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The majority of autoimmune disease risk effects identified by genome-wide association studies (GWAS) 14	
localize to open chromatin with gene regulatory activity. GWAS loci are also enriched for expression 15	
quantitative trait loci (eQTLs), suggesting that most disease risk variants exert their pathological effects 16	
by altering gene expression1,2. However, because causal variants are difficult to identify and cis-eQTLs 17	
occur frequently, it remains challenging to translate this bulk observation into specific instances of a 18	
disease risk variant driving changes to gene regulation. Here, we use a novel joint likelihood framework 19	
with higher resolution than previous methods to identify loci where disease risk and an eQTL are driven 20	
by a single, shared genetic effect as opposed to distinct effects in close proximity. We find that 21	
approximately 25% of autoimmune disease loci harbor an eQTL driven by the same genetic effect, but 22	
the majority of loci do not. Thus, we uncover a fraction of gene regulatory changes as strong 23	
mechanistic hypotheses for disease risk, but conclude that most risk mechanisms do not involve 24	
changes to basal gene expression. 25	

The autoimmune and inflammatory diseases (AID) – multiple sclerosis, type 1 diabetes, inflammatory 26	
bowel disease, and more than 80 others – are highly heritable, complex diseases that cumulatively 27	
afflict 8% of the population3,4. Pathology is driven by loss of tolerance to self-antigens, resulting in either 28	
systemic or tissue-specific immune attack. They are extensively co-morbid5,6 with extensive sharing of 29	
AID genetic risk7-9, indicating that pathogenic mechanisms are also shared10. Disease mechanisms are 30	
still poorly understood, so current therapies control symptoms rather than root causes, often by 31	
suppression of major immune responses. Consortium-driven genetic mapping studies have identified 32	
hundreds of genomic regions mediating risk to several AID, and these communities have collaborated 33	
to develop the ImmunoChip custom genotyping array to deeply interrogate 185 of these loci11.  34	

These disease associations are primarily non-coding: lead GWAS SNPs are more likely to be 35	
associated with expression levels of neighboring genes than expected by chance12, and the same lead 36	
SNPs are enriched in regulatory regions marked by chromatin accessibility and modification1,13. Fine-37	
mapping reveals enrichment of AID-associated variants in enhancer elements specifically active in 38	
stimulated T cell subpopulations14, and formal disease heritability partitioning analyses also show 39	
strong enrichment in such regions of gene regulatory potential15,16. Collectively, these strands of 40	
evidence suggest that the majority of disease risk is mediated by changes to gene regulation in specific 41	
cell subpopulations. However, these bulk overlap and enrichment analyses do not formally assess 42	
whether expression levels and disease risk are associated to the same underlying variant or are due to 43	
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independent effects in the same region17,18. Several methods have been developed to identify 1	
pathogenic genes within GWAS loci relying on eQTL co-localization19-22. However, these are limited in 2	
resolution to detect situations where causal variants for the disease trait and the eQTL are distinct but 3	
in linkage disequilibrium.  4	

Here, we present an approach to test if a GWAS risk association and an eQTL are driven by the same 5	
underlying genetic effect, accounting for the LD between causal variants. Using data from ImmunoChip 6	
studies of seven AID comprising >180,000 samples in total (Table S2), we apply this approach to test if 7	
associations in 272 known risk loci are consistent with cis-eQTL for genes in each region, measured in 8	
three relevant immune cell populations: lymphoblastoid cell lines (LCLs), CD4+ T cells and CD14+ 9	
monocytes23,24. 10	

When associations to two traits in a locus – here, a disease trait and an eQTL – are driven by the same 11	
underlying causal variant, the joint evidence of association should be maximized at the markers in 12	
tightest LD with the (potentially unobserved) causal variant18,25. Here, we directly evaluate the joint 13	
likelihood that both trait associations are due to the same underlying causal variant (Figure S1), unlike 14	
previous approaches that look for similarities in the shape of the association curve over multiple 15	
markers19,20,26,27. We expect that when the underlying causal effect is shared, joint likelihood is 16	
maximized when we model the same causal variant in both traits; conversely, when the underlying 17	
causal variants are different, we expect maximum joint likelihood when we model their closest proxies. 18	
We empirically derive the null distribution of the joint likelihood ratio statistic by comparing disease 19	
associations to permuted eQTL data. The resulting P value is asymptotically conservative against the 20	
null of distinct causal variants, as the likelihoods of two competing models will be further contrasted with 21	
increasing sample and effect sizes (Supplementary Notes). We are thus able to directly evaluate 22	
whether associations in the same genomic locus for two traits, observed in different cohorts of 23	
individuals, are due to the same underlying causal variant. 24	

To assess the performance of our method, we benchmarked it against coloc19, a well-calibrated 25	
Bayesian framework that considers spatial similarities in association data across windows of markers in 26	
a locus. We simulated pairs of case-control cohorts with either the same or distinct causal variants 27	
driving association in each. Though both methods had excellent performance in simulations where the 28	
two distinct causal variants are in complete linkage equilibrium (AUC=0.99 for both when r2 < 0.5), 29	
compared to coloc we found that our method maintained higher specificity even as the linkage 30	
disequilibrium between distinct causal variants became high (AUC = 0.92 compared to 0.70 for coloc 31	
when 0.7 < r2 < 0.8; Figure S3, Tables S3 and S4). In practice, our resolution becomes limited at very 32	
high LD levels (r2>0.8), and we are unable to reliably distinguish between two causal variants in very 33	
high LD and a single causal variant associated to both traits. Thus, within these limits, we can 34	
accurately detect cases of shared genetic effects between two traits. 35	

