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The olfactory system, like other sensory systems, can detect specific stimuli of interest amidst com-
plex, varying backgrounds. To gain insight into the neural mechanisms underlying this ability, we
imaged responses of mouse olfactory bulb glomeruli to single odors and hundreds of mixtures. We
used this data to build a model of mixture responses that incorporated nonlinear interactions and
trial-to-trial variability and explored potential decoding mechanisms that can mimic mouse perfor-
mance from our previous study (Rokni et al., 2014) when given glomerular responses as input. We
find that a linear decoder with sparse weights could match mouse performance using just a small
subset of the glomeruli (∼ 15). However, when such a decoder is trained only with single odors, it
generalizes poorly to mixture stimuli due to nonlinear mixture responses. We show that mice simi-
larly fail to generalize, although they could in principle fully decompose the mixtures. This suggests
that mice learn this segregation task discriminatively by adjusting task-specific decision boundaries
without taking advantage of a demixed representation of odors.

INTRODUCTION

In natural environments, the olfactory system must be
able to detect behaviorally relevant odors against vary-
ing background smells. This task resembles the cocktail
party problem in audition where the signals of different
sound sources also arrive as a linear mixture at the sen-
sory organ. Similar to our remarkable ability of disen-
tangling sounds sources, mice have been shown to excel
at the olfactory equivalent (Rokni et al., 2014). Yet, with
increasing number of mixture components this task can
get difficult due to the overlapping, combinatorial rep-
resentation of odorants by receptor neurons (Duchamp-
Viret et al., 1999, Koulakov et al., 2007, Rospars et al.,
2008, Shen et al., 2013) and sparse, distributed repre-
sentations in higher olfactory areas (Stettler and Axel,
2009, Wilson and Sullivan, 2011). These representations
have been described as synthetic, in the sense that com-
binations of odorants are thought to be encoded rather
than individual components (Gottfried, 2010, Wilson
and Sullivan, 2011).

In the main olfactory bulb (OB) of the mouse each
sensory neuron expresses only 1 of ∼ 1000 types of ol-
factory receptor proteins (Godfrey et al., 2004, Young
and Trask, 2002, Zhang and Firestein, 2002). Each odor
will activate a subset of these receptor types and will
therefore be identified by this subset; and each receptor
type may be activated by many odors, leading to a po-
tentially large overlap in the representation of different
odorants (Duchamp-Viret et al., 1999, Malnic et al., 1999,
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Rubin and Katz, 1999, Shen et al., 2013). Furthermore,
mixtures may be represented as nonlinear functions of
their parts (Rospars et al., 2008). Because of these fac-
tors, it is not clear how the difficulty of detecting indi-
vidual components relates to the number of background
odors. In a previous study, we found that mice can be
trained to perform a target-odor detection task and can
do so remarkably well even in the presence of many
background odors (Rokni et al., 2014). These behavioral
results led to the question of how mice solve this task
given the nonlinear, noisy and high dimensional input
that the glomeruli provide.

Various attempts have been made previously to pro-
vide theoretical understanding of how odors can be de-
tected against a background. Several algorithms have
relied on differences in timing of arrival of odorants
at the sensors (Hendin et al., 1998, Hopfield, 1991, Li
and Hertz, 2000). Others proposed that the tempo-
ral structure of OB activity provides a concentration
and background invariant code for odor identity (Brody
and Hopfield, 2003, Galán et al., 2006, Hiratani and
Fukai, 2015). Detection of a specific component can
also be achieved using Bayesian inference if one as-
sumes prior knowledge of the receptor activation lev-
els for ‘all odors’. Such prior knowledge could be im-
plemented in the brain as a ‘generative model’, which
could be formed by unsupervised learning (Friston,
2010, Hinton, 2007a, Hinton, 2007b). Unsupervised
learning could yield ’demixed’, atomic representations
of odors in higher olfactory areas – akin to Barlow’s idea
that a lot of knowledge about the world is imprinted
into the representations of sensory systems (Barlow,
1997). Based on a linear encoding model, Bayesian infer-
ence has been shown to work well in conditions where
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the typical mixture contains few components (Grabska-
Barwinska et al., 2013). More generally, many algo-
rithms for blind source separation and inference could
be applied to such a generative model (Bell and Se-
jnowski, 1995, Comon and Jutten, 2010, Haykin and
Chen, 2005, Otazu and Leibold, 2011, Tootoonian and
Lengyel, 2014). Alternatively, supervised methods, like
linear classifiers could be used for discriminative learn-
ing (Galán et al., 2006, Bishop, 2006, Berens et al., 2012,
Shen et al., 2013). None of these studies, however, at-
tempted to identify the decoding mechanism that mim-
ics mouse psychophysical performance – this is the fo-
cus of the current work.

In this study, we sought to find the simplest decoding
mechanism that uses experimentally constrained neu-
ronal input and match the ability of mice to detect tar-
get odorants (Rokni et al., 2014). We measured rep-
resentations of single odors and hundreds of mixtures
by olfactory receptors to derive a quantitative model of
mixture responses, which also included saturation and
experimentally-measured trial-to-trial variability. Us-
ing this model to generate glomerular responses to ar-
bitrary mixtures, we tested whether simple biologically-
plausible read out mechanisms can solve the behavioral
task. We find that the simplest multi-glomerular ap-
proach, which sums up the weighted activity of differ-
ent glomeruli and compares this sum to a threshold (a
linear classifier), is sufficient to mimic the behavior of
mice. Several glomeruli have to be combined, which ar-
gues against a strict labeled line encoding model. The
quality of the mixture samples used in training the
model was important, since a model trained only on sin-
gle odors only poorly generalizes to mixtures. We tested
this prediction in mice and find a similar behavior.

RESULTS

In the behavioral task, mice were required to report
the presence of one of two target odors in random mix-
tures containing up to 14 odors (Fig. 1A). After learning,
mice achieved accuracies close to 100% for few distrac-
tors, and performance declined with increasing number
of background odors (Rokni et al., 2014). This is a seem-
ingly remarkable feat given that a) mice had to gener-
alize from around 1, 000 training trials to mixtures that
they had never smelled before (more than 60% are novel
in test phase,∼ 50, 000 possible mixtures), b) glomerular
patterns are highly overlapping, c) mixture responses
arise from nonlinear interactions of single odors, and d)
odor responses are highly variable from trial-to-trial. To
assess how challenging this task actually is, we started
by quantifying all the parameters of the input at the
level of receptors and then probed the ability of de-
coders to use glomerular activity patterns to extract the
presence of particular target odors.

Estimating an encoding model for mixtures using empirical data

In earlier experiments (Rokni et al., 2014), we had
measured the average glomerular responses to the 16
individual odors in anesthetized mice expressing the
Ca++ indicator GCaMP3 in all olfactory receptor neu-
rons. The measured signals arise from the collection of
sensory axons converging on glomeruli. The number of
glomeruli that were responsive to at least one odor in
each OB ranged between 63 and 76.

Due to the large number of possible odor mixtures,
measuring the neural responses to the whole stimulus
set is intractable (> 10, 000 mixtures). Therefore, we es-
timated a statistical model that describes the glomerular
responses given a particular odor mixture. We imaged
responses to all single components as well as a sample
of ∼ 500 mixtures in 5 additional OMP-GCaMP3 mice
(Isogai et al., 2011, Fig. 1C-L). To estimate the variability
of responses each single odorant was presented several
times per experiment (7.7 ± 1.7, mean ± SD, Fig. 1F).
Over all odor-glomerulus pairs, the average coefficient
of variation (CV) was 0.37±0.07 (mean± SD). However,
much of the variability was correlated across glomeruli,
probably reflecting causes that are either irrelevant to
behaving mice (e.g. anesthesia level and breathing pa-
rameters; Blauvelt et al., 2013) or could be easily factored
out by neural operations such as normalization. This
correlated variability is evident when the responses of
all glomeruli to each trial of a specific odor were plot-
ted against the mean response to that odor across tri-
als (Fig. 1G). To estimate the non-correlated variabil-
ity, we first subtracted the correlated variability from
all responses. This was achieved by subtracting from
each response pattern its best linear fit to the mean re-
sponse pattern of the same odor (solid lines in Fig. 1G,
see Eqn. (4) in Methods). The timescale of changes in
the linear fit parameters was on the order of 10 min-
utes, suggesting factors such as changes in anesthesia
(Fig. 6). For each glomerulus i and odor j, we then cal-
culated the uncorrelated component of the standard de-
viation (Eqn. (4)) across trials t, and plotted it against
its mean response amplitude Oij . The non-correlated
CV for each experiment was calculated as the slope of
the linear relationship between the non-correlated SD
and response amplitude (Fig. 1H). Non-correlated CVs
ranged between 0.08 and 0.13 (0.099±0.019, mean± SD,
n=5 mice). This value is higher than expected based on
the CVs measured in single rat receptor neurons in vivo
(Duchamp-Viret et al., 2005) indicating that our measure
of variability is probably conservative.

