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ABSTRACT

MDM?2 is a negative regulator of p53 activity and an important target for cancer therapeutics. The N-terminal lid region of
MDM2 modulates interactions with p53 via competition for its binding cleft, exchanging slowly between docked and undocked
conformations in the absence of p53. To better understand these dynamics, we constructed Markov State Models (MSMs)
from large collections of unbiased simulation trajectories of apo-MDM2, and find strong evidence for diffuse, yet two-state
folding and binding of the N-terminal region to the p53 receptor site. The MSM also identifies holo-like receptor conformations
highly suitable for computational docking, despite initiating trajectories from closed-cleft receptor structures unsuitable for
docking. Fixed-anchor docking studies using a test set of high-affinity small molecules and peptides show simulated receptor
ensembles achieve docking successes comparable to cross-docking studies using crystal structures of receptors bound by
alternative ligands. For p53, the best-scoring receptor structures have the N-terminal region lid region bound in a helical
conformation mimicking the bound structure of p53, suggesting lid region association induces receptor conformations suitable
for binding. These results suggest that MD+MSM approaches can sample binding-competent receptor conformations suitable
for computational peptidomimetic design, and that inclusion of disordered regions may be essential to capturing the correct
receptor dynamics.

Introduction

Under normal cellular conditions, the tumor suppressor protein p53 is kept at a low basal level in part due to downregulation
by MDM2 (mouse double minute 2 homolog), an E3 ubiquitin ligase that recruits p53 for degradation via direct interaction
with the p53 transactivation domain (TAD). Since many tumor cells still retain wild-type p53, a promising ave-nue of cancer
treatment is to restore p53 activity by blocking the MDM?2-p53 interaction with high-affinity MDM2-binding ligands.

A high-resolution x-ray crystal structure of p53 TAD bound to MDM2 in a helical conformation has been available for some
time, and has spurred widespread effort towards developing inhibitors that potently disrupt p53-MDM?2 binding.! In addition to
small molecules.”? peptidomimetics have been designed to mimic the p53 helix, such as stapled peptides,* beta-peptides,’
spiroligomers,® high-affinity D-peptides,’” arylamides, terphenyls, hydrogen-bond surrogates' and oligooxopiperazines,'!
many of which were developed as a result of—or in concert with—computational modeling and design.>-!1-16

Aside from its therapeutic interest, the p53-MDM?2 interaction has served as a valuable model system for understanding
protein-protein interactions, especially for intrinsically disordered proteins such as the p53 TAD that fold upon binding.!”
Underscoring the importance of this work is recent evidence that residual helicity in the p53 TAD directly alters cell signaling
in vivo.!® Similarly, consideration of intrinsic disorder is important to understanding MDM2, as it contains an unstructured
N-terminal lid region (residues 1-25) which competes with p53 for the binding cleft. In the absence of p53, quantitative
NMR spectroscopy has shown transient structuring and binding of the lid region to the p53 cleft on slow (>10 ms) exchange
timescales, consistent with the structuring of a short, well-ordered helix in residues 19-24 (Figure 1).19 Recent NMR and
X-ray co-crystal structures have revealed that small-molecule inhibitors can induce structuring of the lid region through specific
favorable interactions,”” suggesting that computational prediction lid region structure and dynamics could be very useful for
computational design.

Here, to better understand the structure and dynamics of the N-terminal lid region of apo-MDM?2, we perform extensive
simulation studies to characterize the mechanism of association with the p53 binding cleft, and explore the possible role of such
computational studies in drug discovery. From many independent trajectories of MDM2 starting from the apo state obtained by
parallel distributed simulation, we construct a Markov State Model (MSM) of N-terminus dynamics that predicts two-state
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Figure 1. Apo and holo structures of MDM2. (left) The apo form of MDM2 (tan) has an unstructured N-terminal lid (residues
1-25) that associates with the cleft. The binding of p53 displaces the lid region from the binding cleft. Quantitative NMR of
apo-MDM2' has shown that a portion of the lid region (residues 19-24) slowly converts between an unstructured and a
structured state. A recent co-crystal structure’’ with a small-molecule inhibitor (pink) shows a structured form of the lid region.

binding to the p53 cleft, in agreement with experimental findings. We then explore the utility of the MSM for in silico drug
discovery by performing computational docking studies to kinetic metastable states of the MDM2 receptor. Remarkably, our
findings suggest that the ensemble of metastable receptor conformations identified in the MSM can be used to achieve docking
results similar to or better than cross-docking studies of crystal structures, and moreover, that inclusion of the N-terminus is
essential in selecting open-cleft receptor conformations suitable for docking.