We first identified densely genotyped ImmunoChip loci showing strong association to each disease 36	
from publicly available summary data (immunobase.org; Table 1). These include associations to both 37	
Crohn disease and ulcerative colitis, collectively designated inflammatory bowel disease, and to each 38	
disease alone28. Due to the extensive LD and complex natural selection present in the Major 39	
Histocompatibility Locus, we excluded this region from consideration. We next identified genes in a 40	
1Mb window centered on the most associated variant in each locus. Consistent with previous 41	
observations that eQTLs are frequently found in GWAS loci, we found that all loci but 11 had at least 42	
one gene with an eQTL (p < 0.05) in at least one of the three cell types, with most such effects common 43	
across all three tissues (Table 1). In total, we found 9,268 pairs of disease and eQTL associations 44	
across 261 ImmunoChip loci. We then tested each of these pairs with our joint association likelihood 45	
method to assess if the eQTLs appear driven by the same underlying effect as the disease 46	
associations. We find evidence for shared effects for only 57/9,268 pairs in 41/261 loci across all 47	
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diseases, with the proportion varying from 2/40 (5%) for type 1 diabetes loci to 4/10 (40%) for ulcerative 1	
colitis loci (false discovery rate < 5%; Tables 1 and 2). Of these 57 shared effects, 43 pass even the 2	
more stringent family-wise multiple testing correction (Bonferroni corrected P < 0.05). Thus, our 3	
analysis reveals that in the majority of AID loci, variants causally involved in disease phenotypes do not 4	
overlap variants responsible for eQTL signals. Overall, we find that only a small minority of tested 5	
disease-eQTL pairs in the same locus show any evidence of a shared association, whereas >75% 6	
show evidence of being driven by distinct genetic variants in the same locus (Figure 1). 7	

We sought to explain this lack of overlap between disease associations and eQTLs, despite their 8	
frequent co-occurrence in the same loci. In particular, although our method showed good performance 9	
in simulated data (Figure S4), we remained concerned that this lack of overlap may be due to low 10	
statistical power in the eQTL data, which come from cohorts of limited sample size. However, we find 11	
that even amongst the most strongly supported eQTLs (p < 10-5), <25% show evidence of shared 12	
effects with disease associations. Conversely, we find strong evidence for distinct effects for the 13	
majority of disease-eQTL pairs, with only a subset of comparisons being ambiguous, suggesting that 14	
our method is adequately powered to detect shared effects where they exist (Figures 1a and S11-13). 15	
To assess whether power affects the total number of loci, rather than eQTL, that can be resolved, we 16	
looked more deeply at our significance threshold settings. We find that more liberal thresholds do not 17	
increase the number of true positive results after adjusting for false positive rate, indicating that most 18	
loci do not contain any gene with an eQTL consistent with the disease association (Figures 1b and 19	
S14). Cumulatively, our results demonstrate that only a minority of AID risk effects drive eQTLs in the 20	
three cell populations we tested, which are drawn from diverse lineages of the immune system. 21	

We next focused on the subset of 57 disease/eQTL pairs in 41 loci where we could detect strong 22	
evidence of a shared effect (Table 2). We find that 51/57 (89%) of effects are restricted to one cell 23	
population, indicating that tissue-specific eQTLs are important components of the molecular 24	
underpinnings of disease (Figures S5 and S6). The remaining six effects are detected in multiple cell 25	
populations; for example, the multiple sclerosis association at rs10783847 on chromosome 12 is 26	
consistent with eQTLs for the transcript of methyltransferase-like 21B (METTL21B) in both CD4+ T cells 27	
and CD14+ monocytes, but not with eQTLs for the remaining 38 genes in the immediate locus (Figure 28	
2). Although METTL21B is expressed in LCLs, there is no evidence of an eQTL in this tissue within 29	
1Mb from rs10783847. Similarly, for the multiple sclerosis association at rs1966115 on chromosome 8 30	
and eQTLs for ZC2HC1A, and for the inflammatory bowel disease association at rs55770741 on 31	
chromosome 5 and eQTLs for ERAP2, we detect a shared effect in all three cell populations. In several 32	
cases we find tissue-specific shared effects despite strong eQTLs for the same gene in other tissues: 33	
for TUFM and inflammatory bowel disease risk at rs12448902 on chromosome 16, we find shared 34	
effects in CD4+ and CD14+ but not LCLs, where we see a TUFM eQTL at p = 0.01 (joint likelihood P = 35	
0.97). For ZFP90 and ulcerative colitis risk at rs889561 on chromosome 16, we also find shared effects 36	
in CD4+ and CD14+ but not LCLs, where we observe a ZFP90 eQTL at p = 0.005 that has a low 37	
likelihood of shared effect with GWAS (joint likelihood P = 0.95). Instead, we find evidence of sharing 38	
between disease risk and an eQTL for NFAT5 in LCLs. Thus, despite the presence of eQTLs for a gene 39	
in multiple tissues, not all these effects are consistent with disease associations suggesting that 40	
disease-relevant eQTLs are tissue specific. 41	
 42	
Among our findings are cases where an eQTL is consistent with associations to multiple diseases. For 43	
example, the ankyrin repeat domain 55 (ANKRD55) transcript encoded on chromosome 5 has an eQTL 44	
in CD4+ T cells that is shared with proximal associations to multiple sclerosis, Crohn disease and 45	
rheumatoid arthritis (Figure 3, all observations are significant after Bonferroni correction). We also find 46	
weaker evidence for shared effects between all three diseases and an eQTL for interleukin 6 signal 47	
transducer (IL6ST) in CD4+ T cells, which passes the false discovery rate threshold but not the more 48	
stringent Bonferroni correction (Figure S7). Similarly, a CD4+ eQTL for ELMO1 on chromosome 7 is 49	
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consistent with associations to both celiac disease and multiple sclerosis (Figure S8), a CD14+ eQTL 1	
for RGS1 on chromosome 1 is consistent with associations to both celiac disease and multiple sclerosis 2	
(Figure S9), and a CD14+ eQTL for UBE2L3 on chromosome 22 is consistent with associations to both 3	
celiac disease and inflammatory bowel disease (Figure S10). In all cases, these are the only genome-4	
wide significant disease associations reported in these loci. As we consider each disease association 5	
independently, these results indicate that the same underlying risk variants drive risk to multiple 6	
diseases in these loci by altering gene expression, consistent with observations of shared effects 7	
across diseases7.   8	
 9	
Overall, our results suggest that some autoimmune and inflammatory disease loci are consistent with 10	
eQTLs acting in specific immune cell subpopulations, which form strong mechanistic hypotheses for the 11	
molecular mechanisms driving disease risk. However, these only account for a small fraction of eQTLs 12	
present in disease risk loci; this suggests that abundant caution must be exercised before inferring 13	
pathological relevance for an observed eQTL simply due to proximity to a disease association. Strong 14	
evidence of a shared genetic effect should therefore be established prior to embarking on time-15	
consuming and costly experimental dissection of such effects.   16	

