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Abstract		48 

High	 throughput	 RNA	 sequencing	 technologies	 have	 provided	 invaluable	 research	49 

opportunities	across	distinct	scientific	domains	by	producing	quantitative	readouts	of	the	50 

transcriptional	activity	of	both	entire	cellular	populations	and	single	cells.	The	majority	of	51 

RNA-Seq	analyses	begin	by	mapping	each	experimentally	produced	sequence	(i.e.,	read)	52 

to	a	set	of	annotated	reference	sequences	for	the	organism	of	interest.	For	both	biological	53 

and	technical	reasons,	a	significant	fraction	of	reads	remains	unmapped.	In	this	work,	we	54 

develop	Read	Origin	Protocol	(ROP)	to	discover	the	source	of	all	reads	originating	from	55 

complex	RNA	molecules,	recombinant	T	and	B	cell	receptors,	and	microbial	communities.	56 

We	applied	ROP	to	8,641	samples	across	630	 individuals	from	54	tissues.	A	fraction	of	57 

RNA-Seq	data	(n=86)	was	obtained	in-house;	the	remaining	data	was	obtained	from	the	58 

Genotype-Tissue	 Expression	 (GTEx	 v6)	 project.	 To	 generalize	 the	 reported	 number	 of	59 

accounted	reads,	we	also	performed	ROP	analysis	on	thousands	of	different,	randomly	60 

selected,	and	publicly	available	RNA-Seq	samples	 in	 the	Sequence	Read	Archive	 (SRA).	61 

Our	approach	can	account	for	99.9%	of	1	trillion	reads	of	various	read	length	across	the	62 

merged	dataset	(n=10641).	Using	in-house	RNA-Seq	data,	we	show	that	immune	profiles	63 

of	asthmatic	individuals	are	significantly	different	from	the	profiles	of	control	individuals,	64 

with	decreased	average	per	sample	T	and	B	cell	 receptor	diversity.	We	also	show	that	65 
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immune	diversity	is	inversely	correlated	with	microbial	load.	Our	results	demonstrate	the	66 

potential	of	ROP	to	exploit	unmapped	reads	in	order	to	better	understand	the	functional	67 

mechanisms	underlying	connections	between	the	immune	system,	microbiome,	human	68 

gene	 expression,	 and	 disease	 etiology.	 ROP	 is	 freely	 available	 at	69 

https://github.com/smangul1/rop 	 and	 currently	 supports	 human	 and	 mouse	 RNA-Seq	70 

reads.	71 

	72 

	73 

INTRODUCTION	74 

Advances	 in	 RNA	 sequencing	 (RNA-seq)	 technology	 have	 provided	 an	 unprecedented	75 

opportunity	 to	 explore	 gene	 expression	 across	 individual,	 tissues,	 and	 environments	76 

(Cloonan	et	al.,	2008;	Sultan	et	al.,	2008;	Tang	et	al.,	2009)	by	efficiently	profiling	the	RNA	77 

sequences	present	in	a	sample	of	interest	(Z.	Wang,	Gerstein,	&	Snyder,	2009).	RNA-seq	78 

experiments	currently	produce	tens	of	millions	of	short	read	subsequences	sampled	from	79 

the	complete	set	of	RNA	transcripts	 that	are	provided	to	 the	sequencing	platform.	An	80 

increasing	number	of	bioinformatic	protocols	are	being	developed	 to	analyze	 reads	 in	81 

order	 to	 annotate	 and	 quantify	 the	 sample’s	 transcriptome	 (Mihaela	 Pertea,	 2015;	82 

Nicolae,	Mangul,	Mandoiu,	&	Zelikovsky,	2011;	Trapnell	et	al.,	2010).	When	a	reference	83 

genome	sequence	or,	preferably,	a	transcriptome	of	the	sample	 is	available,	mapping-84 

based	RNA-seq	analysis	protocols	align	the	RNA-seq	reads	to	the	reference	sequences,	85 

identify	novel	transcripts,	and	quantify	the	abundance	of	expressed	transcripts.			86 

	 	87 
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	 Unmapped	reads,	the	reads	falling	to	map	to	the	human	reference,	are	a	large	88 

and	often	overlooked	output	of	standard	RNA-seq	analyses.	Even	in	carefully	executed	89 

experiments,	the	unmapped	reads	can	comprise	a	substantial	fraction	of	the	complete	set	90 

of	reads	produced;	for	example,	approximately	9%-20%	of	reads	are	unmapped	in	recent	91 

large	 human	 RNA-seq	 projects	 (Ardlie	 et	 al.,	 2015;	 Li,	 Tighe,	 Nicolet,	 Grove,	 Levy,	92 

Farmerie,	Viale,	Wright,	 Schweitzer,	Gao,	 Kim,	 et	 al.,	 2014;	 Seqc/Maqc-Iii	 Consortium,	93 

2014).	 	 Unmapped	 reads	 can	 arise	 due	 to	 technical	 sequencing	 artifacts	 that	 were	94 

produced	 by	 low	 quality	 and	 error	 prone	 copies	 of	 the	 nascent	 RNA	 sequence	 being	95 

sampled	(Ozsolak	&	Milos,	2011).	A	recent	study	by	Baruzzo	et	al.,	(2017)	suggests	that	at	96 

least	10%	of	 the	reads	simulated	from	human	references	remain	unmapped	across	14	97 

contemporary	state-of-the	art	RNA	alligners.		This	rate	may	be	due	to	shortcomings	of	the	98 

aligner’s	efficient	yet	heuristic	algorithms	(Siragusa,	Weese,	&	Reinert,	2013).	Reads	can	99 

also	remain	unmapped	due	to	unknown	transcripts	(Grabherr	et	al.,	2011),	recombined		100 

B	and	T	cell	receptor	sequences	(Blachly	et	al.,	2015;	N.	B.	Strauli	&	Hernandez,	2016),	A-101 

to-G	mismatches	from	A-to-I	RNA	editing	(Porath,	Carmi,	&	Levanon,	2014),	trans-splicing	102 

(Wu	et	al.,	2014),	gene	fusion	(X.-S.	Wang	et	al.,	2009),	circular	RNAs	(Jeck	&	Sharpless,	103 

2014),	and	the	presence	of	non-host	RNA	sequences	(Kostic	et	al.,	2011)	(e.g.,	bacterial,	104 

fungal,	and	viral	organisms).	105 

	106 

	 In	this	work,	we	report	the	development	of	a	comprehensive	method	that	can	107 

characterize	the	origin	of	unmapped	reads	obtained	by	RNA-seq	experiments.	Analyzing	108 

unmapped	 reads	 can	 inform	 future	 development	 of	 read	 mapping	 methods,	 provide	109 
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access	to	additional	biological	information,	and	resolve	the	irksome	puzzle	of	the	origin	110 

of	unmapped	reads.	We	developed	the	Read	Origin	Protocol	(ROP),	a	multi-step	approach	111 

that	leverages	accurate	alignment	methods	for	both	host	and	microbial	sequences.	The	112 

ROP	tool	contains	a	combination	of	novel	algorithms	and	existing	tools	focused	on	specific	113 

categories	of	unmapped	reads	(Blachly	et	al.,	2015;	Brown,	Raeburn,	&	Holt,	2015;	Chuang	114 

et	al.,	2015;	Kostic	et	al.,	2011;	N.	Strauli	&	Hernandez,	2015).	The	comprehensive	analytic	115 

nature	of	 the	ROP	 tool	 prevents	biases	 that	 can	otherwise	 arise	when	using	 standard	116 

targeted	analyses.	Currently,	ROP	supports	human	and	mouse	RNA-Seq	data.		117 

	118 

	 		119 

RESULTS	120 

ROP	–	a	computational	protocol	to	explain	unmapped	reads	in	RNA-Sequencing		121 

Mapping-based	 RNA-seq	 analysis	 protocols	 overlook	 reads	 that	 fail	 to	 map	 onto	 the	122 

human	reference	sequences	(i.e.,	unmapped	reads).	We	designed	a	read	origin	protocol	123 