To estimate how glomerular responses to mixtures re-
late to their responses to mixture components, we im-
aged a sample of∼ 100 mixtures per experiment (98±39,
mean ± SD, n=5) and compared the responses with the
sum of the responses to individual components of the
mixture (Fig. 1I-L). Most mixture responses could be es-
timated rather well by the linear sum of individual com-
ponent responses (Fig. 1I). However, beyond a certain
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FIG. 1. Variability and summation of glomerular odor responses. (A)
Task structure. In each trial an odor mixture is randomly generated
from a pool of 16 odors. The task is to categorize based on the pres-
ence of one of two targets (green). Filled squares denote present odors
and empty squares denote absent odors. (B) The classifier reads the
glomerular responses as inputs and attempts to report the presence
of the targets. (C) Raw, temporal average fluorescence in one imaged
area. (D) Superposition of the dF/F responses to the 16 odors for
same area as in C. Ellipses show putative glomeruli. (E) Average re-
sponse to ethyl propionate. Time course of fluorescence dF/F changes
shown for three glomeruli at right. (F) Responses to four presenta-
tions of methyl tiglate. Each panel shows one trial for all glomeruli.
(G) These four trial-responses to methyl tiglate are plotted against the
mean response. Colors represent trials as indicated by colored dots in
F. Lines are linear fits. (H) The trial-by-trial standard deviation after
removal of correlated variability (see Methods) is plotted against the
mean response (gray dots) for each glomerulus-odor pair. Red dots are
the median of mean-response-binned data. Red line is a linear fit to the
data (forced through origin). (I) An example of linear summation of
mixture components. Shown are the average responses to individual
components (blue), the response to the mixture (black), and the linear
sum of the responses to the individual components (red). (J) An ex-
ample of sub-linear summation of mixture components. Colors as in
I. (K) All mixture responses are plotted against the linear sum of the
responses to individual components for one single glomerulus. Col-
ored data points show the examples in I and J. Red line depicts the best
sigmoid function fit (Eqn. (5), see Methods). (L) Same as I with data
pooled across glomeruli and mice. Both the linear sum and the exper-
imental data were normalized for each glomerulus to the saturation
value of the fitted sigmoid function.

value, mixture responses saturated (Fig. 1J-L). Satura-
tion in odor responses may be due to several factors
such as odor-receptor protein interaction, receptor neu-

ron firing, and saturation of the Ca++ indicator. We
could not disambiguate which of these contribute to sat-
uration in our data set, and since receptor ligand inter-
actions are well known to be saturating with increasing
ligand concentration (Firestein et al., 1993, Grosmaitre
et al., 2009, Reisert and Matthews, 2001), we conserva-
tively assume that saturation is a real characteristic of ol-
factory receptor neuron’s odor responses and use a sat-
urating curve in our model for mixture responses.

These mixture responses can thus be summarized by
the following encoding model that describes the activ-
ity vector R of glomerular responses in trial t (see Meth-
ods):

R(t) = λR0(t) + (1− λ)σ(R0(t)). (1)

Thereby λ ∈ [0, 1] interpolates between the fully linear
model R0(t), and σ denotes the saturating nonlinearity
giving rise to the saturated model σ(R0(t)) (Eqn. (5)).
The linear encoding part is given by

R0(t) =
16∑
j=1

cj(t) · (Oj + ηj), ηj ∈ N (0, α2O2
j ) (2)

where Oj is the glomerular response pattern for the jth
odor, cj(t) a binary variable denoting the presence of
odor j in trial t, and the noise term ηj is normally dis-
tributed with a mean of zero and a variance of α2O2

j .
The factor α controls the coefficient of variation. Our
empirical estimate for this parameter is ∼ 0.1. We will
refer to the sequence of cj(t) during an experiment as
the trial structure.

In addition to introducing nonlinear mixing, parame-
terized by λ, we also systematically varied levels of trial-
to-trial variability α to study its effect on decoding per-
formance.

Performance of optimal linear decoder for measured mixture model

The simplest decoder at the population level is a lin-
ear readout, similar to a single perceptron (Rosenblatt,
1958). Such a readout weighs the activity of individ-
ual glomeruli Ri(t) by synaptic weights wi and predicts
the presence or absence of a target when the summed
product is larger or smaller than a threshold θ, respec-
tively. This linear-nonlinear cascade can be interpreted
like a single readout neuron. Mathematically, the output
is given by

y = H(wTR(t)− θ), (3)

where y is the binary output, H the Heaviside func-
tion, which is 1 for positive arguments and 0 otherwise
and T denotes the transpose of the weight vector w.

In our published work (Rokni et al., 2014), there
were thirteen mice and 1, 500 − 3, 500 trials per mouse
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FIG. 2. Decoding performance of linear readout and SVM for
mixtures with trial-to-trial variability and nonlinear mixtures.
(A) Performance of optimal linear readout in detecting one tar-
get pair (isobutyl propionate and allyl butyrate) is plotted as
a function of trial-to-trial variability (α). The curves show the
performance of one decoder based on each of the six measured
glomerular maps and their average (± SD). The mouse per-
formance for these targets is shown as horizontal line. The
estimated range of the glomerular noise is highlighted by the
shaded, red region (λ = 1). (B) Average decoding performance
for all 13 pairs of target odors. The average performance of
all mice is indicated by a horizontal line and the distribution
of experimental performances is shown to the right (λ = 1).
(C) Average performance for data from all mice of optimal lin-
ear decoder for varying noise levels and nonlinearities from
λ = 1 (linear case) to λ = 0 (experimentally measured satura-
tion). (D) Average performance for data from all mice, using
SVM with radial basis function for mixture data as in panel C.
(E) Performance of OLE and SVM as a function of the number
of odors in the mixture. Performance curves for 13 mice and
their average in red. The average performance curves for the
SVMs and OLEs are shown for the same 13 target odor pairs
for linear mixture model (λ = 1) with α = 0.25. Those are
the conditions for which the experimental and model perfor-
mance curves are best correlated (Figures S4C-D). (F) Same as
(E) but for mixtures with saturation (λ = 0).

(2, 308 ± 625, mean ± SD) with uniform distractor dis-
tribution, i.e. the number of odors per trial was equally
distributed between 1 and 14. For each mouse this seg-
regation task can be summarized by the trial statistics
cj(t), which is a binary variable denoting the presence
of odor j in trial t and the ideal behavior r(t). For each
animal’s trial statistics, we calculated the optimal linear

weights wOLE that minimize the mean squared devia-
tions between the ideal behavior r(t) and the output of
the linear decoder wTR(t) (see Eqn. (9)) and the optimal
decision threshold θ that maximizes the performance for
these weights (wOLE), on a random training set of 80%
of the trials with glomerular patterns drawn from the
encoding model (Eqn. (1)). This decoder, which we call
the OLE (for optimal linear estimator) was then tested
on the remaining 20% of trials (Methods). We repeated
this procedure 20 times and report the average perfor-
mance on the test sets.

Performance was perfect without trial-to-trial vari-
ability, α = 0 (Fig. 2B, λ = 1). Increasing α gradually
decreased performance, which reached ∼ 65% for α = 1
(Fig. 2A and B). Similar trends were obtained using
the glomerular patterns from different imaging datasets
(Fig. 2A) and for different target odors (Fig. 2B). For a
noise level similar to our experimental estimate (∼ 0.1),
most linear readouts performed better than correspond-
ing mice detecting the same targets (Fig. 2B). Thus, con-
sidering only the trial-to-trial variability and mixing of
odors without saturation, a simple linear decoder is suf-
ficient to match or exceed mouse performance, although
it had access only to the time-averaged response of a
limited set of dorsal glomeruli. Since the specific choice
of data had little effect on classifier performance, we fo-
cused on a particular imaging set with 72 glomeruli.