Previous efforts to detect shared effects between traits in specific loci rely on conditional analyses29 or 17	
indirectly leverage linkage disequilibrium to test if the shape of association peaks in the region are 18	
similar19,26,27,30. In contrast, we directly evaluate whether the data support a shared effect through joint 19	
likelihood estimation. Through this direct evaluation, we are able to resolve cases where the 20	
associations are proximal with higher resolution (Figure S3, Tables S3 and S4). As our method is 21	
general, we suggest it may be useful in other contexts, for example in establishing if the shared 22	
heritability between diseases is driven by the same underlying causal effects31.  23	

More broadly, our results raise the question of how causal disease variants alter cell function to induce 24	
risk, given the strong enrichment of disease risk signal on regions of chromatin accessibility with gene 25	
regulatory potential1, and gene enhancers in particular14. We suggest that although gene regulatory 26	
regions harboring risk variants are accessible in multiple immune cell subpopulations, they may control 27	
gene expression in either a tissue-specific or condition-specific manner, which is not manifest in all cell 28	
populations. Our results therefore reinforce the view that we must seek the appropriate cell type and 29	
physiological conditions in order to capture the pathologically relevant gene regulatory changes driving 30	
disease risk.  31	

 32	

Methods 33	

Simulated dataset. We selected two loci with previously known associations to base our positive and 34	
negative simulations: CD58 on chromosome 1, rs667309 associated to MS risk32, and ATG16L1 on 35	
chromosome 2, rs2241880 associated to IBD33. In each, we used Hapgen34 and phased base 36	
haplotypes of the locus (2n=112, downloaded from 37	
http://mathgen.stats.ox.ac.uk/impute/impute_v2.html) to simulate up to ten cohorts, each with 1,000 38	
cases and 1,000 controls, and up to 90 cohorts with other causal variants (Table S1). We chose these 39	
other variants to have a range of LD to rs667309 or rs2241880, so we could assess the LD resolution 40	
of our joint likelihood method. In each cohort, we simulated genotypes for all variants within 2Mb of 41	
rs667309 or rs2241880. To make the cohorts comparable to each other, we adjusted the effect sizes of 42	
causal SNPs at different MAF to maintain full power in each simulated cohort.  43	
	44	
The pairs of simulated cohorts were used either as positive controls if they simulate the same causal 45	
variant and negative controls otherwise, to assess the LD resolution limits of our method. Cohort pairs 46	
simulating distinct causal variants in high LD (r2 > 0.8) were excluded. For each pair, one cohort was 47	
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treated as the primary trait (i.e. a disease GWAS) and the other as a secondary trait (i.e. eQTL). Due to 1	
the nature of the coalescent forward simulation model, 7.7% of simulated cohorts showed peak 2	
association to a SNP in only moderate LD with the specified causal variant (r2 < 0.8). We kept these 3	
cohorts as secondary traits only, to better capture the vagaries of resolution limits inherent in the small 4	
sample size of eQTL studies. In total, we generated 1,629 cohort pairs for positive controls simulating 5	
the same causal variant and 6,106, 530, and 160 cohort pairs for negative controls for which distinct 6	
causal variants are separated by r2 of 0 –  0.5, 0.5 – 0.7, and 0.7 – 0.8, respectively.   7	
 8	
Disease GWAS datasets. We downloaded association summary statistics for type 1 diabetes (T1D), 9	
rheumatoid arthritis (RA), celiac disease (CEL), multiple sclerosis (MS), inflammatory bowel disease 10	
(IBD), Crohn’s disease (Crohn), and ulcerative colitis (UC) from ImmunoBase (immunobase.org; Table 11	
S2). For MS, we used the association statistics derived from the combined cohort of discovery and 12	
validation samples8 in order to maximize the sample size and genetic resolution. For IBD, Crohn, and 13	
UC, summary data are from European subset of a trans-ethnic association stud28. All association data 14	
are solely based on ImmunoChip samples and do not include imputed genotypes. To address 15	
population structure, we limited our analyses to European subjects only with the exception of RA35, 16	
which includes 620 Punjab individuals out of a total of 27,345. T1D summary statistics are from the 17	
meta-analysis between case/control association and affected sib-pair analysis.  18	
 19	
As our method works best on dense genotype data, we restricted our analyses to the 188 loci 20	
genotyped at high density on ImmunoChip. We excluded the Major Histocompatibility Complex (MHC) 21	
locus, due to the complex landscape of selection and resulting complex LD patterns. For each disease, 22	
we sought the largest published genetic mapping study and identified genome-wide significant 23	
associations reported in the 188 ImmunoChip loci.  We note that these reports may contain additional 24	
samples, so the associations may not be genome-wide significant in the ImmunoChip studies alone. 25	
We also excluded any secondary associations after conditioning on initial results, as these are 26	
inconsistently reported across diseases. If multiple independent associations are reported within the 27	
same ImmunoChip region for any disease, we divide the region at the mid-point between the reported 28	
markers and select lead SNPs in each sub-interval separately. 29	
 30	
eQTL dataset. We examined eQTLs in lymphoblastoid cell lines23 (LCLs) and primary CD4+ T cells and 31	
CD14+ monocytes24 obtained from healthy donors (Table S2). For LCLs, we obtained imputed 32	
genotypes and normalized RNAseq in RPKM for 278 non-Finnish European donors in the Geuvadis 33	
project. We removed SNPs with minor allele frequency (< 5%), high probability of Hardy-Weinberg 34	
disequilibrium (PHW < 10-5), or high genotype missing rate (>5%). We removed pseudogenes and 35	
transcripts without assigned gene symbols from the expression data, and calculated association 36	
statistics by linear regression of genotype on expression levels, including three population principal 37	
components to control for structure36,37. For CD4+ and CD14+, we regressed normalized expression 38	
levels for European Americans (n=213 and 211, respectively) on similarly QCed imputed allele 39	
dosages. For all cell types, we generated adaptive permutation statistics from 103 up to 106 iterations36, 40	
using all covariates.   41	
 42	
Joint likelihood mapping (JLIM). To test the hypothesis that association signals for two traits are 43	
driven by the same causal variant, we contrasted the joint likelihood of observed association statistics 44	
under the assumption of same compared to distinct causal variant. Due to limited genetic resolution, 45	
distinct causal variants were defined by separation in LD space by 𝑟! < 𝜃 from each other. The limit of 46	
genetic resolution 𝜃 is a user-specified parameter and was set to 0.8 in this study. We assumed that at 47	
most one causal variant was present in the locus for each trait and that no samples overlap between 48	
the traits. We designed the joint likelihood mapping (JLIM) statistic 𝛬 in an asymmetrical fashion, 49	
requiring only summary-level statistics for one trait (primary trait) but genotype-level data for the other 50	
(secondary trait). Specifically, 𝛬  was defined as the sum of log likelihood that the causal variant 51	
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underlying secondary trait is more likely to be same as than distinct from the variant underlying primary 1	
trait, as integrated over a set of likely causal variants under a GWAS peak of primary trait:  2	
	3	

