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Abstract
Ocean microbes drive global-scale biogeochemical cycling1, but do so under constraints imposed by
viruses on host community composition, metabolism, and evolutionary trajectories2–5. Due to sampling
and  cultivation  challenges,  genome-level  viral  diversity  remains  poorly  described  and  grossly
understudied in nature such that <1% of observed surface ocean viruses, even those that are abundant
and  ubiquitous,  are  ‘known’5.  Here  we analyze  a  global  map  of  abundant,  double  stranded  DNA
(dsDNA) viruses and viral-encoded auxiliary metabolic genes (AMGs) with genomic and ecological
contexts through the Global Ocean Viromes (GOV) dataset, which includes complete genomes and
large genomic fragments from both surface and deep ocean viruses sampled during the  Tara Oceans
and Malaspina research expeditions6,7. A total of 15,222 epi- and mesopelagic viral populations were
identified that comprised 867 viral clusters (VCs, approximately genus-level groups8,9). This roughly
triples known ocean viral populations10, doubles known candidate bacterial and archaeal virus genera9,
and near-completely samples epipelagic communities at both the population and VC level. Thirty-eight
of the 867 VCs were identified as the most impactful dsDNA viral groups in the oceans, as these were
locally or globally abundant and accounted together for nearly half of the viral populations in any GOV
sample. Most of these were predicted in silico to infect dominant, ecologically relevant microbes, while
two thirds of them represent newly described viruses that lacked any cultivated representative. Beyond
these taxon-specific ecological observations, we identified 243 viral-encoded AMGs in GOV, only 95
of which were known. Deeper analyses of 4 of these AMGs revealed that abundant viruses directly
manipulate sulfur and nitrogen cycling, and do so throughout the epipelagic ocean. Together these data
provide a critically-needed organismal catalog and functional context to begin meaningfully integrating
viruses into ecosystem models as key players in nutrient cycling and trophic networks.

Main text
The fundamental bottleneck preventing the incorporation of viruses of microbes into predictive

ecosystem models is the lack of quantitative surveys of viral diversity in nature. This is because (i)
most naturally-occurring microbes and viruses resist being cultured, and (ii) viruses lack a universally
conserved marker gene, which precludes barcode surveys of uncultivated viral diversity5. While viral
metagenomics  was  introduced to  circumvent  these  issues,  low-throughput  sequencing  technologies
initially yielded highly fragmented datasets suitable only for strongly database-biased descriptions11,
and gene-level analyses of environmental viral communities (reviewed in ref. 5). 

Subsequent  improvements  in  experimental  methods,  sequencing  technologies,  and  analytical
approaches  progressively  enabled  viral  population ecology  through  the  availability  of  genomic
information5,12–14.  For example,  1,148 large viral genome fragments captured in a fosmid library of
Mediterranean Sea microbes revealed remarkable viral diversity in a single sample, with some of these
genomes seemingly globally distributed based upon the six viral metagenomic datasets available at the
time12.  Similarly, 69 viral genomes assembled from single-cell genomic datasets provided reference
genomes that illuminated the ecology, evolution and biogeochemical impacts of viruses infecting an
uncultivated  anaerobic  chemoautotroph14.  Beyond  these  ‘omics-enabled  experimental  advances,
metagenomic approaches have matured to be quantitative5 and informative enough, at least for dsDNA
templates, to themselves provide genomic information on viruses that infect both abundant and rare
hosts. For example, the analysis of 43 surface ocean viral metagenomes (viromes) comprising the Tara
Oceans Viromes (TOV) dataset revealed the global underlying structure of these communities, and
identified 5,476 viral populations, only 39 of which were previously known10.

Here we further identify ocean viral populations, characterize the most abundant and widespread
types of ocean viruses, and analyze new viral-encoded AMGs and their distributions to expand our
understanding of how viruses modulate microbial biogeochemistry. We do so on the basis of a new
Global Oceans Viromes (GOV) dataset, which augments TOV with 61 new samples to better represent
the surface and deep oceans, and now totals 104 ocean viromes representing 925 Gbp of sequencing
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(Supplementary  Table  1).  Beyond  better  sample  coverage,  analytical  approaches  including
cross-assembly15 and  genome  binning16 make  the  GOV  dataset  a  much  improved  genomic
representation of the sampled viruses. From 1,380,834 contigs generated, which recruited 67% of the
reads, we identified 15,280 viral populations (Fig. 1A, Supplementary Fig. 1). This expands the number
of known ocean viral populations nearly 3-fold over the prior TOV dataset10, while also improving the
genomic context for these TOV-known populations by a 2.5-fold increase in contig length on average
(Supplementary Table 2). Rarefaction analyses show that while mesopelagic viral communities remain
undersampled, epipelagic viral communities now appear near-completely sampled (Extended Data Fig.
1A). Because bathypelagic communities were underrepresented due to cellular contamination of these
viromes, we focused the remaining analyses on the 15,222 non-bathypelagic viral populations.

We first categorized new and known viral populations into viral clusters, or VCs (Supplementary
Fig. 1) using shared gene content information and network analytics8. This method starts from genome
fragments (≥10kb) and results in VCs approximately equivalent to known bacterial and archaeal virus
genera8,9 (see also Supplementary Text, Extended Data Fig. 2 & Supplementary Table 3 for comparison
with alternative classification methods). Combining the 15,222 viral populations identified here with
the genomes and genome fragments of another 15,929 publicly available bacterial and archaeal viruses
generated  a  total  of  1,259  VCs.  Of  these,  658  included  exclusively  GOV  sequences,  which
approximately doubles known bacterial and archaeal virus genera9, and another 209 VCs contained at
least one GOV sequence (Fig. 1B). As with viral populations, rarefaction analyses suggested that VC
diversity was undersampled in mesopelagic waters, but near-completely sampled in epipelagic waters
(Extended Data Fig. 1B).

We next  identified  the  most  abundant  and  widespread VCs based on read  recruitment  of  VC
members. In each sample, a fraction of the VCs were identified as abundant based on their cumulative
contribution to sample diversity (estimated with the Simpson Index, abundant VCs represent 80% of
the total sample diversity, Extended Data Fig. 1C). By these criteria, only 38 of the 867 VCs observed
were abundant in two or more stations, and together recruited an average of 50% and 35% of the reads
from viral populations for epi- and mesopelagic samples, respectively (Supplementary Table 3). Four of
these 38 abundant VCs were also relatively ubiquitous as they were abundant in more than 25 stations,
and 62 of the 91 non-bathypelagic samples were dominated by 1 of these 4 VCs (Fig. 2 A & B). Among
the 38 abundant VCs, only 2 corresponded to well-studied viruses, from the T4 superfamily17,18 (VC_2,
1 of the 4 ubiquitous) and the T7virus genus19 (VC_9), whereas 8 represented known, but unclassified
viral isolates, another 10 included viruses previously only identified in environmental libraries12,13, and
the remaining 18 VCs were completely novel (Fig. 2C, Extended Data Fig. 3).

Given this global map of the dominant dsDNA viral types in the oceans, we next sought to identify
the  range of  hosts  that  these viruses  infect.  Large-scale  host  range  estimations  are  challenging as
culture-based  methods  experimentally  link  viruses  and  hosts,  but  insufficiently  capture
naturally-occurring diversity, whereas metagenomic approaches broadly survey diversity, but struggle
to  establish  virus-host  linkages.  However,  recent  work  has  demonstrated  the  predictive  power  of
sequence-based approaches such as similarities between (i) viral genomes and host CRISPR spacers20

(ii) viral and microbial genomes due to integrated prophages or gene transfers12 and (iii) viral and host
genome nucleotide signatures  (here,  tetranucleotide frequencies)9.  We applied all  3 methods to  the
GOV dataset and predicted hosts at the phylum level, or class level for Proteobacteria (Supplementary
Table 4). These results were then summarized at the VC level, leading to host range predictions for 392
of 867 VCs, and for which confidence was assessed by comparison to a null model (Supplementary
Fig. 1).

The hosts of the 38 globally abundant VCs were largely restricted to abundant and widespread
epipelagic-ocean  microbes  identified  from  miTag-based  OTU  counts  in  Tara Oceans  microbial
metagenomes21.  Notably,  the  4  ubiquitous  and  abundant  VCs  were  predicted  to  infect  7  of  the  8
globally  abundant  microbial  groups  (Actinobacteria,  Alpha-,  Delta-,  and  Gamma-proteobacteria,
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Bacteroidetes,  Cyanobacteria,  Deferribacteres;  Fig.  2C,  Extended  Data  Fig.  4).  The  8th abundant
microbial group, Euryarchaeota, was not linked to these 4 VCs, but was predicted as a host for 2 of the
34 other abundant VCs (VC_3 and VC_63, Extended Data Fig. 3). Among the 38 abundant VCs, the
number of VCs predicted to infect a given microbial host phylum (or class for Proteobacteria) was
positively correlated with host global richness rather than abundance (Extended Data Fig. 4B). This
suggests that, likely because of the global distribution of ocean viruses10,22, widespread and abundant
hosts that are minimally diverse (e.g. Cyanobacteria) provide few viral niches, whereas more diverse
host groups, even at  lower abundance (e.g.  Betaproteobacteria), provide more opportunity for viral
niche  differentiation.  These  data  thus  provide  critically-needed  empirical  support  for  guiding  and
testing hypotheses derived from global virus-host network models23.

