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SUMMARY  

Recently, several studies have demonstrated that visual stimulus routing is subserved by inter-areal 
gamma-band synchronization, whereas top-down influences are mediated by alpha-beta band 
synchronization. These processes might implement top-down control, if top-down and bottom-up 
mediating rhythms are coupled through cross-frequency interaction. To test this possibility, we 
investigated Granger-causal influences among awake macaque primary visual area V1, higher visual 
area V4 and parietal control area 7a during attentional task performance. Top-down 7a-to-V1 beta-
band influences enhanced visually driven V1-to-V4 gamma-band influences. This enhancement was 
spatially specific and largest for a beta-to-gamma delay of ~100 ms, suggesting a causal relationship. 
We propose that this cross-frequency interaction mechanistically subserves the attentional control of 
stimulus selection. 
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INTRODUCTION 

Many cognitive effects in vision can only be explained by invoking the concept of top-down influences 
(Gilbert and Sigman, 2007). For example, when top-down influences can pre-allocate attention to 
specific spatial locations, stimulus processing is more accurate and/or faster, even when stimuli 
remain unaltered. Correspondingly, neurons in early and mid-level visual cortex show enhanced firing 
rates when processing attended stimuli. These neurophysiological consequences of top-down control 
need to be mediated by corresponding projections. Indeed, anatomical studies have documented 
projections in the top-down direction that are at least as numerous as bottom-up projections. Bottom-
up and top-down projections show different characteristic laminar patterns of origin and termination, 
and the pattern of pairwise projections abides by a global hierarchy, in which each area occupies a 
particular hierarchical level (Felleman and Van Essen, 1991; Hilgetag et al., 1996; Markov et al., 
2014). Recently, it has been shown that the pattern of anatomical projections is closely correlated to a 
pattern of frequency-specific directed inter-areal influences. Influences mediated by bottom-up 
projections are primarily carried by gamma-band synchronization in both macaque and human visual 
cortex; by contrast, influences mediated by top-down projections are primarily carried by alpha-beta-
band synchronization (Bastos et al., 2015b; Michalareas et al., 2016; van Kerkoerle et al., 2014). A 
similar association of higher frequency bands with bottom-up and lower frequency bands with top-
down projections has been found also in the auditory system (Fontolan et al., 2014) and the 
hippocampus (Bieri et al., 2014; Colgin et al., 2009).  

These relations between anatomy and physiology suggest that gamma rhythms are more involved in 
the bottom-up routing of stimulus information, whereas alpha-beta rhythms play a key role in 
modulating this process through top-down control (Bastos et al., 2012). In support of this, inter-areal 
gamma-band coherence is enhanced during tasks that involve primarily bottom-up stimulus routing 
(like pop-out), whereas inter-areal alpha-beta band coherence is enhanced during tasks that require 
top-down control (like visual search) (Buschman and Miller, 2007; von Stein et al., 2000). During 
sustained visual attention tasks, and probably also during much of natural viewing, top-down and 
bottom-up influences are both present simultaneously, with attentional top-down control persistently 
influencing bottom-up stimulus processing. The coexistence of both rhythms suggests the following 
scenario for attentional influences on visual processing: 1) Visual stimulation induces bottom-up 
gamma-band influences among visual areas; 2) Top-down beta-band influences are endogenously 
generated and thereby stimulus independent; 3) Attention enhances both, top-down beta-band and 
bottom-up gamma-band influences; 4) Cross-frequency interactions result in top-down beta-band 
influences enhancing subsequent bottom-up gamma-band influences in a spatially specific manner. 
There is substantial evidence for points 1) to 3), and this paper provides evidence for point 4). 
Regarding point 1): Gamma-band activity is induced by visual stimulation in lower visual areas (Gray 
et al., 1989) and it entrains gamma in higher visual areas in a bottom-up manner (Bastos et al., 2015b; 
Bosman et al., 2012; Grothe et al., 2012; Jia et al., 2013). Note that in higher visual areas, attention 
alone can induce gamma among local interneurons, and the projecting pyramidal cells join when 
visual stimulation commences (Vinck et al., 2013). Regarding point 2): Beta-band influences among 
visual areas are present before stimulus onset, and are typically stronger in the top-down direction 
(Bastos et al., 2015b; Bressler et al., 2007). Regarding point 3): Inter-areal gamma-band coherence 
and bottom-up gamma-band influences are enhanced by attention (Bosman et al., 2012; Grothe et al., 
2012), and so are top-down beta-band influences (Bastos et al., 2015b). In the present study, we will 
confirm points 1) – 3) for ECoG data recorded from two macaque monkeys, when they direct attention 
to the contralateral versus ipsilateral hemifield. To investigate point 4), we then analyze spontaneous 
fluctuations in top-down beta-band and bottom-up gamma-band influences and their mutual interplay. 
We find that on a moment-by-moment basis, top-down beta-band influences correlate positively with 
bottom-up gamma-band influences. Spontaneous enhancements in top-down beta-band influences 
were followed ~100 ms later by enhancements in bottom-up gamma-band influences, suggestive of a 
causal relation. Consistent with a role in selective attention, this effect was spatially specific, i.e. 
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bottom-up gamma-band influences depended most strongly on the top-down beta-band influences, 
that were directed to the origin of the bottom-up influence. 