(ROP)	that	identifies	the	origin	of	both	mapped	and	unmapped	reads	(Fig.	1).	The	protocol	124 

first	 identifies	 human	 reads	 by	 mapping	 them	 onto	 a	 reference	 genome	 and	125 

transcriptome	using	a	standard	high-throughput	mapping	algorithm	(Kim	et	al.,	2013).	We	126 

used	tophat	v.	2.0.12	with	ENSEMBL	GRCh37	transcriptome	and	hg19	build,	but	many	127 

other	mapping	 tools	are	available	and	have	 recently	been	 reviewed	by	Baruzzo	et	al.,	128 

2017)	.	After	alignment,	reads	are	grouped	into	genomic	(e.g.,	CDS,	UTRs,	 introns)	and	129 

repetitive	(e.g.,	SINEs,	LINEs,	LTRs)	categories.	The	rest	of	the	ROP	protocol	characterizes	130 

the	remaining	unmapped	reads,	which	failed	to	map	to	the	human	reference	sequences.		131 
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	132 

The	ROP	protocol	effectively	processes	the	unmapped	reads	in	seven	steps.	First,	133 

we	apply	a	quality	control	step	to	exclude	low-quality	reads,	low-complexity	reads,	and	134 

reads	that	match	rRNA	repeat	units	among	the	unmapped	reads	(FASTQC	(Andrews	&	135 

others,	2010),	SEQCLEAN	(“https://sourceforge.net/projects/seqclean/,”	n.d.)).	Next,	we	136 

employ	Megablast	(Camacho	et	al.,	2009),	a	more	sensitive	alignment	method,	to	search	137 

for	 human	 reads	 missed	 due	 to	 heuristics	 implemented	 for	 computational	 speed	 in	138 

conventional	aligners	and	reads	with	additional	mismatches.	These	reads	typically	include	139 

those	with	mismatches	and	short	gaps	relative	 to	 the	reference	set,	but	 they	can	also	140 

include	perfectly	matched	reads.		Hyper-editing	pipelines	recognize	reads	with	excessive	141 

(‘hyper’)	editing,	which	are	usually	rejected	by	standard	alignment	methods	due	to	many	142 

A-to-G	 mismatches	 (Porath,	 Carmi,	 &	 Levanon,	 2014).	 We	 use	 a	 database	 of	 repeat	143 

sequences	 to	 identify	 lost	 repeat	 reads	 among	 the	 unmapped	 reads.	 Megablast,	 and	144 

similar	 sensitive	 alignment	methods,	 are	 not	 designed	 to	 identify	 ‘non-co-linear’	 RNA	145 

(Chuang	et	al.,	2015)	reads	from	circRNAs,	gene	fusions,	and	trans-splicing	events,	which	146 

combine	a	sequence	from	distant	elements.	For	this	task,	we	independently	map	20bp	147 

read	anchors	onto	the	genome	(see	Supplemental	Methods).	Similarly,	reads	from	BCR	148 

and	TCR	 loci,	which	are	 subject	 to	 recombination	and	 somatic	hyper-mutation	 (SHM),	149 

require	specifically	designed	methods.	For	this	case,	we	use	IgBlast	(Ye,	Ma,	Madden,	&	150 

Ostell,	2013).	The	remaining	reads	that	did	not	map	to	any	known	human	sequence	are	151 

potentially	microbial	in	origin.		We	use	microbial	genomes	and	phylogenetic	marker	genes	152 

to	identify	microbial	reads	and	assign	them	to	corresponding	taxa	(Truong	et	al.,	2015).	153 
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Microbial	reads	can	be	 introduced	by	contamination	or	natural	microbiome	content	 in	154 

the	sample,	such	as	viral,	bacterial,	fungi,	or	other	microbial	species	(Salter	et	al.,	2014).		155 

	156 

	 Taken	together,	ROP	considers	six	classes	of	unmapped	reads:	(1)	 lost	human	157 

reads,	 (2)	 hyper-edited	 reads,	 (3)	 lost	 repeat	 elements,	 (4)	 reads	 from	 ‘non-co-linear’	158 

(NCL)	 RNAs,	 (5)	 reads	 from	 the	 recombination	 of	 BCR	 and	 TCR	 segments	 (i.e.	 V(D)J	159 

recombination),	 and	 (6)	 microbial	 reads.	 Previously	 proposed	 individual	 methods	 do	160 

examine	some	of	these	classes	 (Blachly	et	al.,	2015;	Brown	et	al.,	2015;	Chuang	et	al.,	161 

2015;	Kostic	et	al.,	2011;	N.	Strauli	&	Hernandez,	2015).	However,	we	find	that	performing	162 

a	 sequential	 analysis,	 in	 the	 order	 described	 above,	 is	 critical	 for	 minimizing	163 

misclassification	of	reads	due	to	homologous	sequences	between	the	different	classes.	164 

Furthermore,	as	shown	in	the	Results	section	below,	only	a	comprehensive	analysis	allows	165 

comparison	across	these	classes.		We	have	demonstrated	the	robustness	of	the	proposed	166 

approach	against	alternating	order	of	steps	and	values	of	the	thresholds	(Supplemental	167 

Methods	and	Supplemental	Methods	Figure	SM1).	Complete	details	of	ROP,	including	all	168 

parameters	and	thresholds	used,	are	provided	in	the	Supplemental	Methods.		169 

	170 
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	171 

	172 

Figure	1.	Schematic	of	the	Read	Origin	Protocol	(ROP).	Human	reads	are	identified	by	173 

mapping	 all	 reads	 onto	 the	 reference	 sequences	 using	 a	 standard	 high-throughput	174 

RNA-Seq reads

In-silico separation

Lost	repeat	elements

V(D)J	recombination	(BCR/TCR)	

Microbial	communities

Non-co-linear	RNAs	

Lost	human	reads
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Human	references

Mapped	human		reads

Unmapped	reads

ROPCDS,	UTR,	introns

LTR,	LINE,	SINE

Hyper-edited	RNAs
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mapping	algorithm.	ROP	protocol	 categorizes	mapped	 reads	 into	genomic	 (red	colors)	175 

and	repetitive	(green	colors)	categories.		Unmapped	reads	that	fail	to	map	are	extracted	176 

and	further	filtered	to	exclude	low	quality	reads,	low	complexity	reads,	and	reads	from	177 

rRNA	repeats	(brown	color).	ROP	protocol	is	able	to	identify	unmapped	reads	aligned	to	178 

human	references	with	use	of	a	more	sensitive	alignment	 tool	 (lost	human	reads:	 red	179 

color),	 unmapped	 reads	 aligned	 to	human	 references	with	 excessive	 (‘hyper’)	 editing	180 

(hyper-edited	RNAs:	cyan	color),	unmapped	reads	aligned	to	the	repeat	sequences	(lost	181 

repeat	 elements:	 green	 color),	 unmapped	 reads	 spanning	 sequences	 from	distant	 loci	182 

(non-co-linear:	 orange	 color),	 unmapped	 reads	 spanning	 antigen	 receptor	 gene	183 

rearrangement	in	the	variable	domain	(V(D)J	recombination	of	BCR	and	TCR:	violet	color),	184 

and	 unmapped	 reads	 aligned	 to	 the	microbial	 reference	 genomes	 and	marker	 genes	185 