𝛬 = 𝐿! 𝑖 ⋅ log
𝐿! 𝑖 𝐿!(𝑖)

max
! ∉ 𝒩!

! !
𝐿! 𝑖 𝐿!(𝑗)

! ∈ 𝒩!
!(!∗)

	

	4	
= 𝐿! 𝑖 ⋅ (log  𝐿!(𝑖)  − max

! ∉ 𝒩!
!(!)

{log 𝐿! 𝑗 })
! ∈ 𝒩!

!(!∗)

	

	5	
where 𝑚∗ is the most associated SNP for primary trait, 𝐿!(𝑖) and 𝐿!(𝑖) are the likelihood of SNP i being 6	
causally associated with primary and secondary traits, respectively, and 𝒩!

!(𝑖) and 𝒩!
!(𝑖) are the sets 7	

of SNPs within LD neighborhood around SNP i, as defined by  𝑆𝑁𝑃 𝑗  𝑟!,!! > 𝜃 }. We derived 𝒩!
! from 8	

the reference LD panel and 𝒩!
! directly from the genotypes of secondary trait cohort. We used disease 9	

outcome as primary trait, leveraging the larger sample size and dense genotyping, and gene 10	
expression as secondary trait, taking advantage of the availability of individual genotype data.  11	
 12	
We calculated the likelihood of causal association by approximating the local LD structure with pairwise 13	
correlation as previously described38,39. Briefly, when SNP c is the only causal variant in the locus with 14	
non-centrality 𝜆!, the association static 𝑧! of non-causal SNP i follows a normal distribution 𝑁(𝑟!,!  𝜆! , 1), 15	
where 𝑟!,! is LD between SNPs i and c measured in pairwise Pearson correlation of genotypes. In 16	
general, when association statistics 𝒁 = 𝑧!, 𝑧!,… , 𝑧! ! are provided for all M SNPs in the analysis 17	
window, the likelihood of SNP i being the causal variant with non-centrality 𝜆! is:  18	
	19	

𝐿 𝒁;  𝜆! ≠ 0 = 𝜙!"#(𝒁;𝑚𝑒𝑎𝑛 = 𝛴 𝜆! ∘ 𝐶 , 𝑣𝑎𝑟 = 𝛴)	
	20	
where 𝜙!"# is the multivariate normal density function, C  is an incident vector with 𝐶! = 1 if and only if 21	
𝑘 = 𝑖, 𝛴 is a M x M local LD matrix defined by pairwise Pearson correlation between genotypes, and ∘ 22	
is element-wise multiplication [Kichaev]. Since we do not know the true non-centrality of causal variant, 23	
we estimated the profile likelihood, which simplifies to a closed form:  24	
 25	

log 𝐿 𝒁;  𝜆!!"# =
1
2  −𝒁!𝛴!!𝒁+ 𝑧!! −

1
2 log( 2π

! 𝛴 )	
	26	
with 𝜆!!"# = 𝑧!. Thus, given association statistics for primary and secondary traits, 𝒁 = 𝑧!, 𝑧!,… , 𝑧! ! 27	
and 𝑾 = 𝑤!,𝑤!,… ,𝑤! !, the test statistic 𝛬 simplifies to:  28	
	29	

𝛬 = 𝑒
!
!(!!