Having mapped viral diversity and predicted virus-host pairings, we next sought to identify novel
virus-encoded  auxiliary  metabolic  genes,  or  AMGs,  that  might  modify  host  metabolism  during
infection. To maximize the detection of AMG, all viral contigs >1.5kb were examined, including small
contigs  not  associated  with  a  viral  population,  which  totaled  298,383  contigs.  This  revealed  243
putative AMGs (Supplementary Table 5). While 95 were already known (reviewed in ref.  24), others
offer new insights into how viruses directly manipulate microbial metabolisms beyond photosynthesis
and carbon metabolism25–28. Here we focus specifically on 4 AMGs (dsrC, soxYZ, P-II and amoC, see
Extended Data Table 1) because of their critical roles in sulfur or nitrogen cycling and their novelty in
epipelagic ocean viruses. Three of these are not yet known in viruses, and one,  dsrC-like genes, has
been observed in viruses, but only from anoxic deep-sea environments14,29.

Sulfur oxidation in seawater involves two central microbial pathways – Dsr and Sox30 – and GOV
AMG analyses revealed that epipelagic viruses encode key genes for each.  First, 11  dsrC-like genes
were identified in  viral  contigs (Extended Data Fig.  5).  The  Dsr operon is  used by sulfate/sulfite-
reducing microbes in anoxic environments,  as well  as sulfur-oxidizing bacteria in  oxic and anoxic
environments (Fig. 3A)30,31. DsrC, specifically, dictates sulfur metabolism rates, as it provides the sulfur
substrate to DsrAB-sulfite reductase for processing32. A conserved C-terminal motif with two cysteine
residues CysBX10CysA is essential for this function.  Outside of energy metabolism, a second class of
dsrC-like genes (also known as tusE) lack CysB and are instead involved in tRNA modification33. In the
GOV dataset, four clades of dsrC-like sequences were similar to TusE (DsrC-1 to DsrC-4), whereas the
fifth (DsrC-5) was most similar to bona fide DsrC involved in sulfur oxidation (Extended Data Fig. 5,
Extended Data Table 1,  Supplementary Fig.  2).  Second, 4  soxYZ genes  from the  sox  operon were
identified on viral contigs (Extended Data Fig. 6)30,31. Like DsrC, SoxYZ is an important sulfur carrier
protein harboring a sulfur interaction motif identified in GOV SoxYZ proteins (Fig. 3A, Supplementary
Fig. 3)34.

Complementarily, GOV AMG analyses suggested that viruses also manipulate nitrogen cycling.
First, 10 GOV contigs encoded P-II, a nitrogen metabolism regulator that is widespread across bacteria
and archaea (Fig. 3B)35,36. Functional P-II genes contain a conserved C-terminal motif, and a conserved
Y residue that is uridylylated under nitrogen-limiting conditions35. One AMG clade (P-II-3) lacked this
conversed  Y residue  leaving its  function  ambiguous,  whereas  3  clades  (P-II-1,  P-II-2,  and P-II-4)
displayed both conserved motifs and were also predicted to have structures similar to bona fide P-II,
which suggests these AMGs are functional (Supplementary Fig. 4). Second, two of these P-II AMG
clades  (P-II-1  and P-II-4)  were  proximal  to  an  ammonium transporter  gene,  amt,  in  viral  contigs
(Extended  Data  Fig.  7).  In  bacteria,  such  an  arrangement  is  a  signature  of  P-II-like  genes  that
specifically activate  alternative nitrogen production and ammonia uptake pathways during nitrogen
starvation35,36. Third, one GOV contig included amoC, the gene coding for the subunit C of ammonia
monooxygenase,  suggesting  a  role  in  ammonia  oxidation37,38.  While  functional  annotation  is
challenging for these genes38, and functional motifs are not yet available, the translated AMG was 94%
identical to functional AmoC from Thaumarchaeota (Extended Data Fig. 8, Supplementary Fig.  5).
Such exceptionally high identity is rarely observed among AMGs, and compars only to the well-studied
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PsbA genes, which are expressed and functional39. We posit that this highly conserved amoC AMG is
also functional.

Next, we investigated the origin, evolutionary history, and diversity of these AMGs in epipelagic
viruses.  The 15 GOV contigs encoding  dsrC or  soxYZ  genes were all  affiliated to T4 superfamily
contigs, one of the 4 abundant and ubiquitous VCs (VC_2, Extended Data Fig. 5 and 6, Extended Data
Table 1). Both DsrC and Sox phylogenies suggested that these viruses obtained each AMG only once
from probable  S-oxidizing  proteobacterial  hosts  (Extended  Data  Fig.  5  and  6).  Among  the  latter,
DsrC-5,  the  bona fide  S-oxidation DsrC,  appeared  most  closely  related  to  a  clade  of  uncultivated
S-oxidizing  Gammaproteobacteria  represented  by  bacterial  artificial  chromosome  MED13k09
(confirmed by phylogenetic analyses of the sulfur oxidizer marker DsrA,  Supplementary Fig. 6). If
DsrC-5-containing viruses indeed infect members of this clade, they would impact bacteria that are
widespread in the epipelagic ocean40, and suspected to degrade dimethyl sulfide, the most important
reduced sulfur species in oxygenated ocean waters and key compound in the transport of sulfur from
ocean to atmosphere and in cloud formation41. In contrast to the sulfur AMGs, phylogenies suggest that
P-II AMGs originated from diverse viruses (6 VCs including the abundant VC_2 and VC_12), and
were acquired at least 4 times independently from different host phyla (Bacteroidetes, Proteobacteria,
and possibly Verrucomicrobia, Extended Data Fig. 7). Finally, while a single amoC AMG offers only
preliminary  evaluation  of  its  evolutionary  history, this  amoC-encoding contig  appears  to  represent
novel and rare unclassified archaeal dsDNA viruses (VC_623), which presumably infect ammonia-
oxidizing Thaumarchaeota, known for their major role in global nitrification37 (Extended Data Fig. 8).

Finally,  we  investigated  the  ecology  of  viruses  encoding  these  new AMGs  by  mapping  their
distribution across the GOV dataset.  Seven AMG clades were geographically restricted (DsrC-unc,
DsrC-1, DsrC-2, DsrC-4, P-II-2, P-II-3, and amoC), and 5 were widespread throughout the epipelagic
(DsrC-3,  DsrC-5,  SoxYZ,  P-II-1)  or  mesopelagic  (P-II-4)  ocean  (Fig.  3C).  While  all  widespread
epipelagic  AMGs  were  detected  in  waters  of  mid-range  temperatures,  DsrC-5  and  SoxYZ  were
predominantly  detected  in  low nutrients  conditions  (low phosphate  and  nitrite),  while  P-II-1  was
predominantly  detected  in  high  nutrient  conditions  (high  phosphate,  nitrate  and  nitrite,  Fig.  3D,
Extended Data Fig. 9). Thus, we hypothesize that viruses utilize DsrC-5 or SoxYZ to boost sulfur
oxidation rates when infecting sulfur oxidizers in low-nutrient conditions, and P-II under high-nutrient
conditions  favorable  for  normal  host  growth.  The latter  could  be particularly  useful  to  viruses  by
activating expensive and stress-inducing alternative N-producing pathways typically only used under
N-starvation conditions35,36. Consistent with this, metatranscriptomes from three low-nutrient stations
(11_SRF in Mediterranean Sea, 39_DCM in Arabian Sea, and 151_SRF in Atlantic Ocean) revealed
expression of viral homologs of dsrC and soxYZ but not of viral P-II (Extended Data Table 1).