RESULTS 

Top-down versus Bottom-up Spectral Asymmetries and their Stimulus and Task Dependence 
To demonstrate that inter-areal gamma-band synchronization is stimulus driven (Bosman et al., 2012; 
Grothe et al., 2012), we first contrasted the pair-wise phase consistency (PPC), a frequency-resolved 
measure of synchronization (Vinck et al., 2010), between the fixation and stimulation conditions in two 
awake monkeys (monkey K and monkey P) (Figure 1A, C-F). We assessed the PPC between two 
region-of-interest (ROI) pairs: 7A-V1 and V1-V4 (Figure 1B). The ROI pair 7A-V1 (Figure 1K blue 
arrow) was selected, because it constitutes a clear top-down pathway from a very high-level control 
area to primary visual cortex (Bastos et al., 2015b; Michalareas et al., 2016). The ROI pair V1-V4 
(Figure 1K green arrow) was selected, because it constitutes a clear bottom-up pathway emerging 
from V1, i.e. the area targeted by the top-down 7A→V1 influence. For both ROI pairs, the ECoG 
provided good coverage. 

Figures 1C, E show, for monkey K, significantly enhanced gamma-band (~76 Hz) synchronization 
between ROI pairs V1-V4 and 7A-V1 once the stimulus has appeared, in contrast to an almost flat 
spectrum when no stimulus is present. This finding is consistent with gamma-band oscillations 
occurring as a result of stimulus drive. In contrast, beta-band (~17 Hz) synchronization for both ROI 
pairs is present already during the pre-stimulus fixation period, suggesting an endogenous origin 
(Figure 1C, E). Beta-band synchronization is maintained with slightly reduced strength during the 
stimulation period. These results were combined over both monkeys (Figure 1D, F) by aligning the 
peak beta and gamma oscillatory frequencies (PPC gamma peak frequency: monkey K: ~76 Hz, 
monkey P: ~65 Hz; PPC beta peak frequency: monkey K: ~17 Hz, monkey P: ~13 Hz). The combined 
data show the same pattern of results. Results for monkey P are shown in Figure S1. 