!!!!∗! ) ⋅ (𝑤!! − max
! ∉ 𝒩!

!(!)
𝑤!!)

! ∈ 𝒩!
!(!∗)

	

	30	
The p-value of joint likelihood is estimated by permuting phenotypes of secondary traits as under the 31	
trivial null hypothesis that that there is no casual variant for secondary trait in the locus (“𝐻!”). With 32	
respect to the more likely null that distinct causal variants underlie association signals of two traits 33	
(“𝐻!”), we can show that asymptotically as the non-centrality of causal variant increases, p-values 34	
estimated from 𝐻! behave conservatively with respect to 𝐻! (Supplementary Notes):  35	
	36	
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𝑃!"#$ = 𝑃 𝛬 ≥ 𝑙 𝐻! ≥ 𝑃(𝛬 ≥ 𝑙|𝐻!)	
	1	
Thus, with large enough sample or effect sizes, joint likelihood test against 𝐻! will also reject 𝐻! in favor 2	
of alternative hypothesis of shared causal variant (“𝐻!”). Further, to evaluate whether this property 3	
holds for practical non-centrality values, we examined the negative controls simulating 𝐻! in ATG16L1 4	
and CD58 loci, specifically, if 𝑃!"#$ was highly shifted toward 1.0 (Figure S2) and larger than empirically 5	
estimated false positive rates as expected (Table S4).  6	
 7	
For both simulated and real GWAS data, we applied JLIM to SNPs with data for both primary and 8	
secondary traits, present in the reference LD panels, and within 100kb of the most associated marker to 9	
disease (“lead SNP”). In ImmunoChip data, the analysis windows were further confined by the 10	
boundaries of the fine-mapping intervals. We compared each lead SNP to eQTL data for all genes with 11	
a transcription start sites (TSS) up to 1Mb from the lead SNP, and an eQTL association p < 0.05 for at 12	
least one SNP in the analysis window. To minimize computational burden, we did not consider SNPs 13	
associated with neither disease or eQTL (association p > 0.1 to both). For the reference LD panel, we 14	
used the base haplotypes of Hapgen simulation for simulated datasets, and non-Finnish European 15	
samples (n=404) of the 1000 Genomes Project (phase 3, release 2013/05/02) for ImmunoChip loci.  16	
 17	
We corrected for multiple tests using false discovery rate (FDR) levels and Bonferroni correction. The 18	
FDR was calculated separately for specific disease and cell type combination as:  19	
	20	

𝐹𝐷𝑅 𝑝 =
𝑝 𝑁

#{𝑃!"#$ ≤ 𝑝}	

	21	
where p is a JLIM p-value cut-off, and N is the number of all tested disease lead SNP-eQTL candidate 22	
gene combinations. The FDR was calculated for each cell type since the distribution of JLIM p-values 23	
can vary depending on the disease relevance of cell type. To provide a list of higher confidence hits in 24	
each disease, we also applied the Bonferroni correction to nominal JLIM p-values for the number of 25	
tests across all three cell types.  26	
 27	
Bayesian coloc. We ran Bayesian coloc19 using default parameter settings on both simulated and real 28	
data as described for JLIM. For simulated data, we used colocalization prior p12 values of 10-5 or 10-6, 29	
which are default values for higher sensitivity and higher specificity, respectively. The beta and variance 30	
of beta were used for all SNPs in the analysis window in case/control mode. We calculated accuracy as 31	
the area under the receiver operator curve (ROC; Figure S3). 32	
 33	
As ImmunoChip data is only available as summary statistics, we used the minor allele frequencies from 34	
non-Finnish Europeans from the 1000 Genomes Project, and quantitative beta and variance of beta 35	
calculated on eQTL association data, and a colocalization prior p12 = 10-6. We did not consider the type 36	
1 diabetes data, where case/control sample size is limited after excluding affected sib pair data. 37	
 38	
Estimating the number of disease GWAS loci with consistent eQTL effects. We expect JLIM p-39	
values to follow a bimodal distribution with modes close to zero and one when the data support a model 40	
of shared or distinct causal effects, respectively. Conversely, under the null model of no cis-eQTL 41	
association, we expect a uniform p-value distribution. We can thus estimate the proportion disease-42	
eQTL pairs belonging to the null 𝜋! , same 𝜋!and distinct 𝜋! causal variant models from the observed 43	
p-value distribution40 (Figures S11-13). To assess if the strength of the eQTL association influences the 44	
likelihood of identifying a shared causal variant, we calculate these proportions for subsets of trait pairs 45	
defined by minimum eQTL p-value. In each bin, we identified the limits of the uniform portion of the 46	
distribution 𝛾! and 𝛾! and estimate 𝜋!, 𝜋!, and 𝜋! as: 47	
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	1	

𝜋! =
# 𝛾! < 𝑃!"#$ < 𝛾!

𝛾! − 𝛾! 𝑁
	

	2	

𝜋! =
# 𝑃!"#$ ≤ 𝛾!

𝑁 − 𝛾!𝜋!	
	3	

𝜋! =
# 𝑃!"#$ ≥ 𝛾!