(microbial	reads:	blue	color).	186 

	187 

The	ROP	protocol	is	able	to	account	for	99.9%	of	all	reads	188 

	189 

To	 test	 ROP,	we	 applied	 it	 to	 one	 trillion	 RNA-Seq	 reads	 across	 54	 tissues	 from	2630	190 

individuals.	 The	data	was	 combined	 from	3	 studies:	 (1)	 in-house	RNA-Seq	data	 (n=86)	191 

from	the	peripheral	blood,	nasal,	and	large	airway	epithelium	of	asthmatic	and	control	192 

individuals	(S1);	(2)	multi-tissue	RNA-Seq	data	from	Genotype-Tissue	Expression	(GTEx	v6)	193 

from	 53	 human	 body	 sites	 (Consortium	 &	 others,	 2015)	 (n=8555)	 (S2);	 (3)	 randomly	194 

selected	RNA-Seq	samples	from	the	Sequence	Read	Archive	(SRA)	(n=2000)	(S3).	Unless	195 

otherwise	noted,	we	reported	percentage	of	reads	averaged	across	3	datasets.		196 
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RNA-Seq	 data	 obtained	 from	 the	 three	 sources	 represent	 a	 large	 collection	 of	197 

tissue	types	and	read	diversity.	We	selected	these	three	sources	to	most	accurately	model	198 

the	precision	and	broad	applicability	of	ROP.	The	in-house	RNA-Seq	data	was	collected	199 

from	53	asthmatics	and	33	controls.	RNA-seq	libraries	were	prepared	from	total	RNA	with	200 

two	types	of	RNA	enrichment	methods:	(1)	Poly(A)	enrichment	libraries,	applied	to	RNA	201 

from	 peripheral	 blood	 and	 nasal	 epithelium	 (n=38),	 and	 (2)	 ribo-depletion	 libraries,	202 

applied	to	RNA	from	large	airway	epithelium	(n=49).	The	GTEx	dataset	was	derived	from	203 

38	solid	organ	tissues,	11	brain	subregions,	whole	blood,	and	three	cell	lines	across	544	204 

individuals.	 	 Randomly	 selected	 SRA	 RNA-Seq	 samples	 included	 samples	 from	 whole	205 

blood,	brain,	various	cell	lines,	muscle,	and	placenta.		Length	of	reads	from	in-house	data	206 

was	100bp,	read	length	in	Gtex	data	was	76bp,	read	length	in	SRA	data	ranged	from	36bp	207 

to	100bp.	In	total,	1	trillion	reads	(97	Tbp)	derived	from	10641	samples	were	available	for	208 

ROP	(Supplemental	Table	S1	and	Supplementary	Methods).		For	counting	purposes,	the	209 

pairing	 information	of	 the	 reads	 is	 disregarded,	 and	each	 read	 from	a	pair	 is	 counted	210 

separately.		211 

	212 

	 	We	used	standard	read	mapping	procedures	to	obtain	mapped	and	unmapped	213 

reads	 from	all	 three	data	sources.	Read	mapping	 for	GTEx	data	was	performed	by	the	214 

GTEx	 consortium	 using	 TopHat2	 (Kim	 et	 al.,	 2013).	 Following	 the	 GTEx	 consortium	215 

practice,	we	used	TopHat2	to	map	reads	from	in-house	and	SRA	studies.	High-throughput	216 

mapping	using	TopHat2	(Kim	et	al.,	2013)	recovered	83.1%	of	all	reads	from	three	studies	217 

(Fig.	 2.a),	with	 the	 smallest	 fraction	 of	 reads	mapped	 in	 the	 SRA	 study	 (79%	mapped	218 
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reads).	From	the	unmapped	reads,	we	 first	excluded	 low-quality/low-complexity	 reads	219 

and	reads	mapping	to	the	rRNA	repeating	unit,	which	together	accounted	for	7.0%	and	220 

2.4%	of	all	reads,	respectively	(Fig.	2.b).	We	were	then	able	to	align	unmapped	reads	to	221 

human	reference	sequences	(5.7%	of	all	reads,	Fig.	2.c)	and	identify	“hyper-edited”	reads	222 

(0.1%	of	all	reads	Fig.	2.d).	We	then	referenced	repeat	sequences	(0.2%	of	all	reads,	Fig.	223 

2.d),	 reads	 identified	 as	 ‘non-co-linear’(NCL)	 RNAs	 (circRNAs,	 gene	 fusion	 or	 trans-224 

splicing)	 (0.3%	 of	 all	 reads,	 Fig.	 2.e),	 and	 reads	 mapped	 to	 recombined	 B	 and	 T	 cell	225 

receptors	(0.02%	off	all	reads,	Fig.	2.f).	The	remaining	reads	were	mapped	to	the	microbial	226 

sequences	(1.4%	off	all	reads,	Fig.	2.g).	Following	the	seven	steps	of	ROP,	the	origins	of	227 

99.9%	of	reads	were	identified.		Genomic	profile	of	unmapped	reads	for	each	dataset	is	228 

separately	 reported	 in	 Table	 S2.	 Uncategorized	 reads	 from	 SRA	 samples	 are	 freely	229 

available	 at	 https://smangul1.github.io/recycle-RNA-seq/.	 This	 resource	 allows	 the	230 

bioinformatics	community	to	further	increase	the	number	of	reads	with	known	origin.		231 

	232 
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Figure	2.	 	Genomic	profile	of	unmapped	 reads	across	10641	samples	and	54	 tissues.	234 

Percentage	of	unmapped	reads	for	each	category	is	calculated	as	a	fraction	from	the	total	235 

number	of	reads.	Bars	of	the	plot	are	not	scaled.		Human	reads	(black	color)	mapped	to	236 

reference	genome	and	transcriptome	via	TopHat2.	(a)	Low	quality/low-complexity	(light	237 

brown)	and	reads	matching	rRNA	repeating	unit	(dark	brown)	were	excluded.	(b)		Hyper-238 

edited	reads	are	captured	by	hyper-editing	pipeline	proposed	in	(Porath	et	al.,	2014).	(c)	239 

ROP	identifies	lost	human	reads	(red	color)	from	unmapped	reads	using	a	more	sensitive	240 

alignment.	(d)	ROP	identifies	lost	repeat	sequences	(green	color)	by	mapping	unmapped	241 

reads	onto	 the	 reference	 repeat	 sequences.	 (e)	Reads	arising	 from	trans-spicing,	gene	242 

fusion	 and	 circRNA	 events	 (orange	 color)	 are	 captured	 by	 a	 TopHat-Fusion	 and	243 

CIRCexplorer2	tools.	 (f)	 IgBlast	 is	used	to	 identify	reads	spanning	B	and	T	cell	 receptor	244 

gene	 rearrangement	 in	 the	 variable	 domain	 (V(D)J	 recombinations)	 (violet	 color).	 (g)	245 

Microbial	 reads	 (blue	 color)	 are	 captured	 by	 mapping	 the	 reads	 onto	 the	 microbial	246 

reference	genomes.		247 

	248 

The	ROP	protocol	identifies	lost	human	reads		249 

Some	human	reads	may	remain	unmapped	due	to	the	heuristic	nature	of	high	throughput	250 

aligners	(Baruzzo	et	al.,	2016;	Siragusa	et	al.,	2013).	As	shown	by	Baruzzo	et	al.,	251 

even	the	best	performing	RNA-Seq	aligners	fail	to	map	at	least	10%	of	reads	simulated	252 

from	the	human	references.	To	prevent	misclassification	of	reads	derived	from	human	253 

genome	into	other	downstream	ROP	categories,	we	used	the	slower	and	more	sensitive	254 
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Megablast	aligner	on	this	subset	of	unmapped	reads.		This	method	allows	us	to	filter	an	255 

additional	5.7%	of	human	reads.		256 

	257 

We	investigated	the	impact	of	mapping	parameters	and	RNA-Seq	aligners	on	the	258 

number	of	unmapped	reads.	We	additionally	used	STAR	(Dobin	et	al.,	2013)	and	added	259 

results	 for	 sensitive	 and	 very	 sensitive	 mapping	 settings	 of	 each	 of	 the	 tools	260 

(Supplemental	Methods	 and	 Supplemental	 Table	 S4).	We	 observe	 that	 an	 alternative	261 

aligner	and	a	more	sensitive	mapping	setting	has	no	substantial	effect	on	the	number	of	262 

mapped	reads	(Supplementary	Table	S5).	This	is	in	line	with	Baruzzo	et	al.,	2016,	which	263 

have	shown	that	optimizing	the	parameters	of	RNA-Seq	aligner	is	a	non-trivial	task	and	264 

methods	with	good	performance	for	the	default	setting	is	a	preferred	choice.		265 

