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Abstract4

To survive unpredictable environmental change, many organisms adopt bet-hedging5

strategies that trade short-term population growth for long-term fitness benefits. Be-6

cause the benefits of bet-hedging may manifest over long time intervals, bet-hedging7

strategies may be out-competed by strategies maximizing short-term fitness. Here, we8

investigate the interplay between two drivers of selection, environmental fluctuations9

and competition for limited resources, on different bet-hedging strategies. We consider10

an environment with frequent disasters that switch between which phenotypes they11

affect in a temporally-correlated fashion. We determine how organisms that stochasti-12

cally switch between phenotypes at different rates fare in both competition and survival.13

When disasters are correlated in time, the best strategy for competition is among the14

worst for survival. Since the time scales over which the two agents of selection act are15
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significantly different, environmental fluctuations and resource competition act in op-16

position and lead populations to evolve diversification strategies that ultimately drive17

them extinct.18

Introduction19

In the face of unpredictable environmental change, some organisms have evolved diver-20

sification strategies that generate offspring poorly suited to the current environment,21

but well-adapted to a different future environment [1, 2, 3]. For example, clonal bac-22

terial lineages have evolved to produce both fast and slow growing phenotypes; the23

latter can better survive lethal antibiotic exposure [4, 5]. Organisms that adopt these24

strategies hedge their bets by sacrificing short-term increases in population expansion25

for potential long-term population growth [3, 6]. The time interval over which the26

long-term benefits of bet-hedging are realized depends in part on the frequency of27

environmental change [7, 8, 9]. Frequent environmental change can impose immedi-28

ate selection against organisms who do not bet-hedge [10], while hedging against rare29

events may require long time periods [11]. Environmental change, however, will only30

rarely be the sole driver of selection. Other processes, such as competition for limited31

resources, may act on shorter time scales than environmental fluctuation, causing op-32

timal bet-hedging strategies to go extinct before the long-term benefits are realized.33

In this paper, we investigate the interplay between these two drivers of selection.34

Bet-hedging is a well-known survival strategy, evolved by diverse organisms, to in-35

crease fitness in risky, unpredictable environments [12, 13, 14, 15, 16, 17, 18, 19, 20].36

For example, desert annuals delay germination in some seeds to hedge against across-37

year variation in spring rainfall [1, 21]. Another example is the bacterial pathogen38

Haemophilus influenza, in which a single clone generates offspring with diverse sur-39

face antigens that increase the probability that some of the population will avoid de-40

struction by the host immune response [22, 23]. Concomitant with the abundance of41

bet-hedging, there are a wide array of molecular mechanisms for creating phenotypic42
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diversity, including contingency loci, stochastic gene expression, developmental insta-43

bility, and asymmetric cell division [24, 25, 26, 27]. These diversification mechanisms44

work together with reproductive strategies (e.g. asexual/sexual, clutch size) to enact45

particular forms of bet-hedging [12]. Considering the gamut of bet-hedging strategies is46

outside the scope of this paper, so for simplicity we will consider microbial bet-hedging,47

which is the focus of a large body of theoretical research [11, 28, 29, 30, 31, 32, 33].48

Microbial bet-hedging is usually equated with stochastic switching strategies whereby49

a single genotype produces phenotypic heterogeneity in the absence of an apparent sig-50

nal or regulatory response [10, 13, 24, 34, 35]. Mathematical models of microbial51

bet-hedging typically assume that the organism switches reversibly between at least52

two distinct phenotypic states, and that these distinct phenotypic states are each suited53

to different possible environmental states. Such models align well with experimental54

bet-hedging systems including CAP+/- phenotypes in Pseudomonas fluorescens [36],55

antigen expression in Salmonella [37, 38], competence to non-competence switch for56