Results

Markov State Model (MSM) analysis of simulated apo-MDM2 dynamics predicts two-state binding of the lid
region to the p53 cleft.
MSMs describe conformational dynamics as a network of transitions between kinetically metastable states.”! To construct
an MSM of N-terminal dynamics from simulation data, trajectory snapshots are first assigned to metastable conformational
states. To identify these metastable states, we first used tICA?>23 to find a low-dimensional subspace reflecting the slowest
conformational motions of the N-terminal region (residues 1-25) and residues in the binding site. Projections to the two largest
components (tIC1 and tIC2) were subsequently used for conformational clustering into 2000 metastable microstates, and for
visualizing the folding/binding landscape.

Next, observed transitions between states are used to infer a transition matrix Tm, whose elements 7); contain the probability
of transitioning from state i to state j within time 7. The right (¢,) and left () eigenvectors of the transition matrix yield a
complete description of state population dynamics, via the chemical master equation, dp/dt = Kp, where T = exp(7K), whose
solution is

p(t) = ) (Wu[p(0)) g exp(—1/7) 4))

n

Here, p(0) is a vector of initial state populations at time 7 = 0, and the implied timescales 7, = —7/Iny, associated
with each eigenmode n are related to the eigenvalues u, of T. We define the sign structure of each eigenvector such that
(wn|1) is positive, so that dynamics (starting from a hypothetical uniform distribution) can be described as a superposition
of positive-amplitude eigenmodes ¢, each decaying at time scale 7,,. The stationary eigenvector (i.e. the equilibrium state
populations) is ¢y, for which 7, = co. The resulting MSM clearly shows a two-state mechanism for lid region binding to the
cleft. The sign structure of the slowest relaxation eigenmode ¢; shows population flux from unbound to bound states of the
lid regions, indicated by two diffuse basins aligned with tIC;, the degree of freedom representing the slowest conformational
motions (Figure 2a). Interestingly, compared to the tICA landscapes reported for many protein folding systems,?*~2¢ the lid
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landscape is remarkably diffuse, even in the secondary eigenmodes (Figure S4), reflecting the lack of residual structure. Similar
landscapes have been found in other MSM studies of disordered proteins.?’->® Implied timescales computed at lag times ranging
from 100 ps to 100 ns show a clear gap between the slowest and next-slowest implied timescale, indicative of apparent two-state
dynamics (Figure 2b). The slowest implied timescale is close to 1 us, comparable to the molecular on-rate of a peptide at
high effective concentration. This timescale is over four orders of magnitude faster than the slow (>10 ms) conformational
exchange of residues 19-24 reported by Showalter et al., which suggests that our simulation trajectories, each shorter than 1
us, do not capture rare unstructuring events expected this region. Nevertheless, the simulations show good agreement with
experimentally measured chemical shifts in this regions for the apo state, which is estimated to have ~90% of the lid population
in an associated state.
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Figure 2. (A) Projection of the 2000 MSM microstates (filled circles) to tIC; and tIC; coordinates. The size of each circle is
proportional to the equilibrium population, and is colored according to the slowest relaxation eigenmode, ¢;. Population flux
along this mode is from blue to red, representing a transition from unbound to bound states of the lid region, which we
visualize using five representative structures from each basin. (B) Implied timescales versus MSM lag time show a clear gap
indicating apparent two-state kinetics. (C) Simulation predictions of C, chemical shift deviations from random-coil for the lid
region (residues 17-26, cyan ribbon in panel A) calculated by SHIFTX2?° agree with experimental values.'”

The next-slowest eigenmode relaxation, ¢, reflects conformational dynamics of the lid region along the tIC, component,
and it is similarly diffuse (Figure S4). To gain structural insight into these motions, we performed secondary structure analysis
and Bayes Factor analysis> of interresidue contacts formed along different quadrants of the tICA projection (SI Text, Figures
S4 and S5). While the slowest relaxation (along tIC1) corresponds to disassociation of the N-terminus from the C-terminus,
structuring of the lid region into a helix, and association with the binding cleft helix ¢, the next-slowest relaxation (along tIC,)
largely reflects an increase in average self-association of the lid region, with an increase in sheet structure.