Overall,  this  systematically  collected  and  processed  GOV dataset  brings  critically-needed  and
unprecedented global ecological context to new and known, surface and deep ocean viruses. Global
diversity analyses identified and mapped abundant dsDNA viruses at the population- and VC-level, and
indicated that  these are  near-completely sampled in  epipelagic  waters and dominated by few viral
groups, mostly newly described. The characterization of new viral-encoded AMGs, their viral carriers,
possible  impacted  hosts,  and  biogeographical  patterns  revealed  that  viral  manipulation  of  cellular
processes involves much more than photosynthesis and carbon metabolism25–28, to also now include
nitrogen  and  sulfur  cycling  throughout  the  epipelagic  ocean.  These  advances  are  foundational  for
interpretation  of  new  (meta)genomic  datasets  and  selection  of  relevant  experimental  systems  to
develop,  and,  together  with  myriad  experimental,  informatic  and  theoretical  advances  already
occurring5,15,42–44, will accelerate the field towards understanding and predicting the roles and global
impacts of viruses in nature.
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Figure 1: Composition and novelty of the Global Ocean Viromes (GOV) dataset. A. Size of viral
contigs (x-axis) and cumulative coverage across the GOV dataset (y-axis). Contigs corresponding to
complete or near-complete genomes (based on the size of similar complete genomes) are indicated. For
clarity, only contigs associated with a viral population are displayed. B. Distribution of all viral clusters
(VCs) according to the origin of their members. Viral genomes (or fragments) in a VC can originate
from isolate viral  genomes,  the VirSorter Curated Dataset9 (viral  genomes identified  in silico from
microbial genomes), environmental viral genomes and genome fragments (e.g. from fosmid libraries),
or the GOV dataset. VCs including at least one GOV sequence and further analyzed in this study are
highlighted in bold.
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Figure  2:  Characterization  of  the  dominant  oceanic  viral  clusters  (VCs).  A. Distribution  and
abundance of the 38 recurrently abundant VCs according to  the total  number of stations in which
members of the VC were detected (x-axis), and the number of samples in which the VC was detected in
the abundant fraction (y-axis).  VCs are classified by degree of novelty: “Known viruses” are VCs
corresponding to established viral groups in ICTV classification, “Unclassified reference(s)” are VCs
including genomes from unclassified isolate(s), and “New VCs” are only composed of environmental
viral sequences (i.e. no isolate). The 4 widespread and abundant VCs are highlighted with colored
circles.  B. GOV samples  with  their  most  abundant  VC mapped  to  station  locations.  Samples  are
stacked vertically when multiple samples from different depths are available (a horizontal line is used
to separate epipelagic from mesopelagic samples).  C. Summary of VC affiliation, origin of the VC
members  (Env:  environmental  viral  sequences),  estimated  genome  size,  predicted  host  range,  and
distribution of the 4 ubiquitous VCs circled in panel A (relative abundance are indicated as % of the
viral  populations  identified).  The  abundant  epipelagic  microbial  groups  (representing  >1% of  the
microbial  OTUs  abundance  of  epipelagic  samples)  are  highlighted  in  bold;  Alphaproteob.-
Alphaproteobacteria,  Betaproteob.-Betaproteobacteria,  Deinococcus-Th.-Deinococcus-Thermus,
Deltaproteob.-Deltaproteobacteria,  Gammaproteob.-Gammaproteobacteria,  Cand  div  OP1-Candidate
division OP1. Oceanic basins are indicated for VCs distributions; Med. Sea-Mediterranean Sea.
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Figure 3: Characterization and distribution of viral Auxiliary Metabolic Genes (AMGs) involved
in sulfur and nitrogen cycles.  Schematics are presented for (A) microbial sulfur oxidation pathways
involving the two main gene clusters (dsr and sox) and (B)  the central role of the P-II protein in cell
regulation  (adapted  from35,45). AMGs are  outlined  in  colors  according  to  the  taxonomic  affiliation
(family) of the corresponding virus. Ammonium transporters detected next to viral P-II are  highlighted
with a dashed outline. C. Distribution of viral AMG clades. Mesopelagic samples are highlighted in
dark green, and clades with restricted geographic distributions are highlighted with black boxes.  D.
Temperature and nutrient conditions for which widespread epipelagic AMGs tend to be most abundant.
For each environmental parameter, the range of values across all epipelagic samples is displayed as
“All Samples” alongside distributions representing the range of values where each AMG clade was
detected,  weighted  by  the  AMG  coverage  across  these  samples  (see  Extended  Data  Fig.  9  for
underlying coverage data).  Distributions significantly different from the “All Samples” distribution
(two-sided KS-test) are indicated with stars.
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Methods

Sample collection and processing
Tara Oceans expedition
Ninety samples were collected between October 10, 2009, and December 12, 2011, at 45 locations
throughout the world’s oceans (Supplementary Table 1) through the Tara Oceans Expedition46. These
included samples from a range of depths: surface, deep chlorophyll maximum, bottom of mixed layer
when no deep chlorophyll  maximum was observed (Station  123,  124,  and 125),  and mesopelagic
samples. The sampling stations were located in 7 oceans and seas, 4 different biomes and 14 Longhurst
oceanographic  provinces  (Supplementary  Table  1).  For  TARA station  100,  two different  peaks  of
chlorophyll  were  observed,  so  two  samples  were  taken  at  the  shallow  (100_DCM)  and  deep
(100_dDCM) chlorophyll maximum. For each sample, 20 L of seawater were 0.22 µm-filtered and
viruses were concentrated from the filtrate using iron chloride flocculation47 followed by storage at 4ºC.
After resuspension in ascorbic-EDTA buffer (0.1 M EDTA, 0.2 M Mg, 0.2 M ascorbic acid, pH 6.0),
viral particles were concentrated using Amicon Ultra 100 kDa centrifugal devices (Millipore), treated
with DNase I (100U/mL) followed by the addition of 0.1M EDTA and 0.1M EGTA to halt enzyme
activity, and extracted as previously described48. Briefly, viral particle suspensions were treated with
Wizard PCR Preps DNA Purification Resin (Promega, WI, USA) at a ratio of 0.5 mL sample to 1 mL
resin,  and eluted with TE buffer (10 mM Tris, pH 7.5,  1 mM EDTA) using Wizard Minicolumns.
Extracted DNA was Covaris-sheared and size selected to 160–180 bp, followed by amplification and
ligation per the standard Illumina protocol. Sequencing was done on a HiSeq 2000 system (101 bp,
paired end reads) at the Genoscope facilities (Paris, France).

Temperature, salinity, and oxygen data were collected from each station using a CTD (Sea-Bird
Electronics, Bellevue, WA, USA; SBE 911plus with Searam recorder) and dissolved oxygen sensor
(Sea-Bird  Electronics;  SBE  43).  Nutrient  concentrations  were  determined  using  segmented  flow
analysis49 and included nitrite, phosphate, nitrite plus nitrate, and silica. Nutrient concentrations below
the detection limit (0.02 µmol kg-1) are reported as 0.02 µmol kg-1. All data from the Tara Oceans
expedition  are  available  from  ENA  (for  nucleotide)  and  from PANGAEA  (for  environmental,
biogeochemical, taxonomic and morphological data)50–52.

Malaspina expedition
Thirteen bathypelagic samples and one mesopelagic sample were collected between April 19, 2011

and July 11, 2011 during the Malaspina 2010 global circumnavigation covering the Pacific and the
North Atlantic Ocean. All samples were taken at 4,000 m depth except two samples from stations 81
and 82 collected at  3,500 and 2,150 m respectively (Supplementary Table 1). Additionally, Station
M114 was sampled at the OMZ region at 294 m depth. For each sample, 80 L of seawater were 0.22
µm-filtered and viruses were concentrated from the filtrate using iron chloride flocculation47 followed
by storage at 4°C. More details about the sampling and additional variables used in the Malaspina
expedition can be found in53. Further processing was done as for the Tara Oceans samples, except that
Illumina sequencing was done at DOE JGI Institute (151 bp, paired end reads).

Dataset generation
Contigs assembly

An overview of the contigs generation process is provided in Supplementary Fig. 7. The first step
consisted in  the generation of  a  set  of contigs  using as  many reads as possible  from 104 oceanic
viromes, including 74 epipelagic and 16 mesopelagic samples from the Tara Oceans expedition6, and 1
mesopelagic and 13 bathypelagic from the Malaspina expedition7. This set of contigs was generated
through  an  iterative  cross-assembly15 (using  MOCAT54 and  Idba_ud55,  Supplementary  Fig.  7)  as
follows: (i) high-quality (HQ) reads were first assembled sample by sample with the MOCAT pipeline
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as  described  in21,  (ii)  all  reads  not  mapping  (Bowtie  256,  options  --sensitive,  -X 2000,  and --non-
deterministic, other parameters at default) to a MOCAT contig (by which we denote ‘scaftigs’, that is,
contigs that were extended and linked using the paired-end information of sequencing read57) were
assembled sample by sample with Idba_ud (iterative k-mer assembly, with k-mer increasing from 20 to
100 by step of 20), (iii) all reads remaining unmapped to any contig were then pooled by Longhurst
province  (i.e.  unmapped  reads  from samples  corresponding  to  the  same Longhurst  province  were
gathered) and assembled with Idba_ud (with the same parameters as above), and (iv) all remaining
reads unmapped from every samples were gathered for a final cross-assembly (using Idba_ud). This
resulted in 10,845,515 contigs (Supplementary Fig. 7B). 