DNA transformation in Bacillus subtilis [39], and galactose utilization in engineered57

populations of Saccharomyces cerevisiae [40]. For the purposes of modeling, phenotypic58

switch events are typically random and independent so that population-level hetero-59

geneity follows a binomial or multinomial distribution, depending on the number of60

phenotypic states. A key area where models differ is the way in which environments61

fluctuate. For example, environmental fluctuations can occur randomly or after a fixed62

amount of time [28, 31, 32, 40, 41] and they can be symmetric or asymmetric in terms of63

how they switch and the selective pressure they exert [33, 41]. Whether or not stochas-64

tic switching confers a fitness benefit depends on the precise nature of environmental65

fluctuations.66

In exponentially growing populations, the optimal rate of switching maximizes long-67

term geometric mean fitness [1, 8, 9, 42]. Indeed, models with expanding populations68

make it possible to calculate asymptotic growth rates [32]. The situation might be dif-69

ferent if, along with environmental fluctuations, organisms face limitations in resources70

so that there exists a carrying capacity that restricts population size. If the population71
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has not yet reached the carrying capacity, then each time an organism reproduces there72

is one less opportunity for reproduction by others in the population [43]. This couples73

the switching strategy of one organism to others, which could reward strategies that74

deny reproductive opportunities to other switching types either in the current environ-75

ment or some future environmental state. Furthermore, the finite limit of population76

size allows for the possibility of extinction due to demographic stochasticity.77

Here, we examine the consequences of coupling and extinction, introduced through78

a carrying capacity, on the evolution of microbial bet-hedging. We extend a previously79

published model [12] in which phenotypes experience periodic disasters such as might80

occur as the result of an adaptive immune response. We allow disasters to be correlated81

in time and determine how switching strategies fare in competition and survival, i.e.82

long-term fitness. When disaster risk is uncorrelated in time, the best competitive83

strategy also maximizes long-term survival. The situation changes when disaster risk84

is strongly correlated in time; the best strategy for competition is among the worst for85

survival. Our results show that environmental fluctuations and resource competition86

can lead to the evolution of diversification strategies that ultimately drive populations87

extinct.88

Methods89

Stochastic simulations90

We consider a population of genotypes that switch between two phenotypic states, A91

and B. The defining characteristic of a genotype is its probability/rate of switching92

between phenotypes, which we denote as p. We assume that the switch occurs stochas-93

tically upon reproductive events so that each time an A or B reproduces there is a94

fixed probability p that it yields a cell of the opposite type. The phenotypic states do95

not differ in any fitness relevant trait other than susceptibility to risk. This risk man-96

ifests in disasters that target either A or B phenotypes and removes them completely97
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from the population. We simulate the evolution of populations using a discrete time98

approach.99

At each time step, there is a probability that a disaster occurs. We use a disaster100

probability of 10% for most results in this paper but explore the effects of changing this101

probability on time scales in Figure 5. If a disaster occurs, we then determine which102

phenotype it targets. A disaster targets the same phenotype as the previous disaster103

with probability tc and the alternate phenotype with probability 1−tc (the first disaster104

target is random). If tc = .5 then the disaster targets a phenotype with no memory of105

previous targets. For tc > .5 there is an increased chance that the phenotype targeted106

will be the same as before. In this way, the parameter tc determines the duration of107

an environment hostile towards A or B phenotypes and the temporal correlation of108

disasters.109

Following the potential disaster, there is an opportunity for population turnover110

whereby a small fraction of the population is chosen for death. We use a default111

population turnover probability of 10% for most results in this paper but show the112

effects of changing this parameter in Figures 4 and 5. As a consequence of population113

turnover, even if a disaster does not occur the population still evolves.114

After the effects of a possible disaster and population turnover, the remaining or-115

ganisms reproduce until the population is restored to a fixed size, the carrying capacity116

N . For most results of the paper we consider N = 1000. Increasing this parameter117

increases the duration of competitions and survival. The effects of different values of N118

on Figure 4 are considered in the Supplementary material. Reproduction to carrying119

capacity occurs through an iterative process whereby organisms are randomly chosen120

to reproduce according to their frequency in the population. The discrete time step121

ends once the carrying capacity is reached. We simulate the populations until one122

genotype goes extinct or a maximum number of time steps occur, here 106. Computer123

simulations were conducted in the programming language julia and are provided in the124