	266 

Using	 both	mapped	 and	 unmapped	 reads	 across	 the	 studies,	 we	 classified	 on	267 

average	 7.5%	 of	 the	 RNA-Seq	 reads	 as	 repetitive	 sequences	 originated	 from	 various	268 

repeat	classes	and	families	(Supplemental	Fig.	S2).	We	observe	Alu	elements	to	have	33%	269 

relative	 abundance,	which	was	 the	highest	 among	 all	 the	 repeat	 classes.	 Among	DNA	270 

repeats,	 hAT-Charlie	 was	 the	 most	 abundant	 element	 with	 50%	 relative	 abundance	271 

(Supplemental	 Fig.	 S3).	 Among	 SVA	 retrotransposons,	 SVA-D	 was	 the	most	 abundant	272 

element	with	50%	relative	abundance	(Supplemental	Fig.	S4).	Consistent	with	repEnrich	273 

(Criscione,	 Zhang,	 Thompson,	 Sedivy,	 &	 Neretti,	 2014),	 when	 using	 in-house	 data	 we	274 

observe	the	differences	in	proportions	of	L1	and	Alu	elements	between	poly(A)	and	ribo-275 

depletion	libraries.	Among	the	repeat	reads,	poly(A)	samples	have	the	highest	fraction	of	276 
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reads	mapped	 to	 Alu	 elements,	 and	 ribo-depleted	 samples	 have	 the	 highest	 fraction	277 

mapped	to	L1	elements	(Supplemental	Fig.	S5).	Among	the	GTEx	tissues,	testis	showed	278 

significantly	higher	expression	of	SVA	F	retrotransposons	compared	to	other	GTEx	tissues	279 

( p = 2.46×10*++ )	 (Supplemental	 Figure	 S6).	 Furthermore,	 we	 observe	 high	 co-280 

expression	 of	 Alu	 elements	 and	 L1	 elements	 across	 GTEx	 tissues	 ( R- = 0.7615 )	281 

(Supplemental		Figure	7).				282 

	283 

ROP	identifies	hyper	edited	reads	284 

Using	standard	read	mapping	approaches,	some	human	reads	may	remain	unmapped	due	285 

to	 “hyper	 editing.”	 An	 extremely	 common	 post-transcriptional	 modification	 of	 RNA	286 

transcripts	 in	human	 is	A-to-I	RNA	editing	 (Bazak	et	 al.,	 2014).	Adenosine	deaminases	287 

acting	on	RNA	(ADARs)	proteins	can	modify	a	genetically	encoded	adenosine	(A)	into	an	288 

inosine	 (I).	 	 Inosine	 is	 read	by	 the	cellular	machinery	as	a	guanosine	 (G),	 and,	 in	 turn,	289 

sequencing	 of	 inosine	 results	 in	 G	 where	 the	 corresponding	 DNA	 sequencing	 reads	290 

A.	Current	methods	to	detect	A-to-I	editing	sites	are	based	on	the	alignment	of	RNA-Seq	291 

reads	to	the	genome	to	identify	such	A-to-G	mismatches.	Reads	with	excessive	(‘hyper’)	292 

editing	are	usually	 rejected	by	standard	alignment	methods.	 In	 this	case,	many	A-to-G	293 

mismatches	obscure	their	genomic	origin.		294 

We	have	identified	hyper-edited	reads	by	using	the	pipeline	proposed	in	(Porath,	295 

Carmi,	&	Levanon,	2014).	This	hyper-editing	pipeline	transforms	all	As	into	Gs,	in	both	296 

the	 unmapped	 reads	 and	 the	 reference	 genome,	 and	 the	 pipeline	 realigns	 the	297 
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transformed	RNA-Seq	reads	and	the	transformed	reference	genome.	The	method	then	298 

recovers	original	sequences	and	searches	for	dense	clusters	of	A-to-G	mismatches.		299 

	 A	 total	 of	201,676,069	 hyper-edited	 reads	were	 identified	 across	 all	 samples	300 

from	the	three	studies.	As	a	control	for	the	detection,	we	calculated	the	prevalence	of	all	301 

6	possible	nucleotide	substitutions	and	found	that	79.9%	(201,676,069/252,376,867)	of	302 

the	detected	reads	were	A-to-G	mismatches	(Supplemental	Fig.	S8).	In	comparison,	the	303 

in-house	RNA-Seq	samples	have	a	96.1%	rate	of	A-to-G	mismatches.		This	massive	over-304 

representation	 of	mismatches	 strongly	 suggests	 that	 these	 reads	 resulted	 from	ADAR	305 

mediated	 RNA	 editing.	 However,	 additional	 experiments	 are	 required	 to	 confirm	 the	306 

nature	of	these	edits.	In	addition,	we	found	that	the	nucleotide	sequence	context	of	the	307 

detected	 editing	 sites	 complies	 with	 the	 typical	 sequence	 motif	 of	 ADAR	 targets	308 

(Supplemental	Fig.	S9).	309 

	310 

The	ROP	protocol	complements	transcriptome	profiling	by	non-co-linear	RNAs	311 

The	ROP	protocol	is	able	to	detect	‘non-co-linear’	reads	via	Tophat-Fusion	(Kim	&	Salzberg,	312 

2011)	and		CIRCexplorer2	(Zhang	et	al.,	2016)	tools	from	three	classes	of	events:	(1)	reads	313 

spliced	 distantly	 on	 the	 same	 chromosome	 supporting	 trans-splicing	 events;	 (2)	 reads	314 

spliced	 across	 different	 chromosomes	 supporting	 gene	 fusion	 events;	 and	 (3)	 reads	315 

spliced	in	a	head-to-tail	configuration	supporting	circRNAs.	On	average,	we	observed	816	316 

trans-splicing	events,	7510	fusion	events,	and	930	circular	events	per	individual	sample	317 

supported	by	more	than	one	read.		Over	90%	of	non-co-linear	events	were	supported	by	318 

fewer	than	10	samples	(Supplemental	Fig.	S10).	We	used	a	 liberal	threshold,	based	on	319 
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number	of	reads	and	individuals,	because	our	interest	is	mapping	all	reads.	However,	a	320 

more	 stringent	 cut	 off	 is	 recommended	 for	 confident	 identification	 of	 non-co-linear	321 

events,	specially	in	the	clinical	settings.			322 

Based	 on	 the	 in-house	 RNA-Seq	 data,	we	 observe	 that	 the	 library	 preparation	323 

technique	strongly	affects	the	capture	rate	of	non-co-linear	transcripts.	To	compare	the	324 

number	of	NCL	events,	we	sub-sampled	unmapped	reads	to	4,985,914	for	each	sample,	325 

which	corresponded	to	the	sample	with	the	smallest	number	of	unmapped	reads	among	326 

in-house	 RNA-Seq	 samples.	 	We	 observed	 an	 average	 increase	 of	 92%	 of	 circRNAs	 in	327 

samples	prepared	by	ribo-depletion	compared	to	poly(A)	protocol	 (p-value	=	3	x	10-12)	328 

(Supplemental	Fig.	S11).	 	At	 the	same	time,	we	observed	an	average	43%	decrease	of	329 

trans-splicing	 and	 fusion	 events	 in	 samples	 prepared	 by	 ribo-depletion	 compared	 to	330 

poly(A)	 protocol	 (p-value	 <	 8	 x	 10-4)	 (Supplemental	 Fig.	 S11).	 	 However,	 because	 the	331 

tissues	differed	between	protocols	(e.g.,	nasal	versus	large	airway	epithelium),	this	effect	332 

might	be	due	in	part	to	tissue	differences	in	NCL	events.		We	view	the	tissue	differences	333 

effect	to	be	unlikely.	We	previously	showed	that	gene	expression	profiles	of	nasal	airway	334 

tissue	largely	recapitulate	expression	profiles	in	the	large	airway	epithelium	tissue	(Poole	335 

et	al.,	2014).		336 

Furthermore,	 many	 NCL	 events	 will	 not	 be	 captured	 by	 poly-A	 selection.	337 