Genome binning and re-assembly 
The contigs assembled from the marine viral metagenomes might still contain redundant sequences

derived from the same, or closely related populations. We set out to merge contigs derived from the
same population into clusters representing population genomes. To this end, contig sequences were first
clustered at 95% global average nucleotide identity (ANI) with cd-hit-est58(options -c 0.95 -G 1 -n 10
-mask NX, Supplementary Fig. 7B), resulting in 10,578,271 non-redundant genome fragments. Next,
we used co-abundance and nucleotide usage profiles of the non-redundant contigs to further identify
contigs derived from the same populations with Metabat59. Briefly, Metabat uses Pearson correlation
between coverage profiles (determined from the mapping of HQ reads of each sample to the contigs
with Bowtie 256, options --sensitive, -X 2000, and --non-deterministic, other parameters at default) and
tetranucleotide  frequencies  (Metabat  parameters:  98% minimum correlation,  mode  “sensitive”,  see
Supplementary  Text  for  more  detail  about  the  selection  of  these  parameters)  to  identify  contigs
originating from the same genome. The 8,744 bins generated, including 3,376,683 contigs, were further
analyzed, alongside 623,665 contigs not included in any genome bin but ≥1.5kb. 

In an attempt to better assemble these genome bins, two additional sets of contigs were generated
for each genome bin, two additional sets of contigs were generated (beyond the set of initial contigs
binned by Metabat59), based on the de novo assembly of (i) all reads mapping to the contigs in the
genome bin, and (ii) only reads from the sample displaying the highest coverage for the genome bin
(both assemblies with Idba_ud55, Supplementary Fig. 7C). The latter might be expected to lead to the
“cleanest”  genome assembly because it  includes  the minimum between-sample sequence variation,
lowering the probability of generating chimeric contig60. The former may be necessary if the virus is
locally rare, so that sequences from multiple metagenomes are needed to achieve complete genome
coverage. Thus, if the assembly from the single “highest coverage sample” was improved or equivalent
(longest contig in the new assembly representing ≥95% of the longest contig in the initial assembly),
this  set of contigs was selected as the sequence for this bin (n=6,423). This optimal single-sample
assembly was thus privileged compared to a cross-assembly (either based on the initial contigs or on
the re-assembly of all sequences aligned to that bin). Otherwise, the “all samples” bin re-assembly was
selected  if  equivalent  or  better  than the initial  assembly (longest  contig  representing ≥95% of  the
longest initial contig, n=999). The assumption that cross-assembly would be needed for locally rare
viruses,  without  a  high-coverage  sample,  was  confirmed  by  the  comparison  between  the  highest
coverage of these two types of bins: on average, bins for which the “optimal” assembly were selected
displayed a maximum coverage of 5.47 per Gb of metagenome, while the bins for which the “cross-
assembly” was selected displayed a maximum coverage of 1.37 per Gb of metagenome (Supplementary
Table 2). Finally, if both re-assemblies yielded a longest contig smaller (<95%) than the one in the
initial  assembly, the  bin  was  considered  as  a  false  positive  (i.e.  binning of  contigs  from multiple
genomes, n=1,356), and contigs from the initial assembly were considered as “unbinned” (263,006
contigs, added to the 623,665 contigs ≥1.5kb retained as “unbinned”).

Identification of viral contigs and delineation of viral populations
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VirSorter61 was used to identify microbial contigs (using the “virome decontamination” mode, with
every  contig  ≥10kb  and  not  identified  as  a  viral  contig  being  considered  as  a  microbial  contig).
Sequences with a prophage predicted were manually curated to distinguish actual prophages (i.e. viral
regions within a microbial contig) from contigs that belonged to a viral genome and were wrongly
predicted as a prophage. Contigs originating from an eukaryotic virus were identified based on best
BLAST hit affiliation of the contig predicted genes against  NCBI RefseqVirus (see Supplementary
Text).

The genome bins were affiliated as microbial (if 1 or more contigs were identified as microbial,
n=1,763), eukaryotic virus (if contigs affiliated as eukaryotic virus comprised more than 10kb or more
than 25% of the genome bin total length, n=962) or viral (i.e. archaeal and bacterial viruses, n=4,341),
with the 356 remaining bins, lacking a contig long enough for an accurate affiliation, considered as
“unknown”.

Viral  bins  were  then  refined  to  evaluate  if  they  corresponded  to  a  single  or  a  mix  of  viral
population(s). To that end, the Pearson correlation and Euclidean distance between abundance profiles
(i.e. profile of the contig average coverage depth across the 104 samples) of bin members and the bin
seed (i.e. the largest contig) were computed, and a single-copy viral marker gene (TerL) was identified
in binned contigs (Supplementary Fig. 7E). Thresholds were chosen to maximize the number of bins
with exactly one TerL gene and minimize the number of bins with multiple TerL genes (Supplementary
Fig.  7G).  For  each bin,  contigs  with  a  Pearson correlation  coefficient  to  the  bin  seed <0.96 or  a
Euclidean distance to the seed >1.05 were removed from the bin, and added to the pool of unbinned
contigs. Eventually, every bin still displaying multiple TerL genes after this refinement step were split,
and all corresponding contigs added to the pool of “unbinned” contigs (Supplementary Fig. 7E). 

The final  set  of contigs  was formed by compiling (i)  all  contigs belonging to a  viral  bin,  (ii)
“unbinned” viral  contigs (i.e.  contigs  affiliated to  archaeal  and bacterial  virus  and not  part  of  any
genome bin),  and (iii)  viral  contigs  identified  in  microbial  or  eukaryote  virus  bins  (considered  as
“unbinned” contigs, Supplementary Fig. 7F). Within this set of contigs, all viral bins were considered
as viral populations, as well as every unbinned viral contig ≥10kb, leading to a total of 15,222 epi- and
mesopelagic  populations,  and  58  bathypelagic  populations  (Supplementary  Fig.  1,  Supplementary
Table 2, and Supplementary Text). In this study, we focus only on the 15,222 epi- and mesopelagic
populations, totaling 24,353 contigs. For the detection of AMGs, we added to these populations all
short epi- and mesopelagic unbinned viral contigs (<10kb), adding up to a total of 298,383 contigs.

Sequence clustering and annotations
Dataset of publicly available viral genomes and genome fragments

Genomes of viruses associated with a bacterial  or archaeal host were downloaded from NCBI
RefSeq  (1,680 sequences,  v70,  05-26-2015).  To complete  this  dataset  of  reference  genomes,  viral
genomes and genome fragments available in Genbank, but not yet in Refseq were downloaded (July
2015) and manually curated to select  only bacterial  and archaeal  viruses (1,017 sequences).  These
included viral genomes not yet added to RefSeq, as well as genome fragments from fosmid libraries
generated from seawater samples12,13. Mycophage sequences (available from http://phagesdb.org62) and
not already in RefSeq were downloaded (July 2015) and included as well (734 sequences). Finally,
12,498 viral genome fragments from the VirSorter Curated Dataset, identified in publicly available
microbial genome sequencing projects, were added to the database9.

Genome (fragments) clustering through gene-content based network analysis
Proteins  predicted  from 14,650 large  GOV contigs  (≥10kb and ≥10 genes),  were added to all

proteins from the publicly available viral genomes and genomes fragments gathered, and compared
through all-vs-all blastp, with a threshold of 10-5 on e-value and 50 on bit score. Protein clusters were
then  defined  using  MCL (using  default  parameters  for  clustering  of  proteins,  similarity  scores  as
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log-transformed  e-value,  and MCL inflation  of  263).  vContact  (https://bitbucket.org/MAVERICLab/
vcontact) was then used to calculate a similarity score between every pair of genome and/or contigs
based on the number shared of PCs between the two sequences (as in8,9), and then compute a MCL
clustering of the genomes/contigs based on these similarity scores (thresholds of 1 on similarity score,
MCL  inflation  of  2).  The  resulting  viral  clusters  (or  VCs,  clusters  including  ≥2  contigs  and/or
genomes), consistent with a clustering based on whole-genome BLAST comparison, corresponded to
approximately genus-level taxonomy, with rare cases closer to subfamily-level taxonomy (Extended
Data Fig. 2 and Supplementary Text). A total of 1,259 viral clusters were obtained, with 867 including
at least one GOV sequence.