Supplementary material.125
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Differential equation model126

As a complement to our stochastic simulations we consider a deterministic model that127

uses differential equations (Eqns 1) to model population regrowth following a disaster.128

The simulation is still split into discrete rounds of disasters and regrowth however129

these events do not occur probabilistically. Instead, disasters occur every round and130

target one phenotype for a fixed number of times. For example, there may be five131

rounds of disasters targeting A types followed by five rounds of disasters targeting B132

types. After each disaster the population regrows for a fixed amount of time, (t = 100,133

though we consider other values of t in the Supplementary material), with a constant134

rate of population turnover described by the parameter α. We compute the frequency135

of types that switch according to probability p1 which is equal to A1+B1

A1+B1+A2+B2
after136

1000 environmental cycles. The differential equations were solved using Matlab and137

computer code is provided in the Supplementary material.138

R = (1 − A1 +B1 +A2 +B2

N
) (1)

dA1

dt
= R(1 − p1)A1 +Rp1B1 − αA1

dB1

dt
= R(1 − p1)B1 +Rp1A1 − αB1

dA2

dt
= R(1 − p2)A2 +Rp2B2 − αA2

dB2

dt
= R(1 − p2)B2 +Rp2A2 − αB2

Results139

Survival140

In our model, the probability of switching phenotypes determines whether an organism141

can survive the challenge of repeat disasters. We vary the probability of repeat disasters142

(tc) from 0 to 1 and compute for each value of tc the number of times out of 1000143
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stochastic simulations a switching strategy survives 106 rounds of potential disasters,144

population turnover, and regrowth (see Figure 1). For fast switching probabilities,145

p ≥ .1, genotypes rarely go extinct (less than 1% of the time). In contrast, for slow146

switching probabilities, p ≤ .025, all organisms went extinct before the end of 106147

rounds. For switching probabilities in between these values, e.g. p = .05 and p =148

.075, there is a non-monotonic relationship between tc and the frequency of extinction.149

Genotypes are less likely to go extinct at the extremes of tc, i.e. close to 0 or 1, as150

compared to intermediate values, e.g. tc = .65.151

At tc close to 1 there are long periods of disasters targeting the same phenotype.152

In the extreme case where tc = 1 disasters never switch phenotypes, so as long as an153

organism diversified into two phenotypes at least once it would survive. As tc decreases154

from 1 the probability of extinction increases because disasters more frequently switch155

between phenotypes.156

At the opposite extreme, with tc close to 0, disasters frequently switch between157

targeted phenotypes. While this seems like a challenging environment to survive, it158

is actually easier than an environment with longer periods of disasters targeting the159

same phenotype. The reason is that extinction in these simulations occurs through a160

lack of phenotypic diversification: an organism exists entirely in one phenotypic state161

when a disaster strikes that phenotype. After a disaster annihilates one phenotype, say162

A, the surviving phenotype, B, has a certain number of reproductive events in which163

to diversify. The probability that a B fails to produce at least one of the opposite164

phenotype, A, is (1 − p)m where p is the switching probability and m is the number165

of reproductive events. The expected number of A types produced is mp, assuming166

that the B phenotype is the only one who gets to reproduce. Now, there are N −mp167

organisms of type B and mp of type A. This sets the stage for why an environment168

with tc = 0 is easier to survive than one with an intermediate value of tc = .65.169