Next we introduced glomerular saturation by vary-
ing the parameter λ in Eqn. (1). As expected, the av-
erage performance of the optimal linear decoder for all
target odors declined with both increasing nonlinearity
and noise (average performance for all target pairs is
shown in Fig. 2C, an example target pair is shown in
Fig. 7A). When noise levels are low (α < 0.1) and re-
sponses are not fully saturating (λ > 0), the mean de-
coder performance is above 98%. When considering sat-
urating glomeruli (λ=0) and the experimental estimate
of noise (α=0.1), performance drops to 91.6%, which is
comparable to the average mouse performance of 90.3%.
This demonstrates that the ’cocktail party problem’ is al-
most linearly separable at the level of glomeruli.

Performance of support vector machine (SVM) for noisy, nonlinear
mixtures

Since the glomerular activity patterns, even in the lin-
ear noisy mixture case, R(t) are given by a superpo-
sition of multiple Gaussian random vectors, the opti-
mal decision boundary might be highly nonlinear and
not merely a single hyperplane. When the odor pat-
terns are nonlinearly mixed, the geometry of the deci-
sion boundaries becomes even more intricate. A de-
coder that is able to flexibly adjust its decision bound-
aries without constraining them to be a single hyper-
plane may therefore perform considerably better than
the simple linear readout. One powerful class of de-
coders with such properties are SVMs with radial basis
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functions as kernel (see Methods). The decision bound-
aries for such SVMs are formed by sums of Gaussians
and can therefore in the limit approximate almost any
decision boundary (Muller et al., 2001, Vapnik, 1999).

We trained SVM decoders with the same cross-
validation procedure as described for the optimal linear
decoder (see Methods). As expected from their versa-
tility, SVMs were more accurate than the linear readout.
Fig. 2D shows the performance of the SVM for the same
target odors as the optimal linear decoder in Fig. 2C.
When noise levels are low (α < 0.1) and responses are
not fully saturating (λ > 0), the SVM performance was
above 99.5%. When considering saturating glomeruli
(λ = 0) and the experimental estimate of noise (α = 0.1)
performance drops to 94.7%, outperforming mice and
making about 40% fewer mistakes than the optimal lin-
ear decoder. Similarly, for other conditions, SVMs make
fewer errors than the optimal linear decoder and have
substantially better performance for low noise levels ir-
respective of λ (Fig. 2C-D).

Given that the overall performance of both optimal
linear decoder and SVM broadly resembled that of
mice, we investigated whether they make similar er-
rors. Specifically we asked whether the dependence of
performance on the number of mixture components is
similar to the monotonic decline seen in mice (Fig. 2E
and F). We refer to this relationship as the performance
curve. We calculated the average correlation coefficient
(r) between the performance curves of the classifiers for
specific odor targets and their corresponding mice. The
average correlation was maximal for the fully saturated
mixture model (λ=0) with a noise level of α = 0.25 for
both the optimal linear decoder (r = 0.42 ± 0.01, mean
± s.e.m., n = 13 mice) and SVM (r = 0.40 ± 0.01, mean
± s.e.m., n = 13 mice; Fig. 7C and D). When scrutiniz-
ing the shape of the performance curves, it is important
to note that the number of possible mixtures varies with
the number of components in the mixture. For instance,
there are many more possible mixtures of 7 components
than there are of 1 or 14 components. Therefore, spe-
cific stimuli on the edges of the performance curve re-
peat much more, offering more training samples for the
classifier. For this reason, one may expect that classi-
fier (and mouse) performance curves will not be mono-
tonic, but could have a minimum at the midrange of
mixtures. We find, however, that despite the different
computational capabilities of SVMs and the OLE, per-
formance for both decoders decreases as the number of
components in a mixture increase, for realistic estimates
of noise and nonlinearity. This suggests that the over-
lapping and nonlinear mixing of noisy glomerular pat-
terns, rather than limitations of the readout mechanism,
is a fundamental bottleneck for this task.

Taken together, although the linear decoder is not the
optimal decoder, its performance is comparable to mice
for our conservative estimates of noise and saturation
levels. We therefore used this linear decoder, rather
than the SVM, for further analysis. Nevertheless, it is

conceivable that the many parallel pathways from the
OB could implement nonlinear decoding schemes such
as the SVM; however, for this task nonlinear decision
boundaries are not necessary.

Performance of sparse, linear decoder for noisy, nonlinear mixtures

The linear decoders considered so far had no restric-
tions on the number of glomeruli used. Inspired by the
observation that the projections from the OB to the piri-
form cortex are sparse and disperse (Ghosh et al., 2011,
Miyamichi et al., 2011, Sosulski et al., 2011), we won-
dered how well sparse, linear readouts would perform
the task. We turned to logistic regression, which is an ef-
ficient, binary classification algorithm that can be read-
ily interpreted from a neuronal point of view as a linear
readout neuron with nonlinear firing (Berens et al., 2012,
Bishop, 2006). Similar to the OLE, the optimal logis-
tic regression (OLR) is found by minimizing the likeli-
hood of misclassifications on the training set. Addition-
ally, we employed a regularization term that punishes
non-zero readout weights by adding the sum of all abso-
lute values of the weights to the summed negative like-
lihood term (L1 - regularization, Eqn.(12)). By weighing
this regularization term with a constant 1/C that can be
systematically varied, one can bias the OLR to exhibit
varying degrees of sparseness. This regularization can
be thought of as an additional cost term for neuronal
wiring, and that the OLR attempts to maximize perfor-
mance while minimizing wiring.

When the cost for wiring dominates, the performance
of the OLR drops to chance level and at the other ex-
treme performance asymptotes to levels similar to the
optimal linear. Between these two extremes perfor-
mance strongly depends on the number of nonzero
readout weights (Fig. 3A). However, the overall effect
of readout sparseness on performance was mild; this
is not a simple consequence of the glomerular activity
itself being sparse, since most glomeruli are activated
by at least one odor. For our estimated noise level of
0.1, only 10 − 20 glomeruli are sufficient to match the
performance of mice. To reach 90% of the asymptotic
performance only 15.7 ± 0.9, mean ± s.e.m. (n = 13
mice) were necessary (Fig. 3A). The corresponding read-
out weights for 90% of the asymptotic performance and
the asymptotic performance are shown in Fig. 3B. The
OLR is trained merely based on the sampled mixtures
vectors R(t), and the ideal response for the fraction of
training trials, but has no explicit knowledge of the iden-
tity of the target odor or the glomerular activity patterns
of the individual components. As indicated above, there
are at least an order of magnitude more mixture stimuli
than stimuli that a given mouse was exposed to. Despite
these differences in trial statistics, classifiers trained on
trial statistics from different mice with the same target
odors converged to similar weights in both the sparse
and the dense case (Fig. 3B – see odor pairs F, G & H, for
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FIG. 3. Performance of sparse linear readout (OLR) (A) Per-
formance versus number of non-zero weights of the OLR (λ
= 0). Each faded line is for data from one animal and solid
line depicts the average. The horizontal, dashed lines indicate
asymptotic performance and the vertical dashed lines indicate
the corresponding minimal number of glomeruli to achieve
90% of that performance per animal. Their average is high-
lighted as solid vertical line. Inset: Average performance vs.
number of non-zero weights of the OLR for varying noise lev-
els (α = 0, 0.05, 0.1, 0.25, 0.5, 0.75, 1, from top to bottom). (B)
Example readout weights obtained for 90% of asymptotic per-
formance (left) and asymptotic performance (right). Several
of these 13 mice had the same target odor pairs, as indicated
by grouping under the same letter. OLR learns similar read-
out weights from different trial statistics for the same target
odors. Across different target odors, the readout weights vary
substantially – but the weights are similar for the same tar-
get odors. (C) Performance of OLR versus perturbation level
of weights for linear and nonlinear mixing with α = 0.1.
Each thin line is the average for 20 random perturbations per
mouse, and the thick line is the average across mice. The hor-
izontal lines indicate 90% of the unperturbed weight perfor-
mance for either condition (λ = 0, 1). The vertical lines indi-
cate the perturbation level where the performance drops be-
low 90% of the unperturbed weight performance.

example). When mice had different targets, the read-
out weights were also distinct (Fig. 3B). These weights
are not simply a reflection of the glomerular patterns of
the target odors, but also take into account glomerular
patterns of distractors (Fig. 8A). Conversely, attempting
to use the target-odor patterns as readout weights re-
sults in poor performance – even for just one target odor
such a template matching algorithm is about 20% worse
(Fig. 8B-C).