Viral contigs annotation
A functional annotation of all GOV predicted proteins was based on a comparison to the PFAM

domain database (v2764) with HmmSearch65 (threshold of 30 on bit score and 1e-3 on e-value), and
additional putative structural proteins were identified through a BLAST comparison to protein clusters
detected in viral metaproteomics dataset66. This metaproteomics dataset led to the annotation of 13,547
hypothetical proteins lacking a PFAM annotation. A taxonomic annotation was performed based on a
blastp of the predicted proteins against proteins from archaeal and bacterial viruses from NCBI RefSeq
and Genbank (threshold of 50 on bit score and 10-3 on e-value). 

VCs were affiliated based on isolate genome members, when available. When multiple isolates
were included in the VC, the VC was affiliated to the corresponding subfamily or genus of these
isolates (excluding all “unclassified” cases). This was the case for VC_2 (T4 subfamily17,18), and VC_9
(T7virus19). When only one or a handful of affiliated isolate genomes were included in the VC and
lacked genus-level classification, a candidate name was derived from the isolate (if several isolates,
from the first one isolated). This was the case for VC_5 (Cbaphi381virus67), VC_12 (P12024virus68),
VC_14 (MED4-117virus), VC_19 (HMO-2011virus69), VC_31 (RM378virus70), VC_36 (GBK2virus71),
VC_47 (Cbaphi142virus67) , and VC_277 (vB_RglS_P106Bvirus72). Otherwise, VCs were considered as
“new VCs”.

“Phage proteomic tree” (i.e. “whole-genome comparison tree”) computation and visualization
All publicly available complete genomes (see above), all complete (circular) and near-complete

(extrachromosomal genome fragment >50kb with a terminase) from the VirSorter Curated Dataset, and
all complete and near-complete GOV contigs were  compared to generate a phage proteomic tree, as
previously described12,73. Briefly, a proteomic similarity score was calculated for each pair of genome
based on a all-vs-all tblastx similarity as the sum of bit scores of significant hits between two genomes
(e-value ≤ 0.001, bit score ≥30, identity percentage ≥ 30). To normalize for different genome sizes,
each  genome was  also  compared  to  itself  to  generate  a  self-score,  and  the  distance  between  two
different genomes was calculated as a Dice coefficient (as in12), i.e. for two genomes A and B with a
proteomic similarity score of AB, the corresponding distance d would be 1-(2*AB)/(AA+BB), with AA
and  BB being  the  self-score  of  genomes  A and  B  respectively.  For  clarity,  the  tree  displayed  in
Extended Data Fig. 2 only include non-GOV sequences found in a VC with GOV sequence(s) or within
a distance <0.5 to a GOV sequence, adding for a total of 1,522 reference sequences. iTOL74,75 was used
to visualize and display the tree.

Distribution and relative abundance of viral populations and VCs
Detection and estimation of abundance for viral contigs and populations

The presence and relative abundance of a viral contig in a sample were determined based on the
mapping of HQ reads to the contig sequences, computed with Bowtie 2 (options --sensitive, -X 2000,
and  --non-deterministic,  default  parameters  otherwise56),  as  previously  described10.  A contig  was
considered as detected in a metagenome if more than 75% of its length was covered by aligned reads
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derived from the corresponding sample. A normalized coverage for the contig was then computed as
the average contig coverage (i.e. number of nucleotides mapped to the contig divided by the contig
length) normalized by the total number of bp sequenced in this sample.

The detection  and relative  abundance  of  a  viral  population  was  based on the  coverage  of  its
contigs: a population was considered as detected in a sample if more than 75% of its cumulated length
was covered, and its normalized coverage was computed as the average normalized coverage of its
contigs.

Relative abundance of VCs
The relative abundance of VCs was calculated based on the coverage of its members within the

15,222 viral  populations identified.  If  a population included contigs all  linked to the same VC, or
linked to a single VC except for unclustered (because too short) contigs, this population coverage was
added to the total of the corresponding VC. In the rare cases where the link between population and VC
was ambiguous because different contigs within a population pointed toward different VCs (n=475, i.e.
3.1% of the populations), the population coverage was equally split between these VCs. Finally, if no
contig  in  the  population  belonged  to  any  VC (n=2,605,  17% of  the  populations),  the  population
coverage was added to the “unclustered” category. Eventually, for each sample, the cumulated coverage
of a VC was normalized by the total coverage of all populations to calculate a relative abundance of the
VC among viral populations.

The selection of abundant VCs within a sample was based on the contribution of the VC to the
sample diversity as measured by the Simpson index. For each sample, the overall Simpson index was
first  calculated  with  all  VCs.  Then,  VCs  were  sorted  by  decreasing  relative  abundance  and
progressively added to a new calculation of the Simpson index. VCs considered as abundant were the
ones which, once cumulated, represented 80% of the sample diversity (i.e. a Simpson index greater or
equal to 80% of the sample total Simpson index, Extended Data Fig. 1C). The 38 VCs identified as
abundant  in  at  least  2  different  stations  were  selected  as  “recurrently  abundant  VCs in  the  GOV
dataset” (Fig. 2 and Extended Data Fig. 3).

Host prediction and diversity
A genome database of putative hosts for the epi- and mesopelagic GOV viruses was generated,

including all archaea and bacteria genomes annotated as “marine” from NCBI RefSeq and WGS (both
times only sequences ≥5kb, 184,663 sequences from 4,452 genomes, downloaded in August 2015), and
all contigs ≥5kb from the 139 Tara Oceans microbial metagenomes corresponding to the bacteria and
archaea size fraction (791,373 sequences)21. For these microbial metagenomic contigs, a first blastn
was computed to compare them to all GOV contigs, and exclude from the putative host dataset all
metagenomic contigs with a significant similarity to a viral GOV sequence (thresholds of 50 on bit
score, 0.001 on e-value, and 70% on identity percentage) on ≥90% of their length, as these are likely
sequences of viral origin sequenced in the bacteria and archaea size fraction (these represented 2.2% of
the contigs in the assembled microbial metagenomes). The taxonomic affiliation of NCBI genomes was
taken from the NCBI taxonomy. For  Tara Oceans contigs, a last common ancestor (LCA) affiliation
was generated for each contig based on genes affiliation21,  if  3 genes or more on the contig were
affiliated.  Three different approaches were then used to link viral contigs and putative host genomes
(see Supplementary Text and ref. 76 for an extended discussion about the efficiency and raw results of
these  host  prediction  methods,  and  Supplementary  Table  4  for  a  list  of  all  host  predictions  by
sequence).

BLAST-based identification of sequence similarity between viral contigs and host genome
All GOV viral contigs were compared to all archaeal and bacterial genomes and genome fragments

with a blastn (threshold of 50 on bit score and 0.001 on e-value), to identify regions of similarity
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between a viral contig and a microbial genome, indicative of a prophage integration or horizontal gene
transfer76. A host prediction was made when (i) a NCBI genomes displayed a region similar to a GOV
viral  contig  ≥5kb at  ≥70% id,  or  (ii)  when  a  Tara  Oceans  microbial  metagenomic  contig  (≥5kb)
displayed a region similar to a GOV viral contig ≥2.5kb at ≥70% id.

Matches between GOV viral contigs and CRISPR spacers.
CRISPR  arrays  were  predicted  for  all  putative  host  genomes  and  genome  fragments  (NCBI

microbial  genomes  and  Tara Oceans  microbial  metagenomic  contigs)  with  MetaCRT77,78.  CRISPR
spacers were extracted, and all spacers with ambiguous bases or low complexity (i.e. consisting of 4 to
6 bp repeat motifs) were removed. All remaining spacers were matched to viral contigs with fuzznuc79,
with no mismatches allowed, which although rarely observed yields highly accurate host predictions76.

Nucleotide composition similarity: comparison of tetranucleotide frequency 
Bacterial and archaeal viruses tend to have a genome composition close to the genome composition

of their host, a signal that can be used to predict viral-host pairs9,76. Here, canonical tetranucleotide
frequencies were observed for all viral and host sequences using Jellyfish80, and mean absolute error
(i.e. average of absolute differences) between tetranucleotide frequency vectors were computed with
in-house Perl and Python scripts for each pair of viral and host sequence. A GOV viral contig was then
assigned to the closest sequence (i.e. lowest distance d) from the pool of NCBI genomes if d<0.001
(because both the tetranucleotide frequency signal  and the taxonomic affiliation of  these complete
genomes are more robust than for metagenomic contigs), and otherwise assigned to the closest (i.e.
lowest distance) Tara Oceans microbial contig if d<0.001.