If the next disaster switches targets and annihilates the B type, as would be the170

case if tc = 0, then the A types would have N − mp opportunities to diversify and171

produce a B type. The chance of failure here is (1−p)N−mp. If, instead, tc were greater172
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than zero then there is a chance that the disaster would target the same phenotype as173

before, and annihilate any new A types produced. This would give the B phenotypes174

only mp opportunities to diversify and produce an A. The chance of failure in this case175

is (1 − p)mp. The difference between these two chances of failures can be many orders176

of magnitude: if, for instance, p = .05, m = 500, and N = 1000 then the probability177

of not diversifying goes up from 1.91 ∗ 10−20% to 27.7%.178

Competition179

If the only selective pressure were long-term survival, then the probability of switching180

should be high to avoid extinction. However, there are often other forms of selection181

acting on populations. We now consider what happens when there is competition in the182

form of another genotype present in the population. We vary the probability of repeat183

disasters (tc) from 0 to 1 and compute for each value of tc which switching strategy is184

the best in pairwise competitions. The best strategy is the one that drives competitors185

extinct more often than it, itself, goes extinct. The optimal probability of switching186

decreases the more a disaster is likely to target the same phenotype, i.e. the higher187

the value of tc (see Figure 2A). If the disasters frequently switch phenotypes such that188

tc ≤ 0.50 then the best strategy in pairwise competitions is to rapidly diversify and189

switch phenotypes often. Thus, in this regime the optimal switching probability is190

p = 1.191

If, instead, disasters seldom switch the phenotype they target (tc >> .5) then192

there is a cost to phenotypic diversification. Consider the case in which a disaster has193

removed all of the A phenotypes. As the B phenotypes reproduce to reach the carrying194

capacity any A types they produce will likely be lost to the next disaster. On the other195

hand, failing to diversify at all, p = 0, will lead to the genotype going extinct should the196

disaster switch the phenotype it targets. When risk is correlated in time, the optimal197

switching strategy must strike a balance between diversifying too much into the form198

that the disaster is targeting and not diversifying at all. As a point of reference from199

8

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 18, 2016. ; https://doi.org/10.1101/054007doi: bioRxiv preprint 

https://doi.org/10.1101/054007


Figure 2A, if tc = 0.99 then the optimal switch probability that strikes this balance is200

p = 0.01. These results echo earlier studies of bet-hedging populations in the absence201

of carrying capacity [3, 6, 44].202

Although the optimal switching strategy changes with the probability of repeat203

disaster (tc), it is unclear how poorly a suboptimal switching strategy performs. To204

test this, we picked the best switching strategies for tc = .5 (p = 1) and tc = .99205

(p = .01) and competed them against the optimal switching strategies for a range of tc206

values (see Figure 2B). The performance quickly drops off such that if either strategy207

is competed against the optimal strategy at a tc different by .1, it wins less than 10%208

of the time. Furthermore, p = 1 competes as unsuccessfully against p = .01 at tc = .99209

as p = .01 competes against p = 1 at tc = .5 – they each win less than 1% of the time.210

Due to the stochastic nature of these competitions, suboptimal strategies can occa-211

sionally beat optimal strategies. To understand what happens in these competitions,212

we investigate the competition between p = 1 and p = .01 at tc = .99. On the rare213

occasions that p = 1 wins, the dynamics of disasters show frequent change in the tar-214

geted phenotype, mimicking an environment with a lower value of tc in which p = 1 is215

more adaptive (see Figure 3A). In contrast, the more typical scenario is that disasters216

infrequently switch the target phenotype and thereby penalize strategies that adopt217

rapid phenotypic diversification (see Figure 3B). The trajectory of this extinction shows218

that each disaster gives an incremental numerical advantage to the slower switching219

strategy. This acts as a steady drain which ultimately leads the p = 1 genotype to220

extinction.221

The different trajectories in Figure 3A and 3B demonstrate the two ways in which222

organisms can go extinct during competition in our mathematical model. The first way223

is through a lack of phenotypic diversification as was discussed in the “Survival” section224

and is how the fast switcher beats the slow switcher (see Figure 3C). The second way225

is through population turnover and is how the slow switcher defeats the fast switcher226