𝑁 − 1− 𝛾! 𝜋!	
	4	
To estimate the number of disease GWAS loci that can be explained by consistent effect of same 5	
causal variant on disease and eQTL (denoted by 𝒞 below), we incrementally relaxed the p-value cut-6	
offs of JLIM and examined the trends of the number of disease loci with at least one JLIM hit and 7	
subtracted the expected number of false positive loci (Figures 1 and S14). Specifically, at each JLIM p-8	
value cutoff 𝑝!, we successively calculated	𝒞 𝑝! :	9	
	10	

𝒞 𝑝! = 𝒞 𝑝!!! + 𝒟 𝑝! ∩ 𝒟 𝑝!!! ! − ℰ 𝑑,𝑝!
!∈𝒟 !!!! !

+ ℰ 𝑑,𝑝!!!
!∈𝒟 !!!! !

	

	11	
where 𝑝!!! < 𝑝! with 𝑝! = 0, 𝒟 𝑝  is the set of disease GWAS loci with at least one eQTL gene in any 12	
cell type passing the JLIM p-value cut-off 𝑝, and ℰ(𝑑, 𝑝) is the probability that disease GWAS locus 𝑑 13	
has a false positive eQTL gene passing the JLIM p-value cutoff 𝑝. We estimated the lower and upper 14	
bounds of ℰ(𝑑, 𝑝) using the Monte Carlo method by randomly selecting false positive eQTL genes 15	
within the locus 𝑑 at rates of 1 − 𝜋! ⋅ 𝑙𝑏 or 1 − 𝜋! ⋅ 𝑢𝑏 over 1,000 iterations. The 𝑙𝑏 and 𝑢𝑏 are the 16	
lower and upper bounds of false positive rate of JLIM against true null. Note that 𝜋! and 𝑙𝑏 depend on 17	
the cell type and strength of eQTL association. 18	
 19	
As the true null is mixture of two nulls, 𝐻! and 𝐻!, the false positive rate of JLIM against true null 20	
𝑃 𝛬 ≥ 𝑙 𝐻! ∪ 𝐻!  can be bounded by using the following decomposition: 21	
	22	

𝑃 𝛬 ≥ 𝑙 𝐻! ∪ 𝐻! = 𝑃 𝛬 ≥ 𝑙 𝐻!
𝑃 𝐻!

𝑃 𝐻! + 𝑃(𝐻!)
 + 𝑃 𝛬 ≥ 𝑙 𝐻!

𝑃 𝐻!
𝑃 𝐻! + 𝑃(𝐻!)

 	

	23	
While the false positive rate under distinct null 𝑃 𝛬 ≥ 𝑙 𝐻!  is difficult to estimate, it is non-negative by 24	
definition and asymptotically bounded by permutation p-value 𝑃 𝛬 ≥ 𝑙 𝐻! , i.e. 𝑃!"#$ , as the non-25	
centrality of causal variant increases. Therefore, we took: 26	
	27	

𝑢𝑏 = 𝑃!"#$	
		28	

𝑙𝑏 = 𝑃!"#$
𝜋!

𝜋! + 𝜋!
= 𝑃!"#$

𝜋!
1− 𝜋!

	

	29	
and estimated the bounds of locus-level false positive rates ℰ(𝑑, 𝑝) and number of disease loci with 30	
consistent effects 𝒞 𝑝! .   31	
 32	
 33	
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Table 1. Only a minority of disease associations share causal variants with eQTLs 
across three immune cell subpopulations. We identified 261 disease associations in 
ImmunoChip regions with at least one eQTL within 100kb of the most associated SNP. Only 
41/261 (16%) of these associations show evidence of a shared effect with an eQTL in that 
region. Thus, while eQTLs are abundant in disease-associated loci, they do not appear to be 
driven by the same causal variant as the disease association. aWe only consider associations 
reported at genome-wide significant levels and overlapping genomic regions densely genotyped 
on ImmunoChip, excluding conditional peaks and MHC loci (see Methods). beQTLs are selected 
if there is nominal association (eQTL p < 0.05) to at least one SNP within 100kb of the most 
associated SNP to disease, and a transcription start site of the gene within 1Mb of that SNP. 
cNumber of loci where disease association is consistent with a shared effect for at least one 
eQTL (FDR < 5%). 
 
  Number of loci 
  Densely   eQTL present b   Driven by same effect c 
Disease genotyped a   CD4+ CD14+ LCL Total   CD4+ CD14+ LCL Total 

MS 59 
 

54 55 55 56 
 

8 3 6 12 
IBD 69 

 
69 69 68 69 

 
6 9 1 12 

Crohn 19 
 

18 18 18 18 
 

2 1 0 3 
UC 10 

 
10 9 10 10 

 
2 1 3 4 

T1D 47 
 

39 40 36 40 
 

2 0 0 2 
RA 34 

 
34 34 34 34 

 
2 0 1 3 

CEL 34   34 34 34 34   3 2 0 5 
Overall 272   258 259 255 261   25 16 11 41 
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Table 2. Forty one loci harbor eQTLs driven by the same variants as an association to at least one of seven diseases. We 
find 57 instances of shared disease-eQTL effects in 41 loci (joint likelihood of shared association FDR < 5%). aVariant with the 
minimum association p value to disease in the ImmunoChip summary statistics. bMinimum eQTL p value for any SNP within 100kb of 
the lead SNP. Dashes (-) indicate genes that are either not detected or with minimum eQTL P > 0.05 in that cell type. cHighlighted in 
bold are disease-eQTL pairs with false discovery rate < 5%. Asterisk (*) marks eQTL genes passing Bonferroni correction. 