Summarizing host prediction at the VC level
Overall,  3,675 GOV contigs could be linked to a putative host group among the 24,353 GOV

contigs associated with an epi- or mesopelagic viral population. To summarize these affiliations at the
VC level, a Poisson distribution was used to estimate the number of expected false positive associations
for each VC – host group combination based on (i) the global probability of obtaining a host prediction
across all pairs of viral and host sequences tested and for all methods (p=5.8x10-08), (ii) the number of
potential predictions generated for the VC, corresponding to 3 times the number of sequences in the VC
(to take into account the three methods), and (iii) the number of sequences from the host group in the
database. By comparing the number of links observed between a VC and a host group to this expected
value, which takes into account the bias in database (i.e. some host groups will be over- or under-
represented in our set of archaeal and bacterial genomes and genome fragments) and the bias linked to
the variable number of sequences in VCs, we can determine if the number of associations observed for
any VC – host group combination is likely to be due to chance alone (and calculate the associated p-
value).

Microbial community diversity and richness indexes
Diversity and richness indexes for putative host populations were based on the OTU abundance

matrix generated from the analysis of miTAGs in Tara Oceans microbial metagenomes21. These indexes
were computed for each host group at the same taxonomic level as the host prediction, i.e. the phylum
level  except  for  Proteobacteria where the class level  is  used.  The R package vegan81 was  used to
estimate for each group (i) a global Chao index (i.e. including all OTUs from all samples) through the
function  estaccumR,  (ii)  a  sample-by-sample  Chao  index  with  the  function  estimateR,  and  (iii)
Sorensen indexes between all pairs of samples with the function betadiver. Diversity indexes presented
in Extended Data Fig 4 were based on epipelagic samples only, as the 38 VCs identified as abundant
were mostly retrieved in epipelagic samples. Candidate division OP1 was excluded from this analysis
because no OTU affiliated to this phylum was identified.
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Identification and annotation of putative AMGs
Detection of AMGs

Predicted  proteins  from all  GOV viral  contigs  were  compared to  the  PFAM domain  database
(hmmsearch65, threshold of 40 on bit score and 0.001 on e-value), and all PFAM domains detected were
classified  into  8  categories:  “structural”,  “DNA  replication,  recombination,  repair,  nucleotide
metabolism”, “transcription, translation, protein synthesis”, “lysis”, “membrane transport, membrane-
associated”, “metabolism”, “other”, and “unknown” (as in  24). Four AMGs (i.e. similar to a domain
from the “metabolism” category) were then selected for further study because of their central role in
sulfur (dsrC and soxYZ) or nitrogen (P-II, amoC) cycle, and the fact that these had never been detected
in  a  surface  ocean  viral  genome  so  far  (dsrC/tusE-like  genes have  been  detected  in  deep  water
viruses14,29).  To  evaluate  if  an  AMG  was  “known”,  a  list  of  PFAM  domain  detected  in  NCBI
RefSeqVirus  and Environmental  Phages  was computed based on a  similar  hmmsearch  comparison
(threshold of 40 on bit score and 0.001 on e-value), and augmented by manual annotation of AMGs
from24,82.  The  complete  list  of  PFAM  domains  detected  in  GOV  viral  contigs  is  available  as
Supplementary Table 5.

Phylogenetic tree generation and contigs map comparison
Sequences similar to these AMGs were recruited from the Tara Oceans microbial metagenomes21

based on a blastp of all predicted proteins from microbial metagenome to the viral AMGs identified
(threshold of 100 on bit score, 10-5 on e-value, except for P-II where a threshold of 170 on bit score was
used  because  of  the  high  number  of  sequences  recruited).  The  viral  AMG  sequences  were  also
compared to NCBI nr database (blastp, threshold of 50 on bit score and 10-3 on e-value) to recruit
relevant reference sequences (up to 20 for each viral AMG sequence). These sets of viral AMGs and
related protein sequences were then aligned with Muscle83, the alignment manually curated to remove
poorly aligned positions with Jalview84, and two trees were computed from the same curated alignment:
a maximum-likelihood tree with FastTree (v2.7.1, model WAG, other parameters set to default85) and a
bayesian tree with MrBayes (v3.2.5, mixed evolution models, other parameters set to default, 2 MCMC
chains were run until the average standard deviation of split frequencies was <0.015, relative burn-in of
25% used to  generate  the consensus  tree86).  In  all  cases  except  AmoC, the mixed model  used  by
MrBayes was 100% WAG, confirming that this model was well suited for archaeal and bacterial virus
protein trees. Manual inspection revealed only minor differences between each pair of trees, so an SH
test  was  used  to  determine  which  tree  best  fitted  the  sequence  alignment,  using  the  R  library
phangorn87. Itol74 was used to visualize and display these trees, in which branches with supports <40%
were collapsed.  Annotated  interactive trees  are  available  online  at  http://itol.embl.de/shared/Siroux.
Contigs map comparison were generated with Easyfig88, following the same method as for the VCs (see
Supplementary Information).

Functional characterization of putative AMGs
Conserved motifs were identified on the different AMGs based on the literature:  dsrC conserved

motifs were obtained from ref. 33, soxYZ conserved residues were identified from the PFAM domains
PF13501 and PF08770, and P-II conserved motifs from PROSITE documentation PDOC00439. A 3D
structure could also be predicted for P-II AMGs by I-TASSER89 (default parameters), the quality of
these predictions being confirmed with ProSA web server90. To further confirm the functionality of
these genes, selective constraint on these AMGs was evaluated through pN/pS calculation, as in ref. 91.
Briefly,  synonymous  and  non-synonymous  SNPs  were  observed  in  each  AMG,  and  compared  to
expected ratio of synonymous and non-synonymous SNPs under a neutral evolution model for this
genes. The interpretation of pN/pS is similar as for dN/dS analyses, with the operation of purifying
selection leading to pN/pS values < 1. Finally, AMG transcripts were searched in metatranscriptomic
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datasets  generated  through  the  Tara  Oceans  consortium  (ENA Id  ERS1092158,  ERS488920,  and
ERS494518). Briefly, For 0.2–1.6 and 0.22–3µm filters, bacterial rRNA depletion was carried out on
240–500 ng total  RNA using Ribo-Zero Magnetic  Kit  for Bacteria  (Epicentre,  Madison,  WI).  The
Ribo-Zero depletion protocol was modified to be adapted to low RNA input amounts92. Depleted RNA
was  used  to  synthetize  cDNA with  SMARTer  Stranded  RNA-Seq  Kit  (Clontech,  Mountain  View,
CA)92. Metatranscriptomic libraries were quantified by qPCR using the KAPA Library Quantification
Kit for Illumina Libraries (KapaBiosystems, Wilmington, MA) and library profiles were assessed using
the DNA High Sensitivity LabChip kit on an Agilent Bioanalyzer (Agilent Technologies, Santa Clara,
CA). Libraries were sequenced on Illumina HiSeq2000 instrument (Illumina, San Diego,CA) using 100
base-length read chemistry in a paired-end mode. High quality reads were then mapped to viral contigs
containing  dsrC,  soxYZ,  P-II, or  amoC genes with SOAPdenovo257 within MOCAT54 (options  screen
and filter with length and identity cutoffs of 45 and 95%, respectively, and paired-end filtering set to
yes), and coverage was defined for each gene as the number of bp mapped divided by gene length
(including only reads mapped to the predicted coding strand).

Distribution of AMGs and association with geochemical metadata
The distribution and relative abundance of AMGs was based on the read mapping and normalized

coverage of the contig including the AMG. To get a range of temperature and nutrient concentrations
for the widespread AMGs (detected in >5 stations) that takes into account both the samples in which
these AMGs were detected and the differences in normalized coverage, a set of samples was selected
through a weighted random drawing replacement, with the weight of each sample corresponding to the
AMG's  normalized  coverage.  That  way,  a  range  of  temperature  or  nutrient  concentration  values
associated with the AMG's distribution and abundance could be generated for each AMG and each
environmental parameter tested.  The number of samples randomly selected for each AMG was the
same as the total number of samples for which a value of this parameter was available.

Scripts and data availability
Scripts  used  in  this  manuscript  are  available  on  the  Sullivan  lab  bitbucket  under  project

“GOV_Ecogenomics”  (https://bitbucket.org/MAVERICLab/gov_ecogenomics).  All  raw  reads  are
available through ENA (Tara Oceans) or JGI (Malaspina) using the dataset Ids listed in Supplementary
Table 1. Processed data are available through iVirus, including all sequences from assembled contigs,
list of viral populations and associated annotated sequences as genbank files, viral clusters composition
and  characteristics,  map  comparisons  of  genomes  and  contigs  of  the  38  abundant  VCs,  and  host
predictions for viral contigs.

Extended Data

Extended Data Figure 1: Accumulation curves of populations (A) and viral clusters (VCs, B) and
identification of abundant VCs in GOV samples (C). A & B. Accumulation curves were computed
from  50  random  shuffling  of  samples  (blue  dots),  either  with  all,  epipelagic,  mesopelagic,  or
bathypelagic samples. For each curve,  the average of 50 iterations is highlighted with red dots. C.
Schematic of the selection process of abundant VCs. For each sample, VCs accounting for (up to) 80%
of the sample diversity (as assessed by Simpson index) were considered as abundant (example for
sample 125_MIX on the left). VCs detected as abundant in at least two different stations were included
in the 38 VCs described in Fig. 2 and Extended Data Fig. 3.