(see Figure 3D). Extinction due to population turnover occurs during the death and227

replacement phase of our simulations. A consequence of replacement is that there are228
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fluctuations in population abundances. If each organism has a probability α to be229

chosen for replacement, i.e. death, then the probability a population of m organisms230

goes extinct in a single round of replacement is αm. In order for this form of extinction231

to be realized a genotype must be rare, i.e. m must be small.232

Although genotypes could become rare randomly through a set of unfortunate re-233

placement events, usually it occurs because of a particular sequence of disasters. For234

instance, there could be a sequence of sudden switches in the phenotype targeted for235

disaster which would leave genotypes that switch infrequently as the rare type. Alter-236

natively when disasters repeatedly target a single phenotype then the genotype that237

switches frequently can become rare. The latter case befalls the genotype with p = 1 in238

an environment with tc = .99. To illustrate how this happens, consider two genotypes239

with switching probabilities p1 and p2 that just experienced a disaster eliminating all240

m of one phenotype. In the growth back to carrying capacity, we assume for simplic-241

ity that they evenly split the remaining spots in the population, i.e. m
2 reproductive242

events are allotted to each genotype after the first disaster. Over k disasters and no243

replacement other than growth back to carrying capacity, then the genotype with a244

switch probability of p1 will gain an amount shown in Eqn. 2.245

(1−p1)
m

2
+(1−p1)

m

2

(p1 + p2)

2
+ . . .+(1−p1)

m

2

(p1 + p2)k

2k
= (1−p1)

m

2

1 − (p1+p2

2 )k

1 − p1+p2

2
(2)

Thus, the genotype with p1 will have 1−p1

1−p2
as much of the m pool as the genotype with246

p2. If one genotype switches with p = 1 then the other will eventually get the entire247

pool of m. This route to rarity is particularly effective if m is close to the carrying248

capacity N . Once a type is rare then population turnover can lead it to extinction.249

The route to extinction that relies on population turnover is not unique to our250

stochastic simulation model. We can reformulate our model such that population251

growth occurs deterministically according to a set of differential equations (see Meth-252

ods: Differential equation model, and Eqn. 1). These equations consider continuous253

population turnover rather than discrete rounds as was the case in the stochastic sim-254
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ulations. If populations grow for a fixed time according to these equations and then255

experience disasters that reset the A or B phenotypes back to 0 then we find that the256

amount of population turnover, i.e. the value of the α parameter, determines whether257

a slow (p1 = .01) or fast (p2 = 1) switcher wins (see Figure 4). This is because follow-258

ing a disaster, the initial growth of a genotype is determined by R(1 − p) − α which259

decreases with larger switching probabilities p. Indeed, for p = 1 this term is negative260

and the genotype drops in frequency for a short time. If disasters happen frequently261

and target the same phenotype then this α can be the dominant force in determining262

the winner.263

We return to our stochastic model to weigh the competing pressures of competition264

and survival. In an environment of tc = .99 a strategy of p = .01 always goes extinct265

when considered in isolation (Figure 1) and yet it is the best strategy for competition266

(Figure 2). The reason for this seeming contradiction is a significant difference in time267

scales (see Figure 5A). The time it takes p = .01 to go extinct is at least ten times268

greater than the time it takes to win a competition. Thus, while we expect p = .01 to269

go extinct eventually, it has enough time to outcompete faster switchers with p = 1.270

The different time scales for competition and survival can be adjusted by chang-271

ing parameters such as the rate of population turnover (see Figure 5B) or disaster272

probability (see Supplementary material). By decreasing the probability of population273

turnover (similar to α in the differential equation model), we can increase the time it274

takes for the slow switcher (p = .01) to win the competition against a fast switcher275

(p = 1). Similarly, the decreased value of population turnover gives less opportunities276

to diversify and so reduces the survival time. The net effect is that the survival time277

scale is shorter than the time scale for competition. As a result, the slow switcher goes278

extinct before winning the competition (see Figure 5C).279

So far the cases considered have all been competitions between only two genotypes280

in an environment with fixed tc. To see if populations of potentially many genotypes can281

evolve to respond to the selective pressure imposed by the value of tc, we implement an282

evolutionary simulation in which genotypes mutate to give rise to new genotypes with a283
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new characteristic switch rate. The mutation probability is 10−3 and a new switching284

probability is chosen from a uniform distribution from 10−5 to 1. We begin each285

simulation with a clonal population whose switch rate is p = .0001. The population286

goes through rounds of death and reproduction in a fixed environment (tc) for 100K287

iterations or until the population goes extinct. Figure 6A shows evolution within a288

tc = .99 environment. The average probability of switching from 1000 simulations289

evolves to the optimal switching probability p = .01 but all go extinct prior to 80K290

rounds. This contrasts sharply with evolution in a tc = .5 environment in which only291