The saturation also affects which and how many
glomeruli are read out by the OLR (Fig.9A-B). For linear
mixing (λ = 1), only around 10 glomeruli are necessary
to achieve 90% performance (10.6 ± 0.5 mean ± s.e.m.,
n = 13 mice). Despite this smaller number of necessary
glomeruli, they are not just a subset of the ones used in
the fully saturated case.

Although our analysis showed that multiple
glomeruli are necessary for detecting the target
odors from glomerular inputs that incorporate our
estimates of trial to trial variability and saturation, we
asked whether single glomeruli may be sufficient to
detect the targets making less conservative assump-
tions. We used receiver operating characteristic (ROC)
analysis, a standard technique in signal detection, to
estimate the ability to decode using single glomeruli,
assuming linear summation of glomerular inputs and
no trial to trial variability. We found that even in these
favorable conditions, the best glomerulus-target odor
pairing leads to a performance of less than 75% (with
top 1-percentile 68.0%, and mean ± SD performance
52.8 ± 0.04%, n = 5473 glomerulus-odor targets pairs;
Fig. 9C-D).

Since synaptic transmission is inherently noisy and
plastic in the nervous system (del Castillo and Katz,
1954), an important question is how robust the decoder
is to fluctuations in the readout weights. To test for ro-
bustness, we perturbed the classifier weights (for C =
106) by multiplying them by a random factor that is nor-
mally distributed with a mean of one. We varied the per-
turbation level by varying the standard deviation of this
factor. We found that the linear decoder is fairly robust
to changes in its readout weights and that robustness is
higher for the linear mixing case (λ = 1, Fig. 3D). For
the data from all 13 mouse experiments, performance
remained better than 90% of optimal at perturbation lev-
els that are less than 0.25 for λ = 1, and 0.1 for λ = 0.
However, robustness of classifier performance strongly
depends on the specific target odors.

Learnability and experience dependency of readout weights

We established that this task is linearly separable, but
even a linear decoder has as many degrees of freedom
as a mouse glomeruli. This raises the question how dif-
ficult it is to learn the readout weights; that is, how many
examples are needed to properly constrain the weights?
To quantify the need for learning, we first computed
the odds of a ’random’ readout to perform well. Ran-
dom readout weights were drawn from a Gaussian dis-
tribution with the same mean and standard deviation as
the optimal linear readout weights. We evaluated the
performance of 1, 000, 000 such readouts per target pair
used in the experiment assuming α = 0.1 and saturat-
ing glomerular responses (λ = 0), always using the ex-
perimental trial structure (Fig. 4A). The average perfor-
mance was 58.41± 4.53% (mean ± SD). The chance that
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FIG. 4. Learnability and dependence on trial statistics. (A) Distribution of performances for 13, 000, 000 random linear decoders
with weights drawn from the distribution of OLE-weights and corresponding optimal threshold θ. The ability of 1, 000, 000
random readouts to detect the presence of the targets was evaluated for each of the 13 target odor pairs. The blue lines show
the performance of the optimal linear decoder (OLE). (B) Performance vs absolute number of training samples for α = 0.1 and
C = 106. For each target the average performance when trained on a small, random subset of samples is shown; each curve is
averaged over 20 random training sets. The inset show the asymptotic average performance, which is reached when trained by
1, 500 − 2, 000 trials. The dashed, horizontal lines indicate 90% of the asymptotic performance, and the corresponding vertical
lines mark the necessary training samples to achieve this performance. (C) Top: Average performance curves for OLE per target
pair trained only on 80% of the single odor stimuli (yellow, OLE1), and on 80% of all the data, (blue, OLE14), with 0.1 noise and
linear mixing based on 72 glomeruli. Bottom: same as top for non-linear mixing. (D) Average performance curves for OLE per
target pair when trained only on 80% of the single odor stimuli (yellow, OLE1), and on 80% of all the data, (blue, OLE14) based
on 421 glomeruli. The red curve shows the average performance ± s.e.m. of 5 mice trained on single odors and subsequently
tested on mixtures of 1, 3, 8 and 14 odors (Mice1).

a random readout performs better than 80% is around
1 in 105. Thus, random hyperplanes typically fall short
of separating the mixtures with target odors from the
ones without. We next directly computed how many
training samples are required to find the proper read-
out weights for performing the task. To find the mini-
mum number of trials needed to generalize to the rest
of the data, we varied the absolute number of training
trials directly. With α = 0.1, only ∼ 30 random trials
were needed to get to 90% of asymptotic performance
assuming linear mixing (λ = 1), yet ∼ 150 trials for sat-
urating mixture responses (λ = 0) (Fig. 4B). This differ-
ence highlights how saturation makes the task harder
to learn, but crucially these numbers of training trials

compare favorably to mice - typically mice had an order
of magnitude more trials to reach sufficient performance
before being tested with uniform distractor distributions
(Rokni et al., 2014).

The analysis above indicates that a linear decoder can
generalize from a rather small number of random mix-
ture stimuli to thousands of other mixtures. Due to non-
linear mixing, this ability to generalize beyond trained
samples strongly depends on the quality of training
samples. A particularly meager training set is given
by samples of just single odor components. Therefore,
we trained classifiers only on single odors and tested
them on arbitrary mixture stimuli. Without saturation
the OLE performance for mixtures with more than one
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component degrades only mildly, but is substantially
worse than an OLE trained with a training set contain-
ing all component numbers (Fig. 4C, top). With satu-
ration, the performance of the OLE degrades strongly
with increasing number of odors, and already for mix-
tures of two components has a performance of below
70% (Fig. 4C, bottom). This inability to generalize is ob-
viously stronger when fewer glomeruli are used for de-
coding. When we pool over all measured glomeruli (6
OBs, 421 potentially redundant, dorsal glomeruli), the
performance of the OLE decays more gracefully with
the number of components (Fig. 4D). Thus, for the lin-
ear readout, the mixture model, as well as the training
stimuli, strongly affects the ability of the decoder to de-
tect target odors.

Discriminative learning vs. generative modeling

Complementary to the purely discriminative learning
considered above, an important idea in neuroscience is
that neural representations are also formed in a task-
independent, unsupervised way by learning a gener-
ative model of the sensory input (Friston, 2010, Hin-
ton, 2007a, Hinton, 2007b). The crucial advantage of
generative modeling is the ability to learn tasks with
much smaller number of task-specific training samples
by exploiting general knowledge about the nature of the
world. For our demixing task specifically this would
mean that the glomerular representation (Fig. 1B) is first
demixed into a representation akin to the one in Fig. 1A.
Ideally this would allow the animal to perfectly learn
the task from samples of just single odor components
without the drop in performance observed for purely
discriminative learning (cf. Fig. 4C-D).

To test the ability of mice to generalize beyond sin-
gle odor components, we trained 5 mice for several ses-
sions on the single odor task until they reached > 80%
performance (see Methods). During test sessions, we
mainly presented single odors, but in 10% of the tri-
als, we also presented mixture stimuli with 3, 8 and 14
components (equally distributed). During these test ses-
sions, mice continued to perform well for single odorant
trials, and for (novel) mixtures of three. For mixtures
with more components performance dropped substan-
tially (Fig. 4D), consistent with OLE predictions. This
pattern was observed in all mice individually (Fig. 10).
Over the ∼ 50 test stimuli per mouse and mixture num-
ber, their performance from the first ten to the last ten
trials did not strongly fluctuate (2 significant increases,
1 significant decrease and 12 stable performances with
5% significance level; Mann-Whitney U test, p-values in
Table I).

Our earlier experiments demonstrated that mice can
learn this task when exposed to training samples with
more complex odor components (Rokni et al., 2014).
This suggests that due to the nonlinear nature of odor
mixture encoding, both mice and OLEs have diffi-

TABLE I. Comparison test trials of performance (p-values)
mouse 1 mouse 2 mouse 3 mouse 4 mouse 5

3 odors 0.028 1.000∗∗ 0.851 0.504 1.000∗∗

8 odors 0.502 0.495 0.927 0.912 0.966

14 odors 0.500 0.931 0.500 0.922 0.009∗

P-values for Mann-Whitney U test with Monte Carlo per-
mutation test statistics, i.e. fraction of cases where MWU
statistic for shuffled data is larger than MWU statistic in last
10 and first 10 trials per mouse and odor condition. Labels:
∗ . . .significant performance decrease, ∗ ∗ . . .significant
performance increase.

culty generalizing much beyond the trained complexity,
and rather settle on decision boundaries that are good
enough to solve the task. It further indicates that mice
cannot significantly benefit from a generative model by
which they could task-independently decompose odor
mixtures into their individual odor components.