Therefore,	 we	 expect	 systematic	 differences	 in	 NCL	 abundance	 between	 capture	338 

methods.	There	were	no	statistically	significant	differences	 (p-value	>	5x10-3)	between	339 

NCL	events	in	cases	and	controls.			We	have	compared	number	of	NCL	reads	across	GTEx	340 

tissue,	and	we	observe	the	highest	fraction	of	NCL	reads	across	pancreas	samples	with	341 
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0.75%	 of	 reads	 classified	 as	 NCL	 reads.	 In	 all	 other	 tissue	 types,	 ROP	 classified	342 

approximately	.3%	reads	as	NCL	reads	(Supplemental	Figure	S12).		343 

	344 

ROP	identifies	microbial	and	immune	reads	and	differentiate	tissue	types	and	disease	345 

status	346 

Reads	mapped	to	B	and	T	cell	receptor	loci	and	unmapped	reads	were	used	to	survey	the	347 

human	adaptive	immune	repertoires	in	health	and	disease.		We	first	used	the	mapped	348 

reads	 to	extract	 reads	entirely	aligned	to	BCR	and	TCR	genes.	 	Using	 IgBlast	 (Ye	et	al.,	349 

2013),	we	identified	unmapped	reads	with	extensive	somatic	hyper	mutations	(SHM)	and	350 

reads	arising	from	V(D)J	recombination.	After	we	identified	all	the	reads	with	the	human	351 

origin,	 we	 detected	 microbial	 reads	 by	 mapping	 the	 remaining	 reads	 onto	 microbial	352 

reference	genomes	and	phylogenetic	marker	genes.		Here,	the	total	number	of	microbial	353 

reads	obtained	from	the	sample	is	used	to	estimate	microbial	load.	We	use	MetaPhlAn2	354 

(Truong	 et	 al.,	 2015)	 to	 assign	 reads	 on	 microbial	 marker	 genes	 and	 determine	 the	355 

taxonomic	composition	of	the	microbial	communities.		356 

Using	in-house	RNA-Seq	data,	we	compare	immunological	and	microbial	profiles	357 

across	 asthmatics	 and	 unaffected	 controls	 for	 the	 peripheral	 blood,	 nasal,	 and	 large	358 

airway	epithelium	tissues.	A	total	of	339	bacterial	taxa	were	assigned	with	Metaphlan2	359 

(Truong	 et	 al.,	 2015)	 across	 all	 studies	 and	 are	 freely	 available	 at	360 

https://smangul1.github.io/recycle-RNA-seq/.		361 

Using	Metaphlan2,	we	detected	bacterial	reads	in	all	GTEx	tissues	except	testis,	362 

adrenal	gland,	heart,	brain,	and	nerve.	We	also	observe	no	bacteria	reads	in	the	following	363 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 12, 2017. ; https://doi.org/10.1101/053041doi: bioRxiv preprint 

https://doi.org/10.1101/053041
http://creativecommons.org/licenses/by-nc-nd/4.0/


cell	 lines:	 EBV-transformed	 lymphocytes(LCLs),	 Cells-Leukemia	 (CML),	 and	 Cells-364 

Transformed	fibroblasts	cell	lines.	On	average,	we	observe	1.43	+-0.43	phyla	assigned	per	365 

sample.	All	samples	were	dominated	by	Proteobacteria	(relative	genomic	abundance	of	366 

73%+-28%).	Other	phyla	detected	included	Acidobacteria,	Actinobacteria,	Bacteroidetes,	367 

Cyanobacteria,	 Fusobacteria,	 and	 Firmicutes.	 Consistent	 with	 previous	 studies,	 we	368 

observe	 the	 nasal	 epithelium	 is	 dominated	 by	 Actinobacteria	 phyla	 (particularly	 the	369 

Propionibacterium	genus)	(Yan	et	al.,	2013),	and	the	large	airway	epithelium	is	dominated	370 

by	Proteobacteria	phyla	(Beck,	Young,	&	Huffnagle,	2012)	(Supplemental	Table	S3).		As	a	371 

positive	 control	 for	 virus	 detection,	 we	 used	 GTEx	 samples	 from	 EBV-transformed	372 

lymphoblastoid	 cell	 lines	 (LCLs).	 	 ROP	 detected	 EBV	 virus	 across	 all	 LCLs	 samples.	 An	373 

example	of	a	coverage	profile	of	EBV	virus	for	one	of	the	LCLs	samples	 is	presented	in	374 

Supplemental	Fig.	S13.			375 

We	 assess	 combinatorial	 diversity	 of	 the	 B	 and	 T	 cell	 receptor	 repertoires	 by	376 

examining	the	recombination	of	the	of	Variable	(V)	and	Joining	(J)	gene	segments	from	377 

the	variable	region	of	BCR	and	TCR	loci.	We	used	per	sample	alpha	diversity	(Shannon	378 

entropy)	 to	 incorporate	 the	 total	 number	 of	 VJ	 combinations	 and	 their	 relative	379 

proportions	into	a	single	diversity	metric.	We	observed	a	mean	alpha	diversity	of	.7	among	380 

all	the	samples	for	immunoglobulin	kappa	chain	(IGK).		Spleen,	minor	salivary	gland,	and	381 

small	intestine	(terminal	ileum)	were	the	most	immune	diverse	tissue,	with	corresponding	382 

IGK	alpha	diversity	of	86.9,	52.05,	and	43.96,	respectively	(Supplemental	Fig.	S14-S15).		383 

Across	all	the	tissues	and	samples,	we	obtained	a	total	of	312	VJ	recombinations	for	IGK	384 

chains	 and	 194	 VJ	 recombinations	 for	 IGL	 chains.	 Inferred	 recombinations	 are	 freely	385 
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available	at	https://smangul1.github.io/recycle-RNA-seq/.		386 

	387 

Using	 in-house	data,	we	 investigated	 the	effect	of	different	 library	preparation	388 

techniques	over	the	ability	to	detect	B	and	T	cell	receptor	transcripts.		We	compared	the	389 

alpha	 diversity	 in	 large	 airway	 samples	 to	 nasal	 samples	 (Supplemental	 Fig.	 S16).	390 

Decreased	alpha	diversity	in	large	airway	samples	compared	to	nasal	(2.5	for	nasal	versus	391 

1.0	for	large	airway)	could	correspond	to	an	overall	decrease	in	percentage	of	immune	392 

reads.	 This	 effect	 can	 be	 attributed	 to	 the	 ribo-depletion	 protocol	 not	 enriching	 for	393 

polyadenylated	antibody	transcripts.	Alternatively,	it	may	result	from	clonal	expansion	of	394 

certain	clonotypes	responding	to	the	cognate	antigen.		395 

	396 

Our	 comprehensive	 ROP	 protocol	 presents	 several	 advantages	 over	 previous	397 

methods	 designed	 to	 examine	 features	 of	 unmapped	 reads.	 First,	 our	 method	398 

interrogates	 relationships	 between	 features.	 To	 explore	 interactions	 between	 the	399 

immune	system	and	microbiome,	we	compared	immune	diversity	against	microbial	load.	400 

Microbes	 trigger	 immune	 responses,	 eliciting	 proliferation	 of	 antigen-specific	401 

lymphocytes.	This	dramatic	expansion	skews	the	antigen	receptor	repertoire	in	favor	of	a	402 

few	 dominant	 clonotypes	 and	 decreases	 immune	diversity	 (Spreafico	 et	 al.,	403 