6 of 1000 simulations went extinct (Figure 6B). All other simulations lasted the entire292

duration with an average switching probability close to the optimal of p = 1.293

The speed of adaptation and general results are further confirmed in Figures 6C294

and D when populations experience an environmental shift. Figure 6C shows the295

evolution of a population that survived tc = .99 (a rare event) and is subsequently296

transferred to a different environment with tc = .5. In tc = .99, the population297

evolves to the optimal switch probability: p = .01. As the environment changes to298

tc = .5, the population adapts by evolving to a switch rate close to the optimal of299

p = 1. The population remains at a high switch rate and survives for the rest of the300

simulation, 100K iterations. The reverse environmental fluctuation is shown in Figure301

6D: a population evolving in tc = .5 is transferred to an environment with tc = .99.302

In this simulation, the population evolves to p > .7 in tc = .5. When the environment303

shifts to tc = .99, the population evolves to p = .01 and fluctuates before ultimately304

going extinct. In this scenario, the drive to respond to competition left the winning305

genotypes vulnerable to extinction from unpredictable environmental stress.306

Discussion307

Stochastic phenotype switching is a canonical microbial bet-hedging strategy that in-308

creases fitness and long-term survival in unpredictable environments [6, 10, 13, 24, 34,309

35]. However, the long time scales over which some bet-hedging strategies are manifest310
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may conflict with other selective pressures. We uncover such an evolutionary tension311

between the timescales at which bet-hedging traits are adaptive. We study a math-312

ematical model where environmental disasters select for diversification bet-hedging313

strategies, i.e. organisms switch between phenotypes to survive stochastic selection.314

We find that in environments where the type of disaster is positively correlated in315

time, switch rates that optimize competitiveness were favored over the short-term,316

while those that allow genotypes to avoid extinction were favored over the long-term.317

Since the time scale for competition is shorter than that for survival, populations evolve318

better competitive bet-hedging strategies, but this ultimately leaves them vulnerable319

to extinction.320

The model presented in this paper has four key elements: genotypes that switch321

between phenotypes, disasters that annihilate a specific phenotype, population turnover322

caused by non-disaster death, and regrowth back to a carrying capacity. These elements323

are quite general and may appear in many real biological systems. Ecologically, one324

can think of our model as being a description of free-living bacteria that risk exposure325

to lytic phage capable of infecting only one of the two host phenotypes [45, 46], or326

bacteria living in a host risking detection by the immune system. These disasters327

occur stochastically, but the type of disaster (favoring either A or B cells) may be328

correlated in time. Furthermore, population expansion may be limited by the available329

space and resources found in the environment or host. Interestingly, in the bacteria-host330

scenario, if the host continually mounts a response against the most abundant bacterial331

phenotype then this would be similar to an environment tc = 0 when “disasters”,332

i.e. immune responses, continually switch between targeted phenotypes. In this case,333

the survival probability of a switching organism actually increases when compared to334

environments with intermediate values of tc.335

In the absence of temporal correlation of disasters, the strategy that maximizes336

short-term fitness also maximizes long-term survival (p = 1 in tc = .5 wins in com-337

petitions and never goes extinct). In contrast, when risk is correlated in time, the338

strategy that maximizes short-term competitive fitness becomes one of the worst for339
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long-term survival, and vice versa. Over short time periods selection favors traits that340

increase reproductive success. When risk is correlated in time slower rates of stochastic341

switching increase fecundity and competitive fitness because offspring of the opposite342

phenotype are likely to be killed by the next disaster. The downside of slower switching343

organisms is that they are far more susceptible to extinction (see Figure 1). Slower344

stochastic switching thus exhibits strong time-dependent fitness effects in our model,345

being advantageous over the short-term but costly over long time periods (see Figure346