        CD4+ T cell   CD14+ monocytes   LCL 
Disease Lead SNP a Gene   eQTL P b JLIM P c   eQTL P b JLIM P c   eQTL P b JLIM P c 

MS rs12749591 PRKCZ 
 

- - 
 

- - 
 

2.4 x 10-4  5.0 x 10-4 
MS rs35967351 SLAMF7 

 
2.3 x 10-3 0.27 

 
4.1 x 10-3 0.94 

 
5.4 x 10-8  < 10-6	* 

MS rs35967351 NHLH1 
 

8.2 x 10-5 3.0 x 10-6 * 
 

- - 
 

8.9 x 10-3 0.96 
MS rs1359062 RGS1 

 
0.042 0.031 

 
1.6 x 10-21  < 10-6	* 

 
- - 

MS rs9989735 SP140 
 

7.5 x 10-13 1.00 
 

7.0 x 10-3 0.58 
 

1.3 x 10-9 1.0 x 10-6 * 
MS rs71624119 ANKRD55 

 
2.0 x 10-10 1.5 x 10-5 * 

 
- - 

 
- - 

MS rs71624119 IL6ST 
 

5.9 x 10-5 4.0 x 10-4 
 

4.9 x 10-4 0.98 
 

- - 
MS rs917116 JAZF1 

 
6.2 x 10-16  < 10-6	* 

 
3.3 x 10-6 0.90 

 
1.1 x 10-3 1.00 

MS rs60600003 ELMO1 
 

1.2 x 10-8 8.0 x 10-6 * 
 

1.5 x 10-4 8.0 x 10-3 
 

- - 
MS rs1966115 ZC2HC1A 

 
4.5 x 10-12  < 10-6	* 

 
3.4 x 10-40  < 10-6	* 

 
3.4 x 10-30  < 10-6	* 

MS rs1966115 PKIA 
 

1.2 x 10-15 1.00 
 

0.020 0.71 
 

1.1 x 10-9 3.0 x 10-5 
MS rs10783847 METTL21B 

 
8.8 x 10-21  < 10-6	* 

 
2.0 x 10-21  < 10-6	* 

 
- - 

MS rs7132277 CDK2AP1 
 

2.1 x 10-4 0.95 
 

1.3 x 10-8 0.018 
 

6.5 x 10-13  < 10-6	* 
MS rs12946510 GSDMB 

 
4.1 x 10-17  < 10-6	* 

 
- - 

 
2.8 x 10-4 0.92 

MS rs12946510 ORMDL3 
 

5.7 x 10-13 < 10-6 * 
 

0.025 0.63 
 

3.1 x 10-26 1.0 x 10-6 * 
MS rs17785991 SLC9A8 

 
2.2 x 10-6 2.0 x 10-4 

 
6.3 x 10-9 1.00 

 
5.2 x 10-3 0.95 

IBD rs13001325 IL18R1 
 

7.2 x 10-11 7.0 x 10-6 * 
 

0.022 0.71 
 

0.026 0.78 
IBD rs3749171 GPR35 

 
7.6 x 10-3 0.92 

 
9.5 x 10-8 3.0 x 10-4 

 
2.1 x 10-3 0.76 

IBD rs55770741 ERAP2 
 

2.2 x 10-60  < 10-6	* 
 

1.9 x 10-57  < 10-6	* 
 

1.1 x 10-105  < 10-6	* 
IBD rs17622378 SHROOM1 

 
0.043 0.62 

 
1.6 x 10-3 2.0 x 10-4 

 
0.017 0.79 

IBD rs17622378 KIF3A 
 

4.0 x 10-5 1.3 x 10-4 
 

0.017 0.30 
 

- - 
IBD rs444210 RNASET2 

 
9.3 x 10-51  < 10-6	* 

 
3.9 x 10-14 1.00 

 
9.0 x 10-8 1.00 
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IBD rs7848647 TNFSF15 
 