Computational docking of known MDM2 ligands to simulated receptor ensembles achieves success com-
parable to crystal structure cross-docking.

Virtual screening studies rely heavily on the availability of high-resolution crystal structures. Since the MDM?2 trajectories were
initiated from an apo NMR structure (PDB: 1Z1M) with a closed binding cleft unsuitable for computational docking, our work
presents an excellent opportunity to test how successfully an MD+MSM approach can be used as a refinement procedure to
achieve high-quality receptor structures for docking.

To evaluate the quality of simulated receptor structures, we used the DOCK®6 algorithm to perform computational docking
of a test set of 10 ligands to the 2000 MSM microstate structures (with the lid region removed). Our test set consisted of eight
small-molecule ligands and two peptide ligands, all with high-resolution crystal structures (Table 1). The small-molecule
ligands include, among others, the best-in-class inhibitor nutlin, and similar compounds. The peptide ligands include the native
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p53 fragment,* and a high-affinity designed inhibitor sequence, PMI N8A.3! Several modifications were made to standard
docking procedures to facilitate the efficient docking of peptide sequences, most notably: fixing backbone atoms in their helical
conformation via an artificial cyclization bond between terminal alpha-carbons, while retaining side chain rotamer search (see
Methods).

Molecule PDB Ligand Rot. bonds  Affinity (nM) Reference

1 4j7d  Nutlin RO5045331 6 20000 Fry, et al. ACS Med Chem Lett 2013
2 3jzk  chromeno-triazolo-pyrimidine 2 1230 Allen, et al. ] Med Chem 2009

3 3lbk  WK23 3 916 Popowic, et al. Cell Cycle 2010

4 4j3e  Nutlin 3a 8 88 Vu, et al. ACS Med Chem Lett 2013
5 4j74  nutlin RO0503918 2 26000 Fry, et al. ACS Med Chem Lett 2013
6 4jve  morpholinone 16 8 86 de Turiso, et al. ] Med Chem 2013

7 4lwt  spiroindolinone RO5027344 4 3900 Zhang, et al. Bioorg Med Chem 2014
8 4lwu  spiroindolinone RO5499252 8 5 Zhang, et al. Bioorg Med Chem 2014
9% lycr  p53 (ETFSDLWKLLPE) 29 440 Kussie, et al. Science 1996

10* 3lnz  N8A PMI (TSFAEYWALLSP) 21 0.49 Lietal. JMB 2010

* peptides

Table 1. Test set of small-molecule and peptide ligands of MDM2 used for computational docking studies.

To establish the baseline accuracy of the DOCK algorithm for this system, ligands were re-docked to their own co-crystal
structures, and cross-docked to all other receptor structures in the test set (Figure 3).

In all cases, the best re-docking scores corresponded to a correctly docked pose, which we define as having an rmsd of
2.0 Aor less to the crystal pose, thus validating the accuracy of DOCK. Cross-docking results show the inherent variability of
docking to a target receptor structure, and show that some MDM2 receptor crystal structures are more likely to produce false
positives or outright failures when non-native ligands are docked. Cross-docking is the least successful for small-molecule
docking to peptide-bound receptor structures, and vice versa. We also cross-docked all the ligands in the test set to the
apo-MDM?2 receptor structure (PDB:1Z1M, with the lid region removed), which confirmed its unsuitability for docking;
best-scoring poses for all ligands showed rmsd values > 5.4 A.

By comparison, computational docking to the ensemble of 2000 MSM microstates is much more successful. Plots of the
DOCK score versus ligand pose rmsd show a funnel-like correlation, indicating that low scores indeed predict good ligand poses
(Figure 4). Because of this, a significant enrichment in correct docking predic-tions is achieved. If only the five best-scoring
receptor poses were considered (the top 0.25%), half of the ligands would be correctly docked; 80% are correctly docked if
only the top 20 (1%) receptor poses are considered.