Capacity of linear readout

Our analysis demonstrated that the presence of a sin-
gle odor in mixtures of up to 14 odors is explicitly avail-
able for a linear decoder from the rich repertoire of re-
ceptors. What is the capacity limit for such a decoder?
We can estimate this by using surrogate odor represen-
tations based on the representations of the 16 odors we
measured. Surrogate odors were generated by drawing
with replacement from the activations of the individual
glomeruli by the 16 odors. We then calculated how well
a linear decoder can report the presence of a pair of tar-
get odors in mixtures of up to 128 odors. Performance
of classifiers was dependent on the target odor but all
classifiers performed above chance level even for 128
odors, and above 80% for mixtures of around 32 odors
(Fig. 5A). This is a remarkable ability since the classi-
fier only uses 72 glomeruli out of the 3, 000 or more
glomeruli in mice (Richard et al., 2010). We repeated
the same analysis using pooled glomerular data from 6
olfactory bulbs (421 glomeruli). With this large num-
ber of (potentially redundant) inputs, the performance
of classifiers was above 70% for mixtures of up to 128
odors (Fig. 5B). This analysis suggests that the capacity
of mice to detect target odorants from mixtures may be
well above what was tested.

Discussion

An important task of the olfactory system is to iden-
tify odors of interest that are embedded in background
mixtures. We formulated this task as a classifica-
tion problem and asked whether a simple, biologically-
plausible classifier can solve this task in the face of noise
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the experimental performance of mice (B) Same as in panel A,
but calculated by pooling across imaging experiments to form
odor patterns with 421 glomeruli.

and non-linear integration of odorants at the level of ol-
factory receptors. To tackle this question we first deter-
mined an encoding model for mixture responses of ol-
factory sensory neurons as the input for the classifiers.
The model is based on data from calcium imaging and
generates mixture representations that are saturating
sums of single odor representations with trial-to-trial
variability. We find that olfactory receptors have a sub-
stantial capacity to transmit information about the com-
position of odor mixtures despite saturation and noise,
which is explicitly available for a linear, multiglomeru-
lar readout.

In recent years, object recognition has been identi-
fied as a core challenge to understand the visual sys-
tem (DiCarlo et al., 2012). For (visual) object recogni-
tion, simple linear readouts are also sufficient to match
behavioral performance (DiCarlo et al., 2012, Majaj et al.,
2015) However, these linear readouts cannot be applied
directly to photoreceptors, but rather to the neuronal
activity of higher visual areas, after several nonlinear
transformation steps, which are generated from mul-
tiple feedforward steps of processing (DiCarlo et al.,
2012). Our finding that the identity of odors in mix-
tures can be directly decoded by linear readouts from
glomeruli highlights a fundamental contrast between
the olfactory and visual systems which is also mirrored
anatomically: olfaction has substantially fewer anatom-
ical stages than vision (Gire et al., 2013).

Mixture Model

The general question we have posed in this study
is whether glomerular responses to mixtures that in-

clude target odors and those that exclude target odors
are separable. Due to the large number of possible
stimuli in the behavioral task (> 10, 000 possible mix-
tures), we estimated a statistical model of mixture re-
sponse based on measurements made from a sample
of mixtures. We found that the relationship between
glomerular responses to mixtures and the responses to
mixture components can be described by a linear sum
followed by a saturating nonlinearity. For the odor stim-
uli we used in this study, suppressive or supralinear re-
sponses were not significantly above response variabil-
ity (Duchamp-Viret et al., 2003). We also systematically
measured the trial-to-trial variability in glomerular re-
sponses. We found two forms of response variability:
one that is correlated across glomeruli and can proba-
bly be attributed to variation in the level of anesthesia
and breathing, and another that was uncorrelated across
glomeruli and may represent trial-to-trial variability in
individual input channels. The magnitude of the un-
correlated noise was, on average, 10% of response am-
plitude. In anesthetized rats, the CV of single OSN fir-
ing was found to be on the order of 1 (Duchamp-Viret
et al., 2005). Single glomeruli receive a few thousand
sensory axons although this number can vary signifi-
cantly depending on receptor gene (Bressel et al., 2016).
If OSNs were statistically independent of each other, the
glomerular CV is expected to be on the order of 1− 2%.
The higher estimate in our study may indicate that sen-
sory neuron responses co-vary and are not truly inde-
pendent, but may also reflect non-biological sources of
variability in our measurements.

Single glomeruli are not enough

In some cases, individual odorant receptors are
thought to directly signal the presence of individual
odors in a “labeled line” manner (Dewan et al., 2013,
Ferrero et al., 2011, Hussain et al., 2013). These are
thought to be involved in detecting specific odors that
are important for innate behavior (Kobayakawa et al.,
2007, Liberles, 2015, Stowers et al., 2013). Here we find
that individual glomeruli are not sufficient to report the
presence or absence of individual odors. Although it
is possible that our limited sample of dorsal glomeruli
miss more specialist glomeruli with highly selective re-
sponses, it seems implausible that there will be such
glomeruli for a vast array of odors. Indeed, experimen-
tal evidence strongly supports the idea that most odor-
ant receptors in the main olfactory system are broadly
tuned (Malnic et al., 1999, Araneda et al., 2000, Saito
et al., 2009). Although individual glomeruli do not carry
enough information to separate stimuli that contain a
target odor from those that do not, we could reliably
make this distinction by integrating information across
different glomerular channels.
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No preprocessing required, a linear readout is sufficient

Our decoders were based directly on the nonlinear,
noisy glomerular inputs. Other than removing co-
fluctuations across glomeruli, no intermediate stages of
preprocessing such as normalization or decorrelation
were necessary. Our analysis suggests that correlated
trial-to-trial variability probably reflect slow changes
due to anesthesia (Ecker et al., 2014) and breathing.
Breathing induced covariation could be easily removed
by lateral interactions (or to some extend by adjust-
ing linear readout weights), which is why we neglected
them here (Friedrich and Laurent, 2001, Olsen et al.,
2010, Zhu et al., 2013, Blauvelt et al., 2013). Our mea-
surements as well as those of others (Duchamp-Viret
et al., 2005) indicate that noise levels at the glomeruli
and overlap of glomerular patterns are not high enough
to require an additional processing stage. The optimal
linear readout relies on weights that reflect the pattern
of glomerular activation by target odors and are orthog-
onal to the pattern for distractor odors. This mech-
anism inherently removes overlap of glomerular pat-
terns. Normalization and decorrelation may become
more important for large amplitude stimuli that may
saturate neuronal elements more strongly or for subop-
timal readouts (like template matching). Decorrelation
of different types has been proposed in the olfactory
bulb, most notably in the context of reducing overlap
among patterns of activity for different odors (Friedrich,
2006, Gschwend et al., 2015). Such pattern decorrela-
tion or separation is thought to help downstream read-
out when noise limits separability (Friedrich, 2006, Wil-
son, 2009). In the future it will be interesting to look at
the role and amount of noise correlations in glomeruli
of awake animals performing this figure-ground segre-
gation task.

Weights can be sparse but not random

Although our intent was not to make specific analo-
gies with neural circuits in the mouse brain, it is tempt-
ing to compare the decoder readout weights to the
connections from the OB to the piriform cortex (PC).
Since PC neurons receive a sample (possibly random) of
glomerular input (Ghosh et al., 2011, Miyamichi et al.,
2011, Sosulski et al., 2011), we also asked whether im-
posing sparseness constraints on the decoder affects per-
formance. Remarkably, less than 20 glomeruli were suf-
ficient to achieve performance that matches mice. It is
likely that even fewer glomeruli may suffice if we were
able to choose from the entire complement of mouse
glomeruli. We found that while sparse connectivity was
sufficient for robust performance after adequate train-
ing, classifiers built with random connectivity based on
the same statistics as the optimal linear readouts were
typically not successful. The problem remains linearly
separable within the higher dimensional PC represen-

tation, but crucially this recoding step is not necessary
for a linear readout to be successful. Furthermore, our
analysis of random readout suggests that even in a large
PC population there might only be a few neurons that
are selectively tuned to the target odors, due to the large
number of mixtures. To the extent we can make an anal-
ogy to mouse olfactory circuits, our findings suggest
that any stochastic connectivity from the OB to PC may
have to be supplemented with synaptic modification in
the inputs, associative fibers or outputs of the PC to al-
low odor mixture analysis. Whether such learning oc-
curs associatively over an extended period as animals
experience odor environments, or whether it requires
more specific reinforcement is an interesting question
for future experiments. Alternatively, learning could
happen via granule cells that dynamically gate the ap-
propriate glomerular channels via mitral cells to the PC
(Koulakov and Rinberg, 2011, Markopoulos et al., 2012),
which would predict the existence of target-odor spe-
cific feedback modulation of mitral cells.