2016).	Therefore,	 we	 reasoned	 that	 antigen	 receptor	 diversity	 in	 the	 presence	 of	404 

microbial	 insults	 should	 shrink.	 In	 line	 with	 our	 expectation,	 we	 observed	 that	405 

combinatorial	immune	diversity	of	IGK	locus	was	negatively	correlated	with	the	viral	load	406 
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(Pearson	 coefficient	 r	 =	 -0.55,	 p-value	 =	 2.4	 x	 10-6),	 consistent	 also	 for	 bacteria	 and	407 

eukaryotic	pathogens	across	BCR	and	TCR	loci	(Supplemental	Fig.	S17).		408 

	409 

		 Using	in-house	data,	we	compared	alpha	diversity	of	asthmatic	individuals	(n	=	9)	410 

and	healthy	controls	(n	=	10).	The	combinatorial	profiles	of	B	and	T	cell	receptors	in	blood	411 

and	large	airway	tissue	provide	no	differentiation	between	case	control	statuses.		Among	412 

nasal	samples,	we	observed	decreased	alpha	diversity	for	asthmatic	individuals	relative	413 

to	 healthy	 controls	 (p-value	 =	 10-3)	 (Fig.	 2.b).	 	 Additionally,	 we	 used	 beta	 diversity	414 

(Sørensen–Dice	index)	to	measure	compositional	similarities	between	samples,	including	415 

gain	 or	 loss	 of	 VJ	 combinations	 of	 IGK	 locus.	 	 We	 observed	 higher	 beta	 diversity	416 

corresponding	 to	 a	 lower	 level	 of	 similarity	 across	 the	 nasal	 samples	 of	 asthmatic	417 

individuals	in	comparison	to	samples	from	unaffected	controls	(Fig.	2.c,	p-value	<	3.7x10-418 

13).	 	Moreover,	nasal	samples	of	unaffected	controls	are	significantly	more	similar	than	419 

samples	 from	 the	 asthmatic	 individuals	 (Fig.	 2.c,	 p-value	 <	 2.5x10-9).	 Recombination	420 

profiles	of	immunoglobulin	lambda	locus	(IGL)	and	T	cell	receptor	beta	and	gamma	(TCRB	421 

and	TCRG)	loci	yielded	a	similar	pattern	of	decreased	beta	diversity	across	nasal	samples	422 

of	asthmatic	individuals	(Supplemental	Fig.	S18-S20).	Together	the	results	demonstrate	423 

the	ability	of	ROP	to	interrogate	additional	features	of	the	immune	system	without	the	424 

expense	of	additional	TCR/BCR	sequencing.		425 

	426 

	427 
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		428 

			429 

Figure	 3.	 Combinatorial	 diversity	 of	 immunoglobulin	 kappa	 locus	 (IGK)	 locus	430 

differentiates	disease	status.	(a)	Heatmap	depicting	the	percentage	of	RNA-Seq	samples	431 

supporting	of	 particular	VJ	 combination	 for	whole	blood	 (n	 =	 19),	 nasal	 epithelium	of	432 

healthy	controls	(n	=	10),	and	asthmatic	individuals	(n	=	9).	Each	row	corresponds	to	a	V	433 

gene,	and	each	column	correspond	to	a	J	gene.			(b)	Alpha	diversity	of	nasal	samples	is	434 

measured	using	the	Shannon	entropy	and	incorporates	total	number	of	VJ	combinations	435 

and	 their	 relative	 proportions.	 	 Nasal	 epithelium	 of	 asthmatic	 individuals	 exhibits	436 

decreased	combinatorial	diversity	of	IGK	locus	compared	to	healthy	controls	(p-value	=	1	437 

x	10-3).	(c)	Compositional	similarities	between	the	nasal	samples	in	terms	of	gain	or	loss	438 

of	VJ	combinations	of	IGK	locus	are	measured	across	paired	samples	from	the	same	group	439 
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(Asthma,	Controls)	and	paired	samples	from	different	groups	(Asthma	versus	Controls)	440 

using	Sørensen–Dice	index.		Lower	level	of	similarity	is	observed	between	nasal	samples	441 

of	asthmatic	individuals	compared	to	unaffected	controls	(p-value	<	7.3	x	10-13).	 	Nasal	442 

samples	 of	 unaffected	 controls	 are	more	 similar	 to	 each	 other	 than	 to	 the	 asthmatic	443 

individuals	(p-value	<	2.5	x	10-9).		444 

	445 

DISCUSSION	446 

Our	study	is	the	first	that	systematically	accounts	for	almost	all	reads,	totaling	one	trillion,	447 

available	via	three	RNA-seq	datasets.	We	demonstrate	the	value	of	analyzing	unmapped	448 

reads	 present	 in	 the	 RNA-seq	 data	 to	 study	 the	 non-co-linear,	 RNA	 editing,	449 

immunological,	and	microbiome	profiles	of	a	tissue.	We	developed	a	new	tool	(ROP)	that	450 

accounts	for	99.9%	of	the	reads,	a	substantial	increase	compared	over	the	82.2%	of	reads	451 

account	for	using	conventional	protocols.	We	found	that	the	majority	of	unmapped	reads	452 

are	human	in	origin	and	from	diverse	sources,	including	repetitive	elements,	A-to-I	RNA	453 

editing,	circular	RNAs,	gene	fusions,	trans-splicing,	and	recombined	B	and	T	cell	receptor	454 

sequences.	In	addition	to	those	derived	from	human	RNA,	many	reads	were	microbial	in	455 

origin	 and	 often	 occurred	 in	 numbers	 sufficiently	 large	 to	 study	 the	 taxonomic	456 

composition	of	microbial	communities	in	the	tissue	type	represented	by	the	sample.		457 

	458 

We	found	that	both	unmapped	human	reads	and	reads	with	microbial	origins	are	459 

useful	for	differentiating	between	type	of	tissue	and	status	of	disease.	For	example,	we	460 

found	that	the	immune	profiles	of	asthmatic	individuals	have	decreased	immune	diversity	461 
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when	compared	to	those	of	controls.	Further,	we	used	our	method	to	show	that	immune	462 

diversity	 is	 inversely	 correlated	 with	 microbial	 load.	 This	 case	 study	 highlights	 the	463 

potential	for	producing	novel	discoveries,	when	the	information	in	RNA-seq	data	is	fully	464 

leveraged	by	incorporating	the	analysis	of	unmapped	reads,	without	need	for	additional	465 

TCR/BCR	or	microbiome	sequencing.	The	ROP	profile	of	unmapped	reads	output	by	our	466 

method	is	not	limited	to	RNA-Seq	technology	and	may	apply	to	whole-exome	and	whole-467 

genome	sequencing.	We	anticipate	that	ROP	profiling	will	have	broad	future	applications	468 

in	studies	involving	different	tissue	and	disease	types.		469 

We	observed	large	effects	when	using	different	library	preparation	protocols	on	470 

non-co-linear,	immunological,	and	microbial	profiles.	For	example,	the	poly(A)	protocol	471 

better	captures	antibody	 transcripts	by	enriching	 for	polyadenylated	 transcripts,	while	472 

ribo-depletion	protocols	capture	more	circRNAs.		The	results	presented	here	suggest	that	473 

selection	of	a	protocol	impacts	quality	of	analysis	results,	and	our	study	may	guide	the	474 

choice	of	protocol	depending	on	the	features	of	interest.	475 

	 The	 ROP	 protocol	 facilitates	 a	 simultaneous	 study	 of	 immune	 systems	 and	476 

microbial	 communities,	 and	 this	 novel	 method	 advances	 our	 understanding	 of	 the	477 

functional,	 interrelated	mechanisms	 driving	 the	 immune	 system,	microbiome,	 human	478 

gene	 expression,	 and	 disease	 etiology.	 We	 hope	 that	 future	 efforts	 will	 provide	 a	479 

quantitative	 and	 qualitative	 assessment	 of	 the	 immune	 and	microbial	 components	 of	480 

disease	across	various	tissues.		Recent	increase	in	read	length	and	sequencing	efficiency	481 

provides	 opportunity	 for	 studying	 individual	 microbial	 species	 and	 full	 TCR/BCR	482 

sequencing.		483 
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METHODS	484 