Extended Data Figure 2: Comparison of VCs with other classification methods: phage proteomic
tree and percentage of shared genes. The phage proteomic tree includes the 756 GOV complete and
near-complete genomes from epi- and mesopelagic samples, and closest references from RefSeq and
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Environmental phages (d<0.5 to a GOV sequence or found in the same VC as a GOV sequence). All
VCs with more than 8 representatives in the tree or part of the 38 abundant VCs are indicated with
coloring of the outer ring. The name and affiliation (if available) of the 38 abundant VCs are indicated
next to the VC on the colored ring. Branches of monophyletic clades including more than 3 GOV
and/or  uncultivated  marine  sequences  with  no  isolate  reference  are  highlighted  in  blue. Inset:
distribution of number of shared genes (i.e. number of shared protein clusters) for viral genome/contigs
pairs either between different VCs or within VCs.

Extended Data Figure 3: Summary of 34 of the 38 abundant viral clusters (VCs, the 4 other
abundant VCs being the ubiquitous ones presented in Fig. 2). Predicted genome size is based on the
set of isolates and circular contigs in the VC (NA corresponds to VCs without any circular contigs, or
for which the relative standard deviation of estimated genome size across the different isolate(s) and/or
circular  contigs  is  greater  than  15%).  Host  association  values  are  based on the  number  of  cluster
members associated with each host group, the statistical significance of this number of predictions
being evaluated by comparison with an expected number of associations calculated from a Poisson
distribution. Host associations based on known isolates are indicated with a star (for associations based
on cultivated  isolates)  or  a  dot  (for  associations  based  on the  detection  of  a  cluster  member  in  a
microbial  genome from the  VirSorter  Curated  Dataset).  The abundant  epipelagic  microbial  groups
(representing >1% of the microbial OTUs abundance of epipelagic samples) are highlighted in bold.
Distribution and relative abundance of VCs are based on the cumulated coverage of VC members
among sample viral populations. The main oceanic basins are indicated for each set of sample, Med.
Sea-Mediterranean Sea.

Extended Data Figure 4:  Association between abundant  viral  clusters  (VCs)  and host  group
abundance and diversity A. Abundance and diversity of bacterial and archaeal host groups associated
with the 38 abundant VCs (see Fig. 2A). For each host group (phylum level, except for Proteobacteria
where the class level is used), the different panels display from top to bottom (i) the number of VCs
associated with this host group, (ii) the global relative abundance of this group estimated from the
microbial metagenomic OTU counts, (iii) the global diversity of this group based on a Chao index
computation including all Tara Oceans microbial metagenome samples (i.e. including both Alpha and
Beta diversity), (iv) the distribution of Chao indexes by sample for this group (Alpha diversity), and (v)
the average Sorensen index between pairs of samples including at least one OTU of this group (Beta
diversity). OTU counts were derived from the 109 epipelagic microbial metagenomes described in21. B.
Pearson correlations between host group relative abundance or diversity indexes (Global Chao, Average
Chao across samples, and Average Sorensen across samples) and the number of VCs.

Extended Data Figure 5: Diversity, distribution,  and genome context  of  dsrC genes  in  GOV
contigs. A. Maximum-likelihood tree (from an amino-acid alignment) including the 11 viral DsrC and
microbial sequences from microbial metagenomes and NCBI nr database. The presence of conserved C
residues (named Cys-A & Cys-B, as in33) is indicated with color circles next to each sequence or clade,
and the corresponding type of DsrC-like protein is indicated by coloring the branch or clade.  The
microbial  metagenomic  contigs  affiliated  to  uncultivated,  marine  sulfur-oxidizing
Gammaproteobacteria  (as  confirmed  by  complementary  phylogenetic  analysis  of  DsrAB,
Supplementary Fig. 6) are indicated with a star next to the sequence or clade. Viral AMG sequences are
highlighted in blue, internal nodes SH-like supports are represented by proportional circles (all nodes
with support < 0.40 were collapsed). Each dsrC AMG is associated with an abundance profile (on the
right)  displaying the relative abundance of the contig across the 91 epi-  and mesopelagic samples
(based on normalized coverage, i.e. contig coverage / Gb of metagenome).  B. Comparison of  dsrC-
containing contigs maps. T4-like marker genes (PhoH and T4 baseplate) are indicated on the maps,
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alongside putative AMGs (Fe-S biosyn for  Iron-sulfur  cluster  biosynthesis,  and Amt for  Ammonia
transporter).

Extended Data Figure 6: Diversity, distribution, and genome context of soxYZ genes in GOV
contigs. A. Bayesian tree (from an amino-acid alignment) including the 4 viral SoxYZ and microbial
sequences  from microbial  metagenomes and NCBI nr database.  The affiliation of microbial  clades
(either from the NCBI reference or from the LCA affiliation of metagenomic contigs) is indicated by
coloring of the grouped clades or with a colored square next to the sequence. Viral AMG sequences are
highlighted  in  blue,  posterior  probabilities  are  represented  by  proportional  circles  (all  nodes  with
posterior  probability  <  0.40  were  collapsed).  Clades  including  sulfur-oxidation  proteobacteria  are
indicated  on  the  tree. Each  soxYZ AMG  is  associated  with  an  abundance  profile  (on  the  right)
displaying the relative abundance of the contig across the 91 epi- and mesopelagic samples (based on
normalized coverage, i.e. contig coverage / Gb of metagenome). B. Comparison of soxYZ-containing
contigs maps. For contig GOV_bin_4310_contig-100_0, the second largest contig from the same bin
(GOV_bin_4310_contig-100_1) is displayed. T4-like marker genes (PhoH, Gp23 and T4 baseplate) are
indicated on the maps, alongside putative AMGs (Fe-S biosyn: Iron-sulfur cluster biosynthesis).

Extended  Data  Figure  7:  Diversity,  distribution,  and  genome context  of  P-II  genes  in  GOV
contigs. A. Maximum-likelihood tree (from an amino-acid alignment) including the 10 viral P-II and
microbial sequences from microbial metagenomes and NCBI nr database. The affiliation of microbial
clades  (either  from  the  NCBI  reference  or  from the  LCA affiliation  of  metagenomic  contigs)  is
indicated  by  coloring  of  the  grouped  clades  or  with  a  colored  square  next  to  the  sequence.  The
sequences lacking the conserved uridylation site of P-II (Supplementary Fig. 4) are highlighted with a
star next to the sequence name or clade. Viral AMG sequences are highlighted in blue, internal nodes
SH-like supports are represented by proportional circles (all nodes with support < 0.40 were collapsed).
Each P-II AMG is associated with an abundance profile (on the right) displaying the relative abundance
of the contig across the 91 epi- and mesopelagic samples (based on normalized coverage, i.e. contig
coverage / Gb of metagenome). B. Comparison of P-II-containing contigs maps. Ammonia transporter
genes  linked  to  P-II  are  indicated  on  the  map  (Amm Transp,  dark  red).  When available,  the  VC
affiliation of each contig is indicated next to the contig name. Contig GOV_bin_5834_contig-100_7 is
too short to be clustered based on a shared PC network, however the seed contig of its population was
clustered (in VC_12, Siphoviridae - P12024virus), hence this seed contig affiliation is indicated.

Extended Data Figure 8:  Diversity, distribution,  and genome context  of  amoC gene in GOV
contigs. A. Maximum-likelihood tree (from an amino-acid alignment) including the GOV amoC AMG
and  microbial  sequences  from  microbial  metagenomes  and  NCBI  nr  database.  The  affiliation  of
microbial clades (either from the NCBI reference or from the LCA affiliation of metagenomic contigs)
is indicated by coloring of the grouped clades or with a colored square next to the sequence. Viral AMG
sequence is highlighted in blue, internal nodes SH-like supports are represented by proportional circles
(all nodes with support < 0.40 were collapsed). B. Abundance profile displaying the relative abundance
of the contig across the 91 epi- and mesopelagic samples (based on normalized coverage, i.e. contig
coverage / Gb of metagenome). C. Map of the amoC-containing contig.