Although the optimal linear readouts are sufficient
to match the performance of mice given the encoding
model, we also showed that SVMs, which can approx-
imate arbitrarily complex decision boundaries, outper-
form those simple decoders and suffer from decaying
performance for increasing numbers of distractors. This
performance decay suggests that for both mice and ma-
chines the ultimate bottleneck in this task is the overlap-
ping glomerular representation. While SVMs were not
required to mimic mouse performance, it is conceivable
that the myriad parallel pathways from the OB could
implement decoding schemes similar to an SVM and
that over time plasticity rules allow for the learning of
intricate decision boundaries; however, for this segrega-
tion task nonlinear decision boundaries are not neces-
sary.

Robustness and training dependence

Other than the overall performance, the difficulty of
classification can also be assessed by the robustness of
classification to modifications in readout weights and by
the speed at which a classifier converges on the proper
weights. Even linear classifiers can learn the task rela-
tively easily in dozens of trials, despite response vari-
ability and saturation. Although a direct comparison of
learning rates of classifiers and mice may not be appro-
priate, it is worth noting that mice take hundreds of tri-
als to learn the task under our conditions. We also find
that once a classifier has been trained, small perturba-
tions of the weights did not strongly affect performance.
This indicates that the classifier has robust performance
in a local region of the weight space, which neverthe-
less cannot be readily reached by random assignment.
Our analysis of random readouts indicates that there is
a 1 in 105 chance of having a performance of above 75%.
Extrapolating this insight to neural architecture of the
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mouse olfactory system, it might mean that any projec-
tions that start out randomly (e.g., the OB to cortex pro-
jections) will need to be modified with learning, but that
there might be several ‘template’ neurons whose high
correlation with rewards will facilitate learning.

We showed that optimal linear readouts based on
glomerular activity are highly sensitive to the quality
of the training set. When trained on single odors, they
perform poorly for mixtures. An ideal observer that
knows how individual odors mix should perform accu-
rately for mixtures even when trained on single odors.
To be specific, assuming an explicit ‘atomic’ represen-
tation of the single odors in the olfactory cortex, and
that a decoder has access to this population, the readout
should generalize well to mixtures when solely trained
on the atoms. This reflects the main advantage of gener-
ative modeling, which has therefore been hypothesized
to play an important role for shaping sensory represen-
tations (Barlow, 1997, Friston, 2010, Hinton, 2007a, Hin-
ton, 2007b) We tested this prediction in mice and found
that while their performance for single odors remains
stable and their performance for mixtures of three is
comparable, mice generalize poorly to mixtures of eight
and fourteen. This suggests that mice learn the segre-
gation task by adaptively adjusting decision boundaries
directly based on incoming sensory information rather
than highly processed, demixed representations. Due
to the highly nonlinear representation of mixtures, such
decision boundaries will generalize poorly when only
trained with single odors. An alternative explanation
for the mouse behavior (i.e., failure to detect target odor
in mixtures when trained only on single odorants) is
that they learned a different task rule - for instance, that
two of the 16 odors are rewarded only when presented
alone. Due to the novelty and low relative frequency of
the mixture stimuli they may have ignored those stim-
uli and thus failed to generalize. Such an interpretation
however is at odds with the good performance for mix-
tures of three odors and the fact that their errors con-
sisted of both false alarms and misses. The training data
from our previous study also argue against this alternate
interpretation (Rokni et al., 2014). The mice in that work
were trained by picking odor mixtures with increasing
complexities - from distributions ranging from few dis-
tractors to uniform distractor distributions. Whenever a
mouse reached 80% performance, the distribution was
changed (in three steps until the uniform distribution
was presented in the test phase). There the mice re-
quired> 1, 000 trials to reach this level, and usually also
encountered hundreds of trials per condition. This ex-
perience dependency dwarfs the small number of trials
that the linear decoder needs to learn the task. However,
carefully designed future experiments are necessary to
address the question of how much training is required
for learning in mice. Arguably, learning the task relies at
least on two independent components. First, mice have
to learn the task structure (go/no go, rewards, timing,
etc.) and second mice have to learn which target odors

are rewarded. By using the same task structure for dif-
ferent odor sets, one could greatly reduce the learning
phase for the structure part and better estimate the num-
ber of trials that mice need for learning the task.

Experiments similar to those in the generalization
task we studied in this paper (Fig. 4D) have been done
in humans. Jinks and Liang trained humans initially
for 3 days on single chemicals and then tested them for
mixtures (Jinks and Laing, 1999). The subjects detected
single chemicals with performance of around 70% and
their performance for mixtures of 12 dropped to chance
level. Our modeling, as well as our own experiments,
suggest that this decay in performance is both a conse-
quence of the training data and the synthetic encoding
of stimuli, which makes generalization difficult. In vi-
sion, the intriguing characteristics of training schedules
has long been noted – i.e. a minimal number of training
examples is needed per session for learning and an inter-
leaved stimulus presentation design can hinder learn-
ing (Aberg and Herzog, 2012; see also ; see also Lechner
et al., 1999 for nonvision examples). Consequently, we
believe that the study of the impact of training sched-
ules could also be fruitful for understanding olfactory
circuits in mice.

Capacity

Overlapping representations of odors allow the olfac-
tory system to encode more odors than the number of
receptor types (Hopfield, 1999). However, broad tuning
of receptors may decrease the discriminability of stimuli
when noise and saturating glomeruli are considered. An
earlier analysis of the coding capacity of spatial patterns
of glomerular activation (Koulakov et al., 2007) pointed
out that even with all-or-nothing glomerular activity, it
is possible to simultaneously represent a dozen mixed
odorants. Our analysis considers graded glomerular re-
sponses and empirical measurements of responses to
specific odors and suggests that the capacity of the sys-
tem is substantially greater. Whether this estimate is
comparable to the capacity of mice remains unknown.
Yet, understanding the capacity to detect and discrim-
inate odors (Bushdid et al., 2014, Meister, 2015, Weiss
et al., 2012) will provide crucial insights for understand-
ing the olfactory system.

Conclusions

In this work, we have linked experimentally-
measured glomerular responses to behavioral data in an
odor demixing task. Using realistic assumptions about
neuronal noise, and nonlinear interactions for mixtures,
we show that the information about odor-mixture com-
ponents at the level of olfactory receptors is already lin-
early separable and does not require any preprocessing
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or inference algorithms that rely on prior information
and feedback circuits.

METHODS

Computational analyses are based on published be-
havioral and imaging data (Rokni et al., 2014). Further
imaging experiments to estimate trial-to-trial variabil-
ity and mixing properties in glomeruli as well as a be-
havioral test for generalization have been performed as
described below. All procedures were performed us-
ing approved protocols in accordance with institutional
(Harvard University Institutional Animal Care and Use
Committee) and national guidelines.

Summary of behavioral task and data

An odor panel of 16 single monomolecular odors was
used and for each mouse two odors were selected as tar-
get odor pair. In each trial, one of these target odors
was presented with 50% probability, together with a ran-
dom selection of distractor odors, whose number is uni-
formly distributed. Mice were trained to report the pres-
ence of the target by licking a water spout and its ab-
sence by withholding licking. Licking on go trials (hit)
was rewarded with water, whereas licking on no-go tri-
als (false alarm), as well as withholding on go trials, was
punished with a time-out which increased the time to
the next trial. Mice learned to perform this detection
task with above 80% performance after being trained
over just a few hundred trials, with some mice perform-
ing close to 100% (Rokni et al., 2014). Each mouse was
trained on a fixed pair of target odors and after train-
ing tested over multiple days with the mixture statistics
described above. For each mouse, we selected the be-
havioral trials on each day starting from the first lick
and ending with the last lick (which resulted in drop-
ping about 10 trials per session) and concatenated those
trials to create a continuous behavioral set, describing
which odor was present and what behavior the mouse
performed. There were 4− 10 such sessions per mouse,
which lead to behavioral data sets with 1, 500−3, 500 tri-
als each, for 13 mice. Some of these mice had the same
target odor pairs.