A potential caveat of these results is that the DOCK energy function is designed for the inexpensive evaluation of very large
screening sets, at the potential cost of accuracy. For the PMI N8A peptide ligand, the lowest-energy DOCK score consistently
predicts a non-native pose in which the key tryptophan and phenylalanine are placed correctly in the binding site, but with
non-native sidechain rotamers, tilting the PMI helix ~ 30° in the binding cleft. We explored several alternative protocols
designed to test whether this was due to our artificial cyclization scheme used to fix the backbone, or other search parameters;
based on similar results in all cases, we conclude that scoring function accuracy is responsible.

Simulation of functional lid motions is key to successful computational docking.

Since our simulations started from an apo-MDM2 structure with a closed binding cleft not amenable to computational docking,
we were curious to see how the functional lid motions identified in the MSM might be related to the generation of docking-
competent receptor structures. A projection of the DOCK scores to the tICA landscape reveals that a significant clustering of
low-scoring poses are found on the far right edge of the landscape, corresponding to states where the lid region is associated
with the binding cleft (Figure 5a). This feature is more pronounced for the peptide docking results, but can also be seen clearly
for the small-docking results (Figure S6). In previous work, we performed a number of apo-MDM?2 simulations in various
force fields, with trajectory lengths up to 1 us. The projection of these data onto the tICA landscapes shows that, regardless of
the force field chosen, these simulations do not sample the full extent of lid motion seen in the MSM (Figure 5b).

An inspection of the MDM?2 receptor structures found on the far right of the tICA landscape, in the region of lowest
DOCK scores, reveals many receptor conformations with their lid region associating with the MDM2 binding cleft. Indeed,
the lowest-scoring receptor structure in this region for the p53 ligand (Figure Sa, green star) is revealed to have a helical
conformation, closely mimicking the bound pose of the p53 transactivation domain (Figure 5c). In the unbound state, residues
11-17 (DGAVTTS) of the lid region have a low propensity to form a p53-like helix, forming helical structure when bound in the
cleft (Figure S7).
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Figure 3. Self-docking and cross-docking results for a test set of 10 MDM2 ligands with available co-crystal structures (listed
by PDB ID). Values shown are the rmsd (in A) of the best-scoring docked ligand pose to the crystal ligand pose. Docking
successes are shown in blue, scoring failures are shown in green, and sampling failures are shown in red.

Discussion

Recent computational studies have examined how bound ligands and/or post-translational modifications modulate the con-
formational dynamics of the lid region.’>3* The results presented here complement this work, and strongly suggest that
lid region association helps to induce binding-competent, open-cleft receptor structures amenable to computational docking.
This idea is consistent with the induced-fit “fly-casting” mechanism that has been proposed as the dominant mechanism of
many intrinsically disordered peptides that fold upon binding,*® including the p53 TAD of MDM2.!”7 Previous 200-ns and
1-us simulations of apo-MDM2 starting from an initial closed-cleft NMR structure sample a range of open- and closed-cleft
structures, but do not visit receptor structures highly competent for p53 binding, presumably because in these trajectories
the lid region doesn’t sufficiently associate with the cleft to induce such structures. These findings underscore the utility of
large-scale conformational sampling and analysis made possible by Markov State Model approaches. Indeed, the large-scale
MD+MSM approach we use here is able to identify MDM2 receptor structures as good or better than available crystal structures
for computational docking. In the future, MSMs are likely to be a valuable component of emerging molecular simulation-based
methods for ensemble-based virtual screening,’®=% especially for homology models.>”

Given the known limitations in the accuracy of scoring functions for computational docking, we expect that the use
of MD+MSM simulated receptor ensembles will perform even better in conjunction with more accurate energy functions,
especially as a starting point for more sophisticated methods such as free energy perturbation,’> for which elucidation of relative
binding modes is especially important.*

Finally, we note that many drug targets are cell signaling proteins regulated in some way by intrinsically disordered binding
partners. Many of these also have intrinsically disordered auto-inhibitory sequences than can mimic these natural substrates.
For example, p53 binding partner MDMX was recently found to have an auto-inhibitory domain that inhibits binding through
structural mimicry of the p53-MDMX interaction,*! a discovery which helps explain the failure of prior small-molecule drug
screening efforts that did not utilize the full-length target. Similarly, our results suggest that explicit consideration of such
disordered regions in simulation models may be much more important than currently appreciated, and could lead to greater
functional insights and more successful computational drug discovery efforts.