In-house	RNA-Seq	data	485 

For	poly(A)	selected	samples	(n=38),	we	used	a	subset	of	Puerto	Rican	Islanders	recruited	486 

as	 part	 of	 the	 on-going	 Genes-environments	 &	 Admixture	 in	 Latino	 Americans	 study	487 

(GALA	II)	(Anders,	Pyl,	&	Huber,	2014;	Jin,	Tam,	Paniagua,	&	Hammell,	2015;	Melé	et	al.,	488 

2015;	Tarailo-Graovac	&	Chen,	2009).		Nasal	epithelial	cells	were	collected	from	behind	489 

the	inferior	turbinate	with	a	cytology	brush	using	a	nasal	illuminator.	Whole	blood	was	490 

collected	using	PAXgene	RNA	blood	tubes.	RNA	was	isolated	using	PAXgene	RNA	blood	491 

extraction	kits.	For	ribo-depleted	samples	(n=49),	we	recruited	adults	aged	18-70	years	492 

to	undergo	research	bronchoscopy.	 	 	During	bronchoscopy	airway	epithelial	brushings,	493 

samples	were	 obtained	 from	 3rd-4th	 generation	 bronchi.	 RNA	was	 extracted	 from	 the	494 

epithelial	brushing	samples	using	the	Qiagen	RNeasy	mini-kit.			495 

	496 

Poly(A)	 selected	RNA-seq	 libraries	 (n=38)	were	constructed	using	500	ng	of	blood	and	497 

nasal	airway	epithelial	 total	RNA	from	9	atopic	asthmatics	and	10	non-atopic	controls.	498 

Libraries	 were	 constructed	 and	 barcoded	 with	 the	 Illumina	 TruSeq	 RNA	 Sample	499 

Preparation	v2	protocol.	Barcoded	nasal	airway	RNA-seq	 libraries	 from	each	of	 the	19	500 

subjects	were	pooled	and	sequenced	as	2	x	100bp	paired-end	reads	across	two	flow	cells	501 

of	an	Illumina	HiSeq	2000.	Barcoded	blood	RNA-seq	libraries	from	each	of	the	19	subjects	502 

were	pooled	and	sequenced	as	2	x	100bp	paired	end	reads	across	4	lanes	of	an	Illumina	503 

Hiseq	 2000	 flow	 cell.	 Ribo-depleted	 RNA-seq	 libraries	 (n=38),	 were	 constructed	 using	504 

100ng	of	 isolated	RNA	of	 large	airway	epithelium	total	RNA	from	61	samples.	Libraries	505 
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were	constructed	and	barcoded	with	the	TruSeq	Stranded	Total	RNA	using	a	Ribo-Zero	506 

Human/Mouse/Rat	 library	 preparation	 kit,	 per	 manufacturer’s	 protocol.	 Barcoded	507 

bronchial	 epithelial	 RNA-seq	 libraries	 were	 multiplexed	 and	 sequenced	 as	 2	 x	 100bp	508 

paired	 end	 reads	 on	 an	 Illumina	 HiSeq	 2500.	 We	 excluded	 12	 samples	 from	 further	509 

analyses	due	to	high	ribosomal	RNA	read	counts	(library	preparation	failure),	 leaving	a	510 

total	of	49	samples	suitable	for	further	analyses.	511 

GTEx	RNA-Seq	data	512 

We	used	RNA-Sequencing	data	from	Genotype-Tissue	Expression	study	(GTEx	Consortium	513 

v.6)	 corresponding	 to	 8,555	 samples	 collected	 from	 544	 individuals	 from	 53	 tissues	514 

obtained	from	Genotype-Tissue	Expression	study	(GTEx	v6).	RNA-Seq	data	is	from	Illumina	515 

HiSeq	sequencing	of	75	bp	paired-end	reads.	The	data	was	derived	from	38	solid	organ	516 

tissues,	11	brain	subregions,	whole	blood,	and	three	cell	lines	of	postmortem	donors.	The	517 

collected	 samples	 are	 from	 adults	 matched	 for	 age	 across	 males	 and	 females.	 	 We	518 

downloaded	 the	 mapped	 and	 unmapped	 reads	 in	 BAM	 format	 from	 dbGap	519 

(http://www.ncbi.nlm.nih.gov/gap).	520 

	521 

SRA	RNA-Seq	data	522 

	523 

Samples	(n=2000)	were	randomly	selected	using	SQLite	database	from	R/Bioconductor	524 

package	SRAdb	(https://bioconductor.org/packages/release/bioc/html/SRAdb.html).	We	525 

have	 used	 a	 script	 from	526 

https://github.com/nellore/runs/blob/master/sra/define_and_get_fields_SRA.R	 to	527 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 12, 2017. ; https://doi.org/10.1101/053041doi: bioRxiv preprint 

https://doi.org/10.1101/053041
http://creativecommons.org/licenses/by-nc-nd/4.0/


select	 run_accessions	 from	the	sra	table	with	platform	=	 ’ILLUMINA’,	library_strategy	=	528 

’RNA-Seq’,	and	taxon_id	=	9606	(human).		529 

		530 

Workflow	to	categorize	mapped	reads	531 

We	 mapped	 reads	 onto	 the	 human	 transcriptome	 (Ensembl	 GRCh37)	 and	 genome	532 

reference	(Ensembl	hg19)	using	TopHat2	(v	2.0.13)	with	the	default	parameters.	Tophat2	533 

was	supplied	with	a	set	of	known	transcripts	(as	a	GTF	formatted	file,	Ensembl	GRCh37)	534 

using	–G	option.		The	mapped	reads	of	each	sample	are	stored	in	a	binary	format	(.bam).		535 

ROP	 (gprofile.py)	 categorizes	 the	 reads	 into	 genomic	 categories	 (junction	 read,	 CDS,	536 

intron,	UTR3,	UTR5,	introns,	inter-genic	read,	deep	a	deep	inter-genic	read,	mitochondrial	537 

read,	and	multi-mapped	read)	based	on	their	compatibility	with	the	features	defined	by	538 

Ensembl	 (GRCh37)	 gene	 annotations.	 	 ROP	 (rprofile.py)	 categorizes	 reads	 into	 repeat	539 

elements	(classes	and	families)	based	on	their	compatibility	with	repeat	instances	defined	540 

by	RepeatMasker	annotation	(Repeatmasker	v3.3,	Repeat	Library	20120124).		We	count	541 

the	number	of	reads	overlapping	variable(V),	diversity	(D),	 joining	(J),	and	constant	(C)	542 

gene	segments	of	B	cell	receptor	(BCR)	and	T	cell	receptor	(TCR)	loci	using	htseq-count	543 

(HTSeq	v0.6.1).		544 

	545 

Workflow	to	categorize	unmapped	reads	546 

We	first	converted	the	unmapped	reads	saved	by	TopHat2	from	a	BAM	file	into	a	FASTQ	547 

file	(using	samtools	with	bam2fq	option).	The	FASTQ	file	of	unmapped	reads	contains	full	548 
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read	pairs	(both	ends	of	a	read	pair	were	unmapped)	and	discordant	read	pairs	(one	read	549 

end	 was	 mapped	 while	 the	 other	 end	 was	 unmapped).	 We	 disregarded	 the	 pairing	550 

information	 of	 the	 unmapped	 reads	 and	 categorized	 unmapped	 reads	 using	 the	551 

protocol’s	seven	steps.	Reads	identified	at	each	step	are	filtered	out.		552 

	553 

A.	Quality	Control.	Low	quality	reads,	defined	as	reads	that	have	quality	lower	than	30	in	554 

at	least	75%	of	their	base	pairs,	were	identified	by	FASTX	(v	0.0.13).		Low	complexity	reads,	555 

defined	as	reads	with	sequences	of	consecutive	repetitive	nucleotides,	were	identified	by	556 