Novel single odor task

The procedures for behavioral training were per-
formed similarly to the ones described elsewhere (Rokni
et al., 2014). In brief, 5 c57bl6 mice (Charles River)
were first anesthetized (Ketamine/Xylazine 100 and 10
mg/kg, respectively) and a metal plate was attached to
their skull with dental acrylic for subsequent head re-
straining. Following 1 week of recovery from surgery,
mice were water deprived and were trained on the task.
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FIG. 6. Timescale of changes in correlated glomerular response
variability A linear fit was used to describe the relationship be-
tween individual responses to each single odor presentation
and the mean response to that odor (Fig. 1G). To measure the
timescale at which the parameters of the linear fit change, we
plot the autocorrelation of the slope (black) and intercept (red)
of these fits. The slow changes are in line with correlated vari-
ability being related to anesthesia.

During training a single odorant was presented for 2
seconds every 10 seconds and mice had to respond cor-
rectly within the 2 second period. Licking when a tar-
get odor was presented was rewarded with a 10µl water
drop, correct rejections were not rewarded, and incor-
rect trials were punished by a 5 second timeout. Half
of the trials were go trials in which one of the two tar-
get odors is presented, and half were no-go trials in
which one of 14 background odor is presented. Test-
ing sessions began after mice performed above 80% cor-
rect for a whole session. In testing sessions, a mixture
of 3, 8, or 14 components was presented every 10th trial
with a 50% probability of a target odor being present.
Mixtures with different numbers of components were
equally presented. Once the number of components in
the mixture was determined as well as the trial being
a go or a no-go trial, the specific composition of target
and background odors was random. The individual test
performance curves are shown in Fig. 10.

Glomerular Imaging

Adult OMP-GCaMP3 mice (Isogai et al., 2011)
were anesthetized with ketamine/xylazine (100 and 10
mg/kg, respectively) and the cranial bone over the OB
was removed with a dental drill. The exposed brain was
covered with a thin layer of isotonic agar and a cover-
slip. An Olympus objective (10X, NA 0.3) was used to
image the OB surface onto the sensor of a CMOS cam-
era (DMK 23U274, The Imaging Source GmbH). Images
(1600 × 1200 pixels, approximately 750 by 560 microns)
were acquired at 8 bit resolution and 7.5 frames/sec.
Data from the camera was recorded to the computer via
data acquisition hardware (National instruments) using
a custom software written in LabView. A blue LED
(M470L3, Thorlabs) was used for excitation. Excitation
and emission light were filtered using a filter set (MDF-
GFP, Thorlabs). Odors were delivered using an auto-
mated olfactometer that is designed to have constant
flow and to have each odor independent of all other
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odors (Rokni et al., 2014). All odorants were diluted to
30% v/v in diethyl phthalate and then further diluted
16 fold in air. The 16 odors and their mixtures were pre-
sented in random order. Odors were presented every 45
seconds for 2 seconds with data acquisition beginning
3 seconds before and ending 3 to 5 seconds after odor
presentation.

Glomerular image analysis

Glomeruli were identified using two different meth-
ods. First, the response to each individual odor was con-
verted into a dF/F image (using averages of all frames
during odor presentation and average of all frames in
baseline period) and dF/F images in response to repe-
titions of the same odor were averaged. The 16 mean
dF/F images were then collapsed into a single image
by taking the maximal intensity projection. Putative
glomeruli were then marked by hand for further anal-
ysis. In a second method, the response in each trial was
converted to a dF/F image. Each odor response was
then represented as a point in pixel space and principal
component analysis was used to find covarying pixels.
Putative glomeruli were hand drawn based on the first
8 principal component images. For each experiment, we
chose the method that yielded more putative glomeruli.

Once putative glomeruli were selected, the mean
value in each frame was calculated to obtain time vary-
ing response traces that were then converted to dF/F
traces. Response magnitude was quantified by inte-
grating these dF/F traces. Variability of single odor
responses was measured as the coefficient of variation
(CV) of glomerular responses, also denoted by α. We
found that responses had two sources of variability –
a common variability that affect all glomeruli, and pri-
vate variability for each glomerulus across trials. We
reasoned that the common variability was likely linked
to global changes relating to fluctuations in anesthesia
and breathing, and chose to remove it. We first built a
vector of responses of all individual glomeruli for each
odor. For each of the 16 odors, we calculated the best
linear fit between the vector for each trial Ot

j and the av-
erage vector for that odor Oj . We then subtracted the
best fit, and calculated the remaining (private) variabil-
ity for each glomerulus, i.e.

ηt = Ot
j − (atOj + bt) (4)

Where ηt is the deviation of glomerular response from
the linear fit, Ot

j is the response to the jth odor on trial t,
Oj is the trial-averaged response to odor j, and at and bt
are the slope and intercept of the best linear fit between
Ot

j and Oj . For each glomerulus i we then calculated
the standard deviation of ηi, and plotted it against its
mean response amplitude Oij . The non-correlated CV
for each experiment was measured as the slope of the

linear relationship between the non-correlated SD and
response amplitude (Fig. 1H).

Summation of mixture components was analyzed by
comparing mixture responses to the linear sum of the
mean responses to mixture components. The data were
fitted by a sigmoidal function (for each glomerulus and
mixture):

R = σ(R0) =
2 ·A

1 + e−R0·s
−A, (5)

where R is the response to a mixture, A is the saturation
level for the glomerulus, R0 is the linear sum of mixture
component responses, and s is a free parameter.

Mixture models for decoding analysis

For the decoding analysis, we considered the follow-
ing encoding model, which is based on our measure-
ments. Given the average glomerular response vectors
Oj and the trial structure cj(t), i.e. a binary variable de-
noting the presence of odor j in trial t, the mean (lin-
ear) glomerular response pattern to a mixture in trial t is
given by:

16∑
j=1

cj(t) ·Oj . (6)

This mean response is subject to trial-to-trial variabil-
ity. The linear response R0 is thus the sum of the sin-
gle component response Oj with an added noise term
ηj that is normally distributed with a mean of zero and
a variance of α2O2

j as defined in Eqn. (2). The factor α
controls the coefficient of variation. The response R to
a mixture in trial t is a sigmoid function of the linearly
mixed trial response R0(t):

R(t) = σ(R0(t)) =
2 ·A

1 + e−R0(t)·s
−A (7)

whereA is the saturated response amplitude and s is a
free parameter that governs the slope of this sigmoidal
function. For each glomerulus i we assumed A to be
equal to the maximum of the linear sum of component
responseR(i)

0 (t) and set s = 10/A. This makes σ(R(i)
0 (t))

almost fully saturated for inputs larger thanA/2 and the
output level is around 50% of the saturation level for
input values around A/10. To assess the effect of this
nonlinearity, we tested encoding models that range from
fully linear (λ = 1) to fully nonlinear (λ = 0) as defined
in Eqn. (1).

Decoding analysis

The glomerular responses in a given trial t are drawn
from the probability distribution for response vectors
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FIG. 7. Comparing OLE, SVM and mice. (A) Performance of
optimal linear decoder as a function of noise level and nonlin-
earity for one target odor pair hexyl tiglate and methyl tiglate.
Average over all animals is shown in Fig. 2C. (B) Performance
for SVM with radial basis function for mixture data like in
(A). (C) Average correlation across mice, between performance
curves of mice and OLEs for simulated pairs of parameters λ
and α. The performance curves are best correlated for λ = 0
and α = 0.25. (D) Same as (C) but for performance curves of
SVMs. Highest correlation was also observed for λ = 0 and
α = 0.25. These performance curves are shown in the main
text (Fig. 2E-F).