Conclusion

Large-scale molecular simulation combined with Markov State Model analysis of simulated apo-MDM2 dynamics predicts
diffuse, yet two-state binding of its disordered lid region to the p53 cleft, consistent with experiment. Computational docking of
known MDM?2 ligands to this simulated receptor ensemble achieves success comparable to crystal structure cross-docking,
suggesting that virtual screening studies can benefit from Markov State Model approaches. These results underscore the
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Figure 4. Scatter plots of DOCK scores versus the rmsd of the docked pose for all 2000 MSM receptor microstates show
correlated funnel-like landscapes. (A) For the p53 ligand, the MSM receptor ensemble is more suitable for docking than any of
the co-crystal receptor structures with other ligands. (B) The number of correct docking predictions found in some number of
best-scoring poses (the true positive rate) for our test set is comparable to the cross-docking results. (C) Scatter plots for all
ligands in our test set, shown with the 10 best-scoring poses docked to the MSM microstates (blue dots), cross-docking results
(yellow stars), and docking results to the apo-MDM2 NMR structure (purple star, absences denote DOCK failures).

importance of the disordered lid region in both understanding MDM?2 functional motions and in computational drug discovery.

Methods

Molecular Simulation

GROMACS 4.5 was used for all simulation preparation and production.*’ Twenty-four initial conformations of the p53-binding
region of apo-MDM2 (residues 1-119) were taken from the NMR-derived structure (PDB: 1Z1M).*> The AMBER ff99sb-ildn-
nmr force field** was chosen based on previous work demonstrating its accuracy and ability to predict initial structuring of the
lid region in 1 us simulations.?? All systems were constructed as periodic cubic boxes solvated with 17268 explicit TIP3P
waters and 0.1 M NaCl. Stochastic (Langevin) dynamics was simulated using a leap-frog integrator with a time step of 2 fs
and an inverse friction constant of 1 ps. Non-bonded cutoffs of 0.9 nm were used for both real-space Particle-Mesh Ewald
(PME) electrostatic and vdW interactions. Protein and non-protein atoms were temperature- and pressure-coupled as separate
groups in the Berendsen thermostat, at 300K and 1 atm, using a 1 ps time constant, compressibility of 4.5 x 107> bar~!. Prior
to production runs, all systems were equilibrated in the isothermal-isobaric (NPT) ensemble until the system volume converged
to 538.71 nm>. Pro-duction runs in the canonical (NVT) ensemble were performed on the Foldinghome distributed computing
network,* obtaining 175.7 us of aggregate trajectory data. The distribution of trajectory lengths is roughly exponential, with a
maximum trajectory length of 945 ns, and average trajectory length of 67.0 ns (Figure S1).

Markov State Model (MSM) construction

MSMBuilder*® was used to construct MSMs from the trajectory data. Time-lagged independent component analysis (tICA)
was performed using a tICA lag time of one snapshot (100 ps), to find a low-dimensional subspace best capturing the slowest
motions of the N-terminus and its binding cleft. The subspace consists of linear combinations of the set of 2304 pairwise
distances be-tween all C,, atoms either in residues 1-24 of MDM2, or within 5 Aof any atom of the p53 helix in the crystal
structure of holo-MDM?2 (PDB: 1YCR). Conformational clustering in this low-dimensional subspace was used to define a set of
2000 metastable microstates. A generalized matrix Rayleigh quotient (GMRQ) method*” was used to find optimal MSM model
parameters. This analysis, which involves a cross-validation procedure wherein the trajectory data is partitioned in testing
and training sets, determined that (1) k-centers clustering produced marginally better models than k-means, (2) only two tICA
components were needed to accurately capture the slowest conformational motions, (3) an MSM lag time of 100 ps produced
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Figure 5. (A) Projection of the DOCK scores for p53+MDM2 to the tICA landscape reveals a significant clustering of
low-scoring poses corresponding to lid-associated structures. (B) Previous 200-ns and 1-us single-trajectory simulations of
apo-MDM2 by Pantelopulos et al.*> projected to the tICA landscape show that simulations do not sample the full extent of lid
motion seen in the MSM. Simulations were performed in force fields AMBER ff14sb (1 us, blue), ff99sb-ildn-nmr (1 us, red),
ff99sb-ildn (200 ns, cyan), ff99sb (200 ns, yellow), ff99sb-ildn-phi (200 ns, orange), ff14sb (200 ns, magenta), CHARMM?22*
(1 us, green), CHARMM36 (200 ns, pink). (C) The receptor structure with the lowest DOCK score (green star, panel A)
exhibits a lid conformation closely mimicking the structure of p53 TAD bound to MDM2.