1.3 x 10-3 0.017 
 

1.3 x 10-16  2.0 x 10-6	* 
 

0.042 0.087 
IBD rs34779708 CUL2 

 
2.7 x 10-7 3.0 x 10-5 

 
0.034 0.79 

 
4.1 x 10-3 0.76 

IBD rs2590348 CISD1 
 

- - 
 

9.0 x 10-13  < 10-6	* 
 

0.045 0.22 
IBD rs12448902 TUFM 

 
1.0 x 10-20  < 10-6	* 

 
5.6 x 10-28  < 10-6	* 

 
0.011 0.97 

IBD rs9808651 ETS2 
 

- - 
 

1.4 x 10-7 3.0 x 10-4 
 

- - 
IBD rs4456788 ICOSLG 

 
2.9 x 10-6 1.00 

 
1.4 x 10-6 5.0 x 10-5 

 
6.8 x 10-4 0.97 

IBD rs2266961 UBE2L3 
 

1.0 x 10-4 4.0 x 10-3 
 

1.0 x 10-9  < 10-6	* 
 

- - 
Crohn rs6752107 scaRNA5 

 
1.6 x 10-4 0.12 

 
1.8 x 10-20  < 10-6	* 

 
- - 

Crohn rs71624119 ANKRD55 
 

2.0 x 10-10 2.0 x 10-5 * 
 

0.027 0.67 
 

- - 
Crohn rs71624119 IL6ST 

 
5.9 x 10-5 5.0 x 10-4 

 
4.9 x 10-4 0.89 

 
- - 

Crohn rs3801810 SKAP2 
 

9.7 x 10-14 1.0 x 10-6 * 
 

7.8 x 10-5 1.00 
 

- - 
UC rs2147905 TNFRSF14 

 
7.9 x 10-3 0.43 

 
- - 

 
2.5 x 10-8 3.0 x 10-5 * 

UC rs11742304 TPPP 
 

1.0 x 10-4 1.00 
 

0.012 0.70 
 

1.5 x 10-7 1.1 x 10-5 * 
UC rs11150589 ITGAL 

 
4.2 x 10-12 1.0 x 10-5 * 

 
6.8 x 10-4 0.99 

 
0.025 0.64 

UC rs889561 NFAT5 
 

5.6 x 10-3 0.90 
 

- - 
 

7.7 x 10-3 2.0 x 10-4 
UC rs889561 ZFP90 

 
5.9 x 10-23  < 10-6	* 

 
2.3 x 10-19  < 10-6	* 

 
5.0 x 10-3 0.95 

RA rs4681851 FLNB 
 

1.1 x 10-6 2.0 x 10-4 
 

3.1 x 10-3 0.99 
 

1.3 x 10-3 0.90 
RA rs71624119 ANKRD55 

 
2.0 x 10-10 2.0 x 10-5 * 

 
- - 

 
- - 

RA rs71624119 IL6ST 
 

5.9 x 10-5 3.0 x 10-4 
 

4.9 x 10-4 0.93 
 

- - 
RA rs3807306 IRF5 

 
- - 

 
2.0 x 10-4 1.00 

 
6.7 x 10-20 1.0 x 10-6 * 

CEL rs1359062 RGS1 
 

0.042 0.025 
 

1.6 x 10-21  < 10-6	* 
 

- - 
CEL rs2097282 CCR2 

 
3.0 x 10-5 5.0 x 10-5 * 

 
1.7 x 10-8 1.00 

 
0.013 0.79 

CEL rs79758729 ELMO1 
 

1.2 x 10-8 1.0 x 10-5 * 
 

4.0 x 10-4 0.22 
 

- - 
CEL rs1893592 UBASH3A 

 
4.5 x 10-14 3.0 x 10-6 * 

 
0.011 0.82 

 
5.2 x 10-6 1.00 

CEL rs4821124 UBE2L3 
 

1.0 x 10-4 9.0 x 10-3 
 

1.0 x 10-9 2.0 x 10-5 * 
 

- - 
T1D rs917911 CLEC2B 

 
1.4 x 10-5 3.0 x 10-5 * 

 
6.8 x 10-5 0.94 

 
1.6 x 10-3 0.84 

T1D rs705705 SUOX   9.3 x 10-6 1.1 x 10-5 *   1.9 x 10-10 0.98   9.3 x 10-3 0.085 
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Figure 1. Only a minority of disease associations share causal variants with eQTLs across three immune cell 
subpopulations.  (a) We find strong evidence that approximately 75% of eQTLs are driven by distinct causal variants 
(orange) to 261 disease risk associations across 155 ImmunoChip regions. The strength of eQTL association does not 
influence the proportion of shared effects (green) we are able to detect, suggesting this lack of overlap is not due to 
lack of power. We find no compelling evidence for either shared or distinct associations for a small proportion of 
disease-eQTL pairs (gray). (b) The median number of loci with at least one shared effect eQTL in any tissue (blue line) 
at more liberal significance thresholds remains constant after false positive adjustment, further supporting this 
conclusion. The shaded area represents the lower and upper expectation bounds for disease-eQTL pairs driven by the 
same causal variant. Only 31-57% of multiple sclerosis associations and 37-57% of inflammatory bowel disease 
associations are consistent with eQTL effects. Equivalent data for the other diseases are presented in Figure S14.
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Figure 2. A multiple sclerosis association on chromosome 12 is consistent with eQTLs for METTL21B in both CD4+ T cells and CD14+ monocytes. (a) A genome-
wide significant association to multiple sclerosis risk (upper panel; shading denotes strength of LD to the most associated variant rs10783847). This association is consistent 
with eQTLs for METTL21B in CD4+ T cells (middle panel) and CD14+ monocytes (lower panel, both shaded by LD to rs10783847), but not to eQTL data for any other 
genes in the region (upper gene track: black boxes denote 38 genes with eQTL data available in addition to METTL21B (red); gray denotes genes which are not reliably 
detected in our data or do not have eQTL p < 0.05 in the region). (b) Joint likelihood p-values for 39 candidate genes analyzed for this MS association peak in three cell 
types. Those with FDR < 5% are shown in red. (c) Association p-values for MS risk (x-axis) and eQTLs (y-axis) are strongly correlated for both CD4+ T cells (middle 
panel) and CD14+ monocytes (lower panel). (d) Similarly, eQTL association Z statistics scale linearly with LD (r, x axis) to rs10783847, consistent with a model of a 
single causal variant driving both disease association and eQTL.
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Figure 3. Associations to multiple sclerosis, Crohn disease and rheumatoid arthritis (RA) on chromosome 5 are consistent with an eQTL for ANKRD55 in CD4  + T 
cells. (a) Genome-wide significant associations to all three diseases (upper panels) and eQTL data for ANKRD55 (lower panel; shading in all panels proportional to LD to 
the most associated variant rs71624119). Due to the variable density of ImmunoChip data, the analysis window is small and only overlaps the coding region of ANKRD55, 
though we test eQTLs for 11 genes with a transcriptional start site within 1Mb of the the association.  (b) Joint likelihood p-values for nine candidate genes analyzed for this 
locus in CD4+ T cells. Those with FDR < 5% are shown in red. (c) Association p-values for each disease (x axis) are strongly correlated to those for the  ANKRD55
eQTL in CD4+ cells (y axis). (d) Similarly, eQTL association Z statistics scale linearly with LD (r, x axis) to rs71624119 for all three diseases, consistent with a model of a 
single causal variant driving all disease associations and the eQTL.
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