Extended Data Figure 9:  Normalized coverage of  contigs  harboring AMG as function of  the
temperature and nutrient concentrations (NO2, NO3, PO4) of the corresponding samples. AMGs
are  grouped by clade  based on the  phylogeny (see  Extended Data  Fig.  5-6-7),  and coverages  are
cumulated when a clade included multiple contigs. Plots display the cumulated normalized coverage of
a clade (y-axis) as function of the temperature or nutrient concentration (x-axis) across all epipelagic
samples (mesopelagic samples were excluded from the analysis since the AMG signal was detected in
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epipelagic samples), only for clades not geographically restricted (i.e. found in >5 samples, see Fig.
3C). Samples are color-coded according to their ocean and sea region (Supplementary Table 1). The
calculated preferential range of temperature or nutrient concentration is displayed below each plot for
the epipelagic AMGs (P-II-4 distribution could not be linked to specific environmental conditions, but
this AMG is the only one consistently retrieved in mesopelagic samples).

Extended  Data  Table  1:  Summary  of  genes  and  contigs  characteristics  for  new  viral  DsrC,
SoxYZ, and P-II AMGs. Each gene is linked to its contig, and when available, to the corresponding
viral  population  and  predicted  host  (from  BLAST  hit,  CRISPR  spacer  similarity,  or  nucleotide
composition  similarity).  Widespread  and  abundant  VCs  are  highlighted  in  bold.  In  addition,  the
calculated pN/pS of each gene is indicated (measuring the strength of selection pressure occurring for
this gene, the gene with a pN/pS not representing a strong purifying selection is highlighted in red), as
well as the coverage of these genes and other genes in the contigs in 3 metatranscriptomic samples
from 3 open ocean Tara stations (cases where the AMG coverage is  >0.5 and associated with the
coverage of other genes from the same viral contig are highlighted in green).

Supplementary Information

Supplementary Text

Supplementary  Table  1:  List  of  viromes  included  in  the  GOV dataset. For  each  virome,  the
corresponding expedition, station number, and depth is indicated.  Tara Oceans stations are prefixed
with “Tara_” and Malaspina stations with an “M”. Accession numbers are given for raw reads available
in ENA (for Tara Oceans samples) and on JGI IMG (for Malaspina samples). Longhurst provinces and
biomes are defined based on Longhurst93 and environmental features are defined based on Environment
Ontology (http://environmentontology.org/). The total number of reads and bp sequenced, as well as the
number of bp mapped to viral contigs within and outside of populations are indicated.  *Malaspina
stations for which no water mass or basin data are available because these were not included in the
previous study53.

Supplementary Table 2: GOV viral population summary. The number of contigs, total length and
length of the largest contig, type of assembly used, and highest normalized coverage across the GOV
samples is indicated in the first tab. For populations already identified in the TOV dataset (contigs
similar at 95% ANI on ≥50% of their length), the size of the TOV contig is noted. In the second tab, the
normalized coverage (average coverage of the population contig(s) normalized by the total sequencing
depth of the sample) is indicated as coverage / Gb of metagenome for all GOV samples.

Supplementary Table 3: Summary of Viral Clusters (VCs).  The first tab lists, for each VC, the
number  of  members  (total,  and  by  dataset,  i.e.  originating  from  RefSeq,  environmental  phages,
VirSorter Curated Dataset, and GOV), alongside the affiliation of RefSeq members of the VCs (when
available)  at  the  family,  subfamily,  and  genus  levels.  The  second  tab  includes  the  cumulative
normalized coverage of each VC in each sample (based on the coverage of populations members of the
VC), as well as the sum of coverage for the 38 recurrently abundant VCs and all other VCs at the
bottom.

Supplementary  Table  4:  List  of  host  prediction  for  GOV  viral  contigs  associated  with  a
population. For each prediction, the type of signal (blastn, CRISPR, tetranucleotide composition), the
host sequence used for the prediction alongside its affiliation, and the strength of the prediction (length
of the blastn match, number of mismatches in the CRISPR spacer, and distance between viral and host
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tetranucleotide frequencies vectors) is indicated.

Supplementary Table 5: List of PFAM domains detected in GOV viral contigs. For each PFAM
domain, the number of genes detected in the GOV dataset is indicated, alongside the category of the
domain (as in  24).  The category “other” category includes PFAM domains with vague descriptions,
multiple functions, or regulatory functions.

Supplementary Figure 1: Schematic of the different levels of organization used in this study. The
base unit is the contig, i.e. assembled genome (fragment). These contigs are gathered (when available)
in viral populations, a proxy for viral “species”, through genome binning based on co-occurrence and
similarity in nucleotide composition. A higher level of organization (VCs, subfamily ~ genus level) is
achieved by clustering the contigs based on shared gene content.

Supplementary Figure 2: Multiple alignment of  dsrC protein sequences. Conserved residues are
indicated below the alignment, and the two conserved C residues representing the active sites of “true
dsrC” (Cys-B and Cys-A) are named as in33.  Viral  AMGs are highlighted in bold,  with previously
described anoxic SUP05 viruses sequences in red (from14,29) and epipelagic GOV sequences in black.

Supplementary Figure 3: Multiple alignment of soxYZ protein sequences. Conserved residues are
indicated below the alignment for SoxY and SoxZ protein domains, based on the respective PFAM
domains (PF13501 and PF08770). Viral AMGs are highlighted in bold.

Supplementary  Figure  4:  Alignment  (A)  and  predicted  3D  structures  (B)  of  P-II  AMGs.
Conserved motifs are indicated below the alignment (PROSITE: PDOC00439). The uridylation site is
highlighted with a star.  Characterized structure (from E. Coli)  and predicted 3D conformations are
colored according to secondary structures (alpha helix: blue, beta strand: red), except for the trimer
structure of E. Coli PII where each subunit is colored differently. For predicted structures, the model
quality as assessed by ProSA90 is indicated below the model. Viral AMGs are highlighted in bold.

Supplementary Figure 5:  Alignment  (A)  and predicted  transmembrane domain (B)  of  amoC
AMGs. The viral  sequence is  highlighted in bold,  and conserved residues are  indicated below the
alignment. Transmembrane domains were predicted with TMHMM94 for the AMG amoC (left), and a
reference amoC from the ammonia-oxidizing Nitrosopumilus maritimus SCM1 (right).

Supplementary Figure 6: Dissimilatory sulfite reductase (dsrAB) tree showing the phylogeny of
oxidative bacterial type dsrAB. Sequences from Tara Ocean microbial metagenomes close to dsrC-5
AMG  are  colored  in  blue  and  are  affiliated  with  sulfur-oxidizing  Gammaproteobacteria.  Other
phylogenetic groups and dsrAB families are collapsed and shown as triangles.

Supplementary Figure 7: Overview and result of the cross assembly, binning, and viral contigs
selection process. A. Iterative assembly viromes. First, for each sample, reads were mapped to the set
of contig generated through MOCAT54. Reads not assembled (i.e. not mapped to any contigs) were then
used in another assembly, using Idba_ud55.  Unmapped reads after this  second round of sample-by-
sample assembly were then pooled by Longhurst province (i.e. all unmapped reads from all samples
within one province), and cross-assembled with Idba_ud15. Finally, all unmapped reads after this third
round of assembly were gathered and assembled with Idba_ud.  B. Results of the iterative assembly
process.  For  each  assembly  round,  the  number  of  contigs  is  displayed  alongside  the  cumulated
percentage of reads mapped to a contig. C. Overview of the binning process. Contigs generated through
the  iterative  assembly  were  binned  based  on  correlation  between  their  abundance  profile  and
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similarities between their tetranucleotide frequency (using Metabat59). For each bin, two contig pools
(beyond the initial set of contigs) were generated, assembling either all reads mapping to the contig
pool,  or  only  reads  from the  sample  in  which  the  bin  had  the  highest  coverage  (both  assemblies
computed with Idba_ud). The set of contigs including the largest genome fragment was then kept for
each bin.  D. Results  of the re-assembly of bins.  For each type of bin assembly (highest  coverage
sample,  all  samples,  or  initial  assembly)  the  number  of  bins  for  which  this  type  was  selected  is
indicated on top, with the distribution of increase in length of longest contig at the bottom.  E. Bin
refinement based on abundance profile similarities. For each bin, the abundance profile of each contig
was compared to the abundance profile of the bin seed contig (largest contig), and contigs not well
correlated to the bin seed were excluded. Bins still displaying multiple TerL gene (single-copy marker
gene  for  viruses)  after  this  bin  refinement  step  were  split.  F. Bin  affiliation  and viral  population
definition. Bins were either affiliated as entirely viral and considered as single viral populations, or
included non-viral contigs, in which case viral contigs in these bins were considered as “unbinned” and
selected as  viral  population seed if  ≥10kb  G. Selection of thresholds  for  bin refinement  based on
abundance profile similarities. Thresholds to exclude contigs from bins based on Euclidean distance
and  Pearson  correlation  coefficient  between  contig  abundance  profile  and  bin  seed  profile  were
explored, looking for the best compromise between number of true positive (z-axis, number of bins
with a single TerL) and number of false negative (in colors, number of bins with multiple TerL). The
thresholds combination chosen is indicated with a black square.
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