R(t), which are generated using the mixture models dis-
cussed above. For any given trial t, the target was ei-
ther present or not and we denote this ideal behavior by
the binary variable r(t). We are interested in the perfor-
mance of ideal observers that use different algorithms,
like linear readouts and support vector machines, as
specified below. This is a typical example of the prob-
lem of pattern recognition in statistical learning theory
and can be formulated as a risk minimization problem
(Hastie et al., 2009, Vapnik, 1999). Using the Kronecker-
δ loss function δ(r, f(R, θ)) between behavioral response
r and a given sensory input R, and the response of the
readout f(R, θ) with parameters θ one can write the em-
pirical risk functional for a subset of trials I with cardi-
nality |I|:

Aemp(θ) = 1− 1

|I|
∑
t∈I

δ(r(t), f(R(t), θ)) (8)

Since the Kronecker-δ is one when both entries are
the same, and zero otherwise this empirical risk func-
tion measures the fraction of incorrect classifications by
the readout f(R, θ). The goal is then to find parameters
θ0 for the readout f(R, θ0) that minimizes the empirical
risk on the training set I . To compare different read-
outs we compare their performance on the test set, i.e.
the other trials that have not been used for training the
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FIG. 8. Structure of readout weights and template match-
ing performance. (A) Correlation coefficients between the
glomerular readout weights (forM = 106, reported in Fig. 3C)
and the 16 glomerular odor patterns for different odor target
pairs (A-H). Some target odor pairs in Fig. 3C occur more than
once, here only one example per odor pair is shown. The red
dots highlight correlations to target odors and the blue dots to
distractor odors. Generally, readout weights are highly decor-
related with distractor odor patterns and positively correlated
to target odor patterns. (B) We illustrate the inadequacy of a
simple template matching algorithm. This is best done with
just one target odor, which we varied. For a given target odor
the template matching algorithm (TM) uses the glomerulus
pattern of this odor as a readout weight. Example correlation
coefficients of the weights for target odor 4 to all odor pat-
terns for both the OLR and TM are shown. As for target odor
pairs, the OLR’s readout weights are uncorrelated to distrac-
tor odors. In contrast, due to overlapping odor tuning, the
TM-readout weight is correlated to distractor odor patterns.
Consequently, the TM-performance also suffers as shown in
(C). (C) Performance for OLR and TM vs. target odor for linear
(λ = 1) and nonlinear case (λ = 0) with α = 0.1. For the TM
algorithm the threshold (θ in Eq. (3)) was optimized for per-
formance. Nevertheless, the TM-performance is around 80%,
significantly below the OLR’s performance.

readout. All read-outs are cross-validated using the re-
peated random subsample technique; unless otherwise
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specified we used 80% training data, 20% test data and
20 repetitions with randomly sampled training and test
data sets. We report the average test performance, de-
fined as the mean number of correct classifications of
r(t) by f(R(t), θ0) averaged over the test set.

Specifically, we want to find the ’simplest’ algorithm
(i.e., the readout function f ) for the demixing task that
matches the error of animals. As we describe below,
we consider: algorithms based on single glomeruli, the
optimal linear decoder, support vector machines (SVM)
with radial basis functions and logistic regression.

Single glomerulus decoder

When considering single glomeruli (Fig. 9), we calcu-
lated their performance without cross validation, which
will overestimate their performance, and therefore pro-
vides an upper bound on their performance. Specifi-
cally, for each glomerulus i and pair of target odors we
calculated their empirical histograms: P (Ri(t)|r(t) = 0)
and P (Ri(t)|r(t) = 1). Based on these histograms we
calculated the ROC curve and therefore the hit rate (HR)
and correct rejection rates (CR) for varying thresholds θ
(Green and Swets, 1966). We then reported the maxi-
mum performance for the best threshold.

Linear decoder

The linear decoder depends on the following param-
eters: the readout weights w and the decision threshold,
and has output y = H(wT · R(t) + θ) (Eqn. (3)). The
optimal linear weights (OLE weights), are the ones that
minimize the norm:

‖r(t)− wTR(t)‖2. (9)

For the linear mixture models without noise, the
weights that minimize this expression have a particu-
larly simple form, as we will show first. In general,
the optimal parameters for linear regression are given
by the normal equations (Hastie et al., 2009): RT (r −
R · wOLE) = 0, with RT = (R1, R2, . . . , RN ) and rT =
(r1, r2, . . . , rN ) for all N concatenated trials. If RTR
is not singular, the solution to this normal equation is
given by:

wOLE = R†r, (10)

where † is the Moore-Penrose pseudoinverse. This for-
mula holds irrespective of the mixture model. For the
linear mixture model the matrix R is given by R =MO,
whereO is the matrix of odor patterns andM is the mix-
ture matrix. Therefore, we get wOLE = O†M†r. Due
to the task structure, the rewarded trials are the sum
of either of the target odors’ characteristic function, i.e.
r(t) =

∑
i∈targetmt,i. Thus, it follows that the ith en-

try of M†r equals 1 if i is one of the targets and 0 other-
wise. Therefore, we obtain thatwOLE = O†vtarget, where
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FIG. 9. Decoding performance of single glomeruli and OLR
without saturation. (A) Performance versus number of non-
zero weights of the OLR (λ = 0). Each faded line depicts an
animal and solid line depicts the average. The horizontal,
dashed lines indicate asymptotic performance and the verti-
cal dashed lines indicate the corresponding minimal number
of glomeruli to achieve 90% of that performance per animal.
Their average is highlighted as solid vertical line. Inset: Aver-
age performance vs. number of non-zero weights of the OLR
for varying noise levels (α = 0, 0.05, 0.1, 0.25, 0.5, 0.75, 1, from
top to bottom). (B) Example readout weights obtained for 90%
of asymptotic performance (left) and asymptotic performance
(right). Several of these 13 mice had the same target odor pairs,
as indicated by grouping under the same letter. OLR learns
similar readout weights from different trial statistics for the
same target odors. Across different target odors, the readout
weights vary substantially – but the weights are similar for the
same target odors. (C) Top panels: Conditional distributions
of glomerulus activity for the presence r(t) = 1 or absence of
the target odors r(t) = 0 in the linearly mixed activity of two
example glomeruli. The activity for each glomerulus is cal-
culated as the linear sum of the average dF/F for individual
components of that glomerulus. We estimated the probability
density from the individual samples (shown as vertical lines)
by kernel density estimation with a Gaussian kernel and width
given by Scott’s rule. Bottom panels: Corresponding hit rate
and false alarm rate curves for varying thresholds. The num-
ber indicates the performance for the best threshold. (D) His-
togram of (best) performances for all glomeruli across imag-
ing data sets and for all target odor pairs. The performances
for the two examples from (C) are indicated by vertical lines.
Most glomeruli have less than 70% performance.

vtarget is a vector that is 1, when the ith index is a target
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and 0 otherwise.
All reported performances are the averages calculated

by cross validation, which was used to determine the
optimal threshold and weights. For each resampling,
we calculated the OLE weights as described above and
computed the optimal decision threshold θ as the one
that maximizes the training performance on 80% of the
data. This threshold is then used to predict the output
for the test set (the remaining 20%), which is used to cal-
culate the test performance. This procedure is carried
out for 20 random resamplings of the data and the aver-
age test performance is reported.

Support vector machine

We studied the performance of support vector ma-
chines (SVM) with radial basis functions as kernels
(Muller et al., 2001, Vapnik, 1999). As parame-
ters θ for the SVM we performed a grid search
over the penalty parameter for the error term C ∈
{10−2, 10−1, 1, 10, 102, 103, 104, 105, 106} and the kernel
coefficient γ ∈ {0, 1, 2, 5, 10, 20, 50}. The optimal pa-
rameters were determined on the training set and we
report the average performance for these parameters on
the test set.
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FIG. 10. Individual performance curves. The red curve shows
the average performance ± s.e.m. of 5 mice trained on single
odors and subsequently tested on mixtures of 1, 3, 8 and 14
odors, and the gray curves show the performance curves for
the 5 mice individually.

Logistic regression

We used regularized logistic regression to decode the
presence of a target odor. For binary classification the
likelihood for the logistic regression is given by (Bishop,
2006):

Lt = ρ(wTR(t))r(t)(1− ρ(wTR(t))(1−r(t)), (11)

with logistic function ρ(s) = 1/(1 + exp(−s)). Mini-
mizing misclassification can be formulated as minimiz-
ing the negative logarithm of the likelihood. Therefore,
the error functional for the regularized logistic regres-
sion is given by:

∑
i

|wi| − C
∑
t∈I

logLt (12)

We use the L1-norm to bias towards sparse read-outs,
and the constant C varies the degree of sparseness as it
balances the trade-off between classification errors and
the summed absolute readout weights. We varied the
regularization constant from 10−2 to 106.

We employed the Scikit-learn toolbox in Python to
perform the SVM and logistic regression analysis (Pe-
dregosa et al., 2011).

Weight perturbation analysis

Initially, the OLR is trained on 80% of the data, to ob-
tain the optimal weights wOLR and the performance on
the remaining 20% is reported for weight perturbation
level 0. Then, for different levels of the weight pertur-
bation (wp), each component of WOLR is multiplied by a
value drawn from a Gaussian distribution with mean 1
and variancewp2. The performance of the OLR with this
perturbed weight is then calculated and averaged over
20 randomizations per perturbation level. The results
are shown in Fig. 3C.
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