the most accurate MSMs, and (4) the GMRQ score (reflecting model quality) plateaus around 2000 microstates (Figure S2).
With metastable microstates suitably defined, the matrix of transition prob-abilities Tj(f) of transitioning from state i to state j

within lag time T was computed using a maximum-likelihood estimator from the observed transition counts.*® Coarse-graining
of MSM microstates into a 150-macrostate model was performed using the BACE algorithm.*®

Structural analysis

Analysis of trajectory data was performed using the MDTraj python library. Secondary structure populations were com-puted
using the DSSP algorithm, with helical states corresponding to DSSP assignments G, H, I; sheet states corresponded to DSSP
assignments B and E. The SHIFTX2 algorithm?” was used to predict chemical shift values, using 10x subsampling of trajectory
snapshots, for each MSM macrostate. To quantify the significance of interresidue contacts formed in specific conformational
states, we compute a Bayes Factor (BF) contact metric for each residue pair in MDM2%. More details about this are given in
the Supporting Information.

Computational docking with DOCK6

Computational docking was performed using UCSF DOCK version 6.7.#! The crystal structure coordinates were downloaded
from the PDB and processed using the UCSF Chimera dockprep tool.>"->> Small molecules were assigned AM1-BCC ligand
partial charges with AmberTools antechamber,>® while peptide ligands were assigned ff14SB charges. Frames taken from
each of the 2000 microstate clusters were converted into DOCK-compatible MOL? files. Owing to inconsistencies in hydrogen
atom naming schemes, each such frame was reassigned optimized instantaneous protonation states using the REDUCE tool.>*
Grids at 0.3 A-resolution were computed for each of the 2000 MD-derived frames. In order to improve sampling, each rigid
segment with five or more atoms (e.g. pyrroles or larger) was used as an anchor during small molecule docking. A unique
feature of the DOCK program is the anchor and grow algorithm.*® A rigid section of the molecule, often a large aromatic
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scaffold (anchor) is first oriented in the binding site. The remaining torsions are then grown one-by-one, clustering and pruning
unfavorable conformations at every step until a final set of viable fully grown conformers remain. This breadth-first search
approach takes exponential computational time, which severely limits docking of larger molecules. DOCK 5 was only tested on
a set of molecules with seven or fewer rotatable bonds.>> For DOCK 6.2 onwards, the addition of a fast internal energy score,
coupled with aggressive pruning and rmsd symmetry, allowed reasonable performance with larger molecules (65.5% success
on 8-15 torsions and 48% with >15 torsions).*” Earlier work*’ demonstrated that despite these gains, docking success drops
linearly with the number of rotatable bonds, while runtime increases exponentially. DOCK considers closed cycles in molecules
to be rigid when sampling torsions. However, the simplex minimizer still relaxes local backbone conformations within these
cycles. Thus, for peptide ligands, we introduced an artificial bond between the N- and C-termini to ‘rigidify’ the backbone for
the purposes of docking. This ameliorates the need to fold alpha helical ligands ab initio with the limited molecular mechanics
scoring function van der Waals and electrostatics with a distance dependent dielectric) in DOCK. In the case of the p53 TAD
fragment, this reduces 66 torsions to 29 torsions after rigidifying the backbone. DOCK thus considers the backbone to be an
anchor, with each sidechain torsion grown in situ for each receptor microstate. Cases where the receptor conformation does not
(1) accommodate the backbone, or (2) allow all the sidechains to complete growth, forces the docked ligand out of the binding
site, resulting in a poor interaction score.
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Supporting Text

Generalized Matrix Raleigh Quotient (GMRQ) Analysis

To choose optimal parameters for MSM construction, we use the GMRQ method recently developed by McGibbon et al.! This
method exploits the variational principle of conformational dynamics,’®%, that any approximation to the true eigenvectors of
a dynamical operator will necessarily underestimate its eigenvalues, which correspond to the relaxation timescales. For an
MSM of n discrete conformational states indexed by k = 1...n, approximations to the eigenfunctions are linear combinations of
indicator basis set functions ¢ (x) (equal to 1 if x is in state k and O otherwise.) The generalized matrix Raleigh quotient R
quantifies how well a given linear combination of basis functions captures the m slowest eigenvectors/timescales. It is computed
as

