadenylated	transcript.	Ribo-depletion	
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protocol	 is	able	to	capture	more	non-co-liner	events.	 	The	results	presented	here	may	

further	guide	the	choice	of	protocol	depending	on	the	features	of	interest.		

	

The	 ROP	 protocol	 identified	 additional	 human	 reads	 missed	 by	 the	 high-

throughput	aligners.	Alternative	mapping	algorithms	may	produce	small	differences	 in	

the	number	of	mapped	reads23,	but	assessing	their	relative	performances	is	a	task	beyond	

the	 scope	 of	 this	 work.	 The	 majority	 of	 the	 lost	 human	 reads	 contained	 additional	

mismatches	that	do	not	easily	align	to	the	genome	and	are	important	for	RNA	editing	and	

screening42.	This	suggests	that	additional	power	can	be	gained	by	improving	the	mapping	

accuracy	of	 current	 alignment	 algorithms..	Our	 tool	 provides	 a	 genomic	profile	 of	 the	

mapped	reads,	which	can	be	used	to	benchmark	different	sequencing	platform	and	library	

preparation	methods,	as	well	as	assess	the	efficiency	of	rRNA	depletion	and	level	of	the	

sample	degradation33.		

	

	 The	 ROP	 protocol	 facilitates	 a	 simultaneous	 study	 of	 	 immune	 systems	 and	

microbial	communities	that	advances	our	understanding	of	the	functional,	 interrelated	

mechanisms	 driving	 the	 immune	 system,	 microbiome,	 human	 gene	 expression,	 and	

disease	 etiology.	 In	 particular,	 we	 hope	 that	 these	 future	 efforts	 will	 provide	 a	

quantitative	 and	 qualitative	 assessment	 of	 the	 immune	 and	microbial	 components	 of	

disease	 across	 various	 tissues.	 	With	 an	 increase	 in	 length	 of	 reads	 and	 efficiency	 of	

sequencing,	there	is	also	the	potential	for	studying	individual	microbial	species	and	full	

TCR/BCR	sequencing.		
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