5). Importantly, in our simulations fast-switching strains capable of long-term survival347

in high tc environments were driven extinct during competition by slower switching348

strains that then promptly went extinct following a disaster (see Figure 6).349

Most prior models studying stochastic switching in fluctuating environments con-350

sider continuous populations that grow without limits [1, 8, 9, 32, 42]. This has two351

major effects relevant to the study of bet-hedging: first, it eliminates the risk of extinc-352

tion caused by environmental fluctuations, and second, it decouples competing lineages353

so that the behavior of one lineage has no effect on the absolute fitness of competitors354

within the same population. We relax both of these constraints and find that imposing355

a carrying capacity on the population radically changes the ability for natural selec-356

tion to favor the bet-hedging strategy that maximizes long-term fitness. By enforcing357

a lower limit on the probability of extinction, a carrying capacity allows extinction to358

play a powerful demographic role in shaping life history evolution. Without a carrying359

capacity, populations could expand to the point that extinction is no longer a threat.360

In addition to affecting survival, carrying capacities are also instrumental in com-361

petition. By limiting opportunities for reproduction, a carrying capacity couples the362

fitness consequences of one strain’s switching strategy to its competitors. Specifically,363

the effects of employing one strategy determines the number of available reproductive364

events for the other strategy– either in the same round of growth, or a future round.365

As a result, strains with higher short-term fitness, but lower long-term fitness, can366

displace competitors (see Figure 6). These competitive effects should become more in-367

fluential if one phenotype reproduces slower than another, as is the case with bacterial368
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persistence [5]. Optimal fitness with bacteria persistence balances a trade-off between a369

fast-growing/antibiotic-susceptible phenotype and a dormant/antibiotic-resistant phe-370

notype [6]. Imposing a carrying capacity on a population of microbes hedging against371

antibiotic exposure via persistence would create an additional tradeoff in which pro-372

duction of dormant cells would limit the number of other cells that could be produced.373

These tradeoffs also exist in systems with regular, predictable environmental change374

as might be found in experimental populations of Pseudomonas fluorescens [43]. The375

only requirements are a limit to population growth and organisms that can produce376

more than one phenotype with different reproductive rates.377

The stochastic phenotype switching considered in this paper fits within the hier-378

archical model of bet-hedging advanced by Andrew Simons [47]: stochastic switching379

itself is a primary bet-hedging trait that effectively improves fitness in unpredictable,380

fluctuating environments, while rapid switch rates can be a second-order bet-hedging381

trait beneficial only over long time periods. With this view, organisms that do not382

switch phenotypes are quickly driven extinct by environmental fluctuations. Long-383

term selection clearly favors switch rates rapid enough to avoid extinction, but this384

works against short-term selection for slow switching imposed by competition. De-385

pending on the switch rates, there may be a significant time scale asymmetry between386

these selective agents. This asymmetry, coupled with the very real possibility of ex-387

tinction during early-phase competition, may limit the ability of natural selection to388

favor higher-level bet-hedging strategies that maximize long-term fitness.389
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Figures390

A B
p=.1
p=.075

p=.05

p=.025

Figure 1: Survival as a function of the probability of switching and the proba-
bility of a repeat disaster. The number of extinctions out of 1000 for genotypes with
different switch probabilities is shown as a function of the probability that a disaster re-
peats the phenotype it targets. Fast switchers p ≥ .1 rarely go extinct while slow switchers
p ≤ .025 always go extinct. Intermediate values of p show a non-monotonic relationship in
which extinction reaches a maximum around tc = .65.
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A B