ATCA)
ATSA

where A is an n x m matrix whose j* column contains the linear coefficients to approximate the j* ¢ eigenvector as ¥, Ay 0 (x),
C is an n x n time-lagged correlation matrix of the indicator basis functions calculated from the trajectory data, and S is an
n X n covariance matrix of the indicator basis functions. For an MSM, both C and S can be estimated from the number of
transitions between states observed in the simulation trajectories. Finding the coefficient matrix A that maximizes R is the
same eigenproblem solved in the tICA method.”3 Once maximized, R can be used to evaluate the quality of the MSM state
decomposition by how well it captures the true conformational dynamics.

To avoid overfitting to the data, a cross-validation approach is used in which the simulation data is partitioned into 5-fold
leave-one-out training/testing sets. In five separate trials, R is maximized using 4/5 of the trajectory data, which we report as
the GMRQ training score. Using these optimal values of the coefficients in A, the remaining 1/5 of the data is then used to
compute R, which we report as the GMRQ testing score.

To select the MSM that most accurately captures the conformational dynamics of the MDM?2 lid region, we explored
various model construction parameters and chose the model with the largest GMRQ testing score (Figure S2). The time step
between collected trajectory snapshots is 7y = 100 ps. We explored MSMs built using different tICA lag times (i.e. the lag time
to calculate the distance correlation matrix needed to find the tICA components) and different MSM lag times. For MSMs
constructed using a range of 200 to 2000 microstates, a lag time of 1 (in units of 7p) is optimal (Figure S2a,b). We also explored
MSMs constructed using different numbers of tICA components (2 to 15 tICs) as the subspace to project trajectory data and
perform conformational clustering. We found that, for MSMs constructed using a range of 200 to 2000 microstates, projections
utilizing 2 tICs give the best GMRQ testing scores (Figure S2c¢). In all of our tests, GMRQ testing scores versus the number of
MSM microstates plateau near 2000 microstates, so we chose this number of microstates for MSM construction.

Given that typical MSM lag times for protein folding and binding studies range from 1-200 ns, it is somewhat surprising
that such a short lagtime (100 ps) is preferred for MSM construction. To validate this result, we additionally built MSMs using
lag times of 2, 5, 10, 100 and 1000 (in units of 7y). We find that the equilibrium populations and slowest relaxation mode
eigenvector @, are remarkably robust at all lag times, with the exception of 1000, for which finite sampling artifacts become
pronounced (Figure S3a). A likely explanation for the short lag time being optimal is the highly diffusive nature of the lid
region dynamics, coupled with a trajectory data set enriched in many short simulations (see Figure S1). To test this idea, we
built MSMs using lag times of 1, 10, 100 and 1000 using the same construction parameters, but without using a standard
ergodic trimming step, which is usually employed to avoid statistical bias from non-equilibrium trajectories.* This bias is
particularly pronounced for MSMs built from distributed computing simulations, due to the use of many short trajectories that
make forward transitions to new states, but no backward transitions. Enforcing detailed balance on a MSM built from this data
can therefore introduce “trap” artifacts in which states can have incorrectly high population estimates. Indeed, without ergodic
trimming, the tICA model strongly exhibits the presence of traps, indicating the non-ergodicity of the underlying trajectory data
arising from diffusivity and trajectory length (Figure S3b).

R(A|C,S) =Tr( ()

Bayes Factor analysis of inter-residue contacts
To quantify the significance of inter-residue contacts formed in specific conformational states, we compute a Bayes Factor (BF)
contact metric for each residue pair in MDM2.> The BF; (i, j) for contacts between residues i and j, given the protein is in some
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conformational state k, is computed as

o Pkeij=1) _ (P(cij=1]k) P(c;j=0)
BF (i, j) = p(k\c,.j- =0) P(c,-],- —1) P(ci/-]: s .

Here, ¢;; is an indicator variable that takes the value of 1 if a contact between residues i and j is present, and 0 otherwise.
The BFi(i, j) value can be thought as the statistical over-representation of contact ¢;; in conformational state k, and hence a
measure of its importance in uniquely defining the structural features of that state. For example, if BF; = 2, that means that the
equilibrium constant for contact formation between residues i and j is twice as large for state k as it is for the whole ensemble.
We compute Bayes factors for contacts separated by three or more residues in sequence, and define a contact formed between
two residues if any two non-hydrogen atoms are closer than 4 A.