SEQCLEAN.		As	a	part	of	the	quality	control,	we	also	excluded	unmapped	reads	mapped	557 

onto	the	rRNA	repeat	sequence	(HSU13369	Human	ribosomal	DNA	complete	repeating	558 

unit)	(BLAST+	2.2.30).		559 

	560 

B.	Remap	to	human	references.	We	remapped	the	remaining	unmapped	reads	to	the	561 

human	 reference	 genome	 (hg19)	 and	 transcriptome	 (known	 transcripts,	 Ensembl	562 

GRCh37)	using	Megablast	(BLAST+	2.2.30).	ROP	step	3.		563 

	564 

C.	 Hyper-editing	 detection.	 We	 used	 a	 hyper-editing	 pipeline	 (HE-pipeline	565 

http://levanonlab.ls.biu.ac.il/resources/zip),	 which	 is	 capable	 of	 identifying	 hyper-566 

edited	reads.			567 

	568 

D.	 	Map	 to	 repeat	 sequences.	 The	 remaining	 unmapped	 reads	 were	mapped	 to	 the	569 

reference	 repeat	 sequences	 using	 Megablast	 (BLAST+	 2.2.30).	 	 The	 reference	 repeat	570 
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sequences	were	 downloaded	 from	 Repbase	 v20.07	 (http://www.girinst.org/repbase/).	571 

Human	 repeat	 elements	 (humrep.ref	 and	 humsub.ref)	 were	 merged	 into	 a	 single	572 

reference.	573 

	574 

E.	Non-co-linear	(NCL)	RNA	profiling.		NCL	events	include	three	classes	of	events:	reads	575 

supporting	 trans-splicing	 events	 that	 are	 spliced	 distantly	 on	 the	 same	 chromosome;	576 

reads	supporting	gene	fusion	events	that	are	spliced	across	different	chromosomes;	and	577 

reads	supporting	circRNAs	that	are	spliced	in	a	head-to-tail	configuration.	To	distinguish	578 

between	these	three	categories,	we	use	circExplorer2	(v2.0.13).	CircExplorer2	relies	on	579 

Tophat-Fusion	 (v2.0.13,	 bowtie1	 v0.12.)	 and	 allows	 simultaneous	 monitoring	 of	 NCL	580 

events	in	the	same	run.	To	extract	trans-spicing	and	gene	fusion	events	from	the	TopHat-581 

Fusion	output,	we	ran	a	ruby	custom	script,	which	is	part	of	the	ROP	pipeline	(NCL.rb).	582 

	583 

D.	B	and	T	 lymphocytes	profiling.	We	used	 IgBLAST	 (v.	1.4.0)	with	a	stringent	e-value	584 

threshold	(e-value	<	10-20)	to	map	the	remaining	unmapped	reads	onto	the	V(D)J	gene	585 

segments	of	the	of	the	B	cell	receptor	(BCR)	and	T	cell	receptor	(TCR)	loci.	Gene	segments	586 

of	 B	 cell	 receptors	 (BCR)	 and	 T	 cell	 receptors	 (TCR)	 were	 imported	 from	 IMGT	587 

(International	ImMunoGeneTics	information	system).	IMGT	database	contains:	variable	588 

(V)	gene	segments;	diversity	(D)	gene	segments;	and	joining	(J)	gene	segments.		589 

	590 

E.	 Microbiome	 profiling.	 We	 used	 Megablast	 (BLAST+	 2.2.30)	 to	 align	 remaining	591 

unmapped	 reads	 onto	 the	 collection	 of	 bacterial,	 viral,	 and	 eukaryotic	 reference	592 
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genomes.	 Bacterial	 and	 viral	 genomes	 were	 downloaded	 from	 NCBI	593 

(ftp://ftp.ncbi.nih.gov/).	 Genomes	 of	 eukaryotic	 pathogens	 were	 downloaded	 from	594 

EuPathDB	 (http://eupathdb.org/eupathdb/).	 	 We	 used	 MetaPhlAn2	 (Metagenomic	595 

Phylogenetic	Analysis,	v	2.0)	 to	obtain	the	taxonomic	profile	of	microbial	communities	596 

present	in	the	sample.		597 

	598 

Reference	databases		599 

A	detailed	description	of	reference	databases	used	by	ROP	is	provided	in	Supplemental	600 

Materials.		601 

Comparing	diversity	across	groups	602 

First,	we	sub-sampled	unmapped	reads	by	only	including	reads	corresponding	to	a	sample	603 

with	the	smallest	number	of	unmapped	reads.		Diversity	within	a	sample	was	assessed	604 

using	the	richness	and	alpha	diversity	indices.		Richness	was	defined	as	a	total	number	of	605 

distinct	 events	 in	 a	 sample.	 We	 used	 Shannon	 Index	 (SI),	 incorporating	 richness	 and	606 

evenness	components,	to	compute	alpha	diversity,	which	is	calculated	as	follows:	607 

SI = 	− 𝑝× log- 𝑝 	608 

We	 used	 beta	 diversity	 (Sørensen–Dice	 index)	 to	 measure	 compositional	 similarities	609 

between	the	samples	in	terms	of	gain	or	loss	in	events.		We	calculated	the	beta	diversity	610 

for	each	combination	of	the	samples,	and	we	produced	a	matrix	of	all	pairwise	sample	611 

dissimilarities.	The	Sørensen–Dice	beta	diversity	index	is	measured	as	1 − -8
9:;

,	where	J	is	612 
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the	number	of	 shared	events,	while	A	 and	B	are	 the	 total	 number	of	 events	 for	 each	613 

sample,	respectively.		614 

	615 

		616 

The	robustness	of	the	ROP	results	against	changing	the	thresholds	for	each	of	the	ROP	617 

steps		618 

We	have	performed	the	robustness	analysis	to	investigate	the	impact	of	the	thresholds	619 

used	in	each	step	of	the	ROP	approach.		For	each	ROP	step,	we	reported	the	number	of	620 

reads	 identified	 under	 different	 thresholds.	 	 The	 results	 are	 presented	 as	 cumulative	621 

frequency	plots	(Supplemental	Methods	Figure	SM1).		622 

	623 

The	impact	of	mapping	parameters	and	RNA-Seq	aligners	on	the	number	of	unmapped	624 

reads	625 

We	 investigated	 the	 impact	 of	 alternative	 aligners	 (STAR,	626 

https://github.com/alexdobin/STAR)	 and	 carefully	 adjusted	 the	 mapping	 setting	 to	627 

achieve	 sensitive	 and	 very	 sensitive	 settings	 (Supplemental	 Table	 S4).	 	 The	 average	628 

runtime	 on	Hoffman2	 Cluster	 for	 Tophat	 per	million	 reads	was	 2.5	 hours;	 STAR,	 0.13	629 

hours;	and	Novoalign,	9.1	hours.	Novoalign	was	not	considered	in	the	analysis	due	to	its	630 

substantially	longer	running	time,	which	made	it	infeasible	for	the	protocol.		631 

	632 

	633 

Software	availability		634 
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The	ROP	software	is	publicly	available	at	https://github.com/smangul1/rop.	The	source	635 

code	for	ROP	v1.0.4	is	also	available	as	Supplemental	Material.	Custom	scripts		636 

necessary	to	reproduce	the	results	and	reference	files	are	distributed	with	Supplemental	637 

Material,	and	are	also	available	with	ROP	software.	A	tutorial	with	detailed	instructions	638 

on	how	to	run	ROP	 is	 freely	available	at	https://github.com/smangul1/rop/wiki.	 	For	a	639 

quick	start,	an	example	with	2508	unmapped	reads	is	distributed	with	the	ROP	package.	640 

Reads	are	randomly	selected	from	a	publically	available	normal	skin	(SRR1146076)	RNA-641 

Seq	sample	and	might	not	represent	the	typical	reads	of	RNA-Seq	experiment.	The	reads	642 

are	 provided	 for	 demonstration	 purposes	 and	 are	 distributed	 with	 ROP	 software.		643 

Additional	details	of	ROP,	including	all	parameters	and	thresholds	used,	are	provided	in	644 

the	Supplemental	Methods.		645 

	646 
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