Figure 2: Optimal switching strategy versus the probability that a disaster tar-
gets the same phenotype A) The switching probability that beats all others in pairwise
competitions is shown as a function of the probability of repeat disasters tc. The switching
probability decreases with increasing value of tc. B) A switch probability of p = 1 (red) or
p = .01 (blue) is competed against the optimal switch probability for a range of tc values
(on the horizontal axis). Each strategy quickly drops in performance, as measured by the
number of wins, by a factor of more than 5 with a .1 change in tc.
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A B

C D

Figure 3: Characteristic manner different switching strategies win. A) The differ-
ence between A (gray) and B types (black) of a slow (p = .01) and fast (p = 1) switching
strategy, e.g. Aslow − Afast, are plotted over the course of many disasters with tc = .99.
The phenotype targeted by the disaster is shown at the bottom. The faster switching phe-
notype wins because the disasters switch targets and mimic an environment with a lower
tc. B) Here, the slow switching phenotype wins as repeated disasters slowly diminish the
fast switching population. C) The number of wins (out of 1000) decided by a disaster
switching phenotypes is shown as a function of the probability of repeat disasters. The
fast switcher (p = 1, red) wins most of the competitions over the slow switcher (p = .01,
blue) in this manner. D) Similar to C) except population turnover causes genotypes to
win. In comparison to C), the slow switcher (p = .01, blue) wins more than 80% of its
victories in this manner. Thus, fast switchers tend to win when disasters target both A and
B phenotypes in rapid succession while slow switchers tend to win via a longer draining
process.
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Figure 4: Population turnover determines the winner in a differential equation
model. The frequency of the population composed of the slow switcher (p = .01) as
opposed to the fast switcher (p = 1) is plotted against the rate of population turnover, α,
in the differential equation model Eqn. 1. The different colors correspond to the number of
disasters faced before the targeted phenotype is switched: 1 (blue), 5 (cyan), 10 (green), 25
(red). In this way the red line corresponds to a higher value of tc than the blue. As the rate
of population turnover increases, the slow switcher gains in frequency for all but the blue
curve which corresponds to the lowest value of tc. The minimal value of population turnover
that leads to the slow switcher winning decreases with longer durations in environments,
i.e. higher tc values.
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A CB

Figure 5: Time scale separation for survival and competition A) The time scales
over which the selective pressures of survival and competition act are shown as a function
of the probability of repeat extinction. Each time is an average of 10000 simulations. The
time for the slow switching strategy (p = .01) to go extinct (cyan) is at least ten times longer
than it takes either p = .01 (blue) or p = 1 (red) to win in competition. The fast switching
strategy did not go extinct and so is not plotted. B) The same as in A) except that the
probability of population turnover is 100 times lower. The time scale for competition at
tc = .99 is now longer than the time scale for survival. This means that the p = .01 strategy
will go extinct before winning the competition. C) The number of wins out of 1000 for
p = .01 (blue) or p = 1 (red) switchers is shown as a function of population turnover when
tc = .99. The lower value of population turnover in B) is where the shorter survival times
dominate and fast switchers win more often. As population turnover increases to the value
in A), the survival time scale becomes longer allowing competition to dominate and the
slower switcher to win more frequently.
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Figure 6: Evolution of switch rates in environments with different probabilities
of repeat disasters. A) The average probability of switching over 1000 simulations of
evolving populations (dark blue) is plotted over time in an environment with tc = .99. The
lighter area shows simulated populations removing the top and bottom 5%. Populations
quickly evolve to p = .01 and then go extinct. B) Similar to A) but with tc = .5 and a
red scale for coloring. Populations evolve a probability of switching close to p = 1 and all
but 6 out of 1000 survive the duration of the simulation. C) Similar to A) and B) but
environments switch from tc = .99 (blue) to tc = .5 (red). It took many simulations to find
a population that survived tc = .99 but once it did, transfer to an environment with tc = .5
saw the evolution of higher probabilities of switching close to the optimal p = 1 (average
switch probability shown in black). D) Same as C) but in reverse order. The population
average (black) evolves to the optimal competitive probabilities p = 1 in tc = .5 (red) and
p = .01 in tc = .99 (blue) but ultimately goes extinct in tc = .99.
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