Supporting Figures

Figure S1. Trajectory length distributions Figure S2. GMRQ Analysis Figure S3. Effects of lag time and/or ergodic trimming
on constructed MSMs Figure S4. Changes in inter-residue contacts and secondary structure along eigenmode relaxations ¢
and ¢,. Figure S5. Bayes Factors of inter-residue contacts for tICA landscape quadrants. Figure S6. DOCK scores projected
onto the 2D tICA landscape for all ligands Figure S7. Backbone RMSDs of MDM2 lid residues 11-17 to bound-state p53 helix.
Supporting References
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Figure S1. Distribution of trajectory lengths for the 175.7 us of aggregate trajectory data simulated on the Foldinghome
distributed computing network. The maximum trajectory length is 945 ns, and average trajectory length is 67.0 ns.
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Figure S2. Mean GMRQ training scores (dotted line) and testing scores (solid line) computed using 5-fold cross validation,
shown as a function of the number of k-centers clusters used to build the MSM. (A) GMRQ scores calculated using slow (117p)
and fast (17p) MSM and tICA lag times. (B) GMRQ scores calculated using a range (27 to 117p) of MSM lag times; each
MSM was constructed using clustering in the subspace defined by the 2 largest tICA components. (C) GMRQ scores calculated
for MSMs built from various numbers of tICA components (2 to 15). Error bars in all figures show standard deviations of the
5-fold cross-validation trials.
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Figure S3. (A) Projections of the 2000 MSM microstates (filled circles) to tIC; and tIC; coordinates from MSMs built using
lag times 1, 2, 5, 10, 100 and 1000 (in units 7p). The size of each circle is proportional to the logarithm of its equilibrium
population, and is colored according to the slowest relaxation eigenmode, ¢;. (B) MSMs built using lag times 1, 10, 100, 1000,
without the standard ergodic trimming step.
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Figure S4. (A) Projection of the 2000 MSM microstates (filled circles) to tIC; and tIC, coordinates. The size of each circle is

proportional to the logarithm of the equilibrium population, and is colored according to the second slowest relaxation

eigenmode, ¢. Population flux along this mode is from blue to red, predominantly representing the structuring of the MDM?2
termini, which we visualize using five representative structures from each basin (circled in yellow on the tICA landscape).

Average Bayes Factors for contacts between lid region (yellow ribbon) and non-lid residues are shown as a color gradient (black
to orange) on the ribbon structure of MDM?2. (B) Differences in per-residue helix and sheet content of MDM2 are shown along
tIC; (i.e. differences between conformations with positive vs. negative values of tIC;) and along tIC,. (C) Changes in the ratio
of mean Bayes Factors for contacts between the lid region (residues 1-25 of MDM2) and all other residues, along tIC; and tIC,.
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Figure S5. Bayes Factors of inter-residue contacts calculated for each quadrant in (tIC;, tIC;)-space. At center is shown the
2000 MSM microstates projected to the tICA landscape, divided into quadrants Q1, Q2, Q3 and Q4. (a) Differences in the
Bayes factors for Q2+Q3 versus Q1+Q4 reveal that contacts are formed between the N-terminus and the active site helix o
along tICy, the slowest relaxation mode, and (b) contacts are lost between the N- and C-terminus along tIC;. Differences in the
Bayes factors for Q1+Q2 versus Q3+Q4 reveal that (c) conformational changes along tIC; correspond to structuring in the

N-terminus.
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Figure S6. DOCK scores projected onto the 2D tICA landscape for all ligands. Results for p53 (1ycr) are shown in the main

text.
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Figure S7. Backbone RMSDs of MDM2 lid residues 11-17 (DGAVTTS) to the bound-state p53 helix, shown for all 2000
MSM microstates on the tICA landscape. In the unbound state, this sequence has low propensity to form a p53-like helix, with
two exceptions: (1) There is some residual helicity in the unbound state, which is lost along the ¢ eigenmode relaxation
(positive to negative tIC, values, see Figure S4) as the N-terminus self-associates, and (2) association of the lid region with the
pS3 binding cleft induces structuring of residues 11-17 to a conformation very similar to bound p53 (green arrow).
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