We next assessed the dominant directionality of interareal synchronization and its attentional 
modulation. We quantified directionality of synchronization by means of Granger causality (GC) 
(Bressler and Seth, 2011; Ding et al., 2006; Granger, 1969). As shown by Bastos et al. (2015b), and 
extended to humans by Michalareas et al. (2016), the top-down beta-band influence of area 7A to V1 
is significantly greater than the bottom-up beta-band influence of V1 to 7A. This holds for the example 
monkey K (Figure 1L; GC beta peak frequency: ~17 Hz) and the combined data (Figure 1M, GC beta 
peak frequency monkey P: ~12 Hz). This top-down beta-band influence is significantly increased when 
attention is directed to the visual hemifield contralateral to the recording grid (Figure 1G for monkey K, 
Figure 1H for both monkeys combined), consistent with an earlier report (Bastos et al., 2015a). 
Between V1 and V4, the gamma-band influence is stronger in the bottom-up direction from area V1 to 
V4 (Figure 1N for monkey K, GC gamma peak frequency: ~76 Hz; Figure 1O for both monkeys 
combined, GC gamma peak frequency of monkey P: ~65 Hz). The bottom-up gamma-band influence 
of V1 to V4 was significantly increased with attention (Figure 1I, J). 

Top-down Beta Influences and Bottom-up Gamma Influences are Correlated Across Time 
Endogenous increases in top-down beta GC may lead to an increase in stimulus-driven bottom-up 
gamma GC; therefore, we sought to determine whether the observed top-down beta GC and bottom-
up gamma GC are consistent with such a scenario. Quantification of correlation between moment-by-
moment co-fluctuations in two GC influences is normally precluded by the fact that GC influences are 
not defined per single data epoch (without substantially sacrificing spectral resolution and/or signal-to-
noise ratio). To surmount this problem, we used the recently developed method of Jackknife 
Correlation (JC), which quantifies the correlation by first calculating GC influences for all leave-one-out 
subsamples (i.e. the jackknife replications of all epochs) and then correlating these values (Richter et 
al., 2015). 
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Here we used JC to correlate the top-down GC from a 7A site to a V1 site with the bottom-up GC from 
the same V1 site to a V4 site. We refer to these configurations of three sites as ‘triplets’, and the JC 
was determined for all possible 7A→V1→V4 triplets (N=10664, Monkey K: 3944, Monkey P=6720). 
The JC was calculated between all possible combinations of top-down frequencies and bottom-up 
frequencies, both ranging from 1-100 Hz. Figure 2A shows the average over all triplets from 
monkey K. It reveals that top-down beta GC is correlated with bottom-up beta GC, and the same holds 
for the respective gamma GCs. Crucially, top-down beta GC also shows a significant positive 
correlation with bottom-up gamma GC. The peak of this cross-frequency interaction is well aligned 
with the average 7A→V1 beta and V1→V4 gamma GC peak frequencies (Figure 1A, line plots – 
intersection of the dashed lines). Importantly, there is no significant JC between 7A→V1 gamma and 
V1→V4 beta GC, even though 7A→V1 gamma GC is significantly correlated to V1→V4 gamma GC 
and 7A→V1 beta GC is significantly correlated to V1→V4 beta GC. Figure 2B confirms the same 
pattern of results after averaging over both monkeys, which entailed the alignment of their respective 
beta and gamma GC peaks. Results for monkey P are shown in Figure S1. Figure 2C shows a 
specific triplet selected from monkey K with a sizeable correlation coefficient of rho(2653) = 0.16 
between 7A→V1 beta and V1→V4 gamma GC. Again, the area of maximal correlation is well aligned 
with the top-down beta and bottom-up gamma peak frequencies for this particular triplet. Thus, though 
the average level of correlation across triplets is relatively low, specific triplet correlations may fall 
between small to moderate size (Cohen, 1988). 

We next investigated whether the JC between 7A→V1 beta and V1→V4 gamma GC depended on 
involving the same V1 site, which would demonstrate spatial specificity at the level of recording sites. 
We tested this spatial specificity by pairing 7A→V1 beta GC to a specific V1 site, with V1→V4 gamma 
GC from a different V1 site, where the distance that separated the two V1 sites was parametrically 
varied. Figure 3A shows for monkey K the boundaries of the recording grid and prominent sulci based 
on the monkey’s MRI and surgical photographs. For each V1 site, 5 sets of other V1 sites were 
defined that fell into pre-specified distance intervals (1 cm per interval, stepped by 2.5 mm, between 0 
and 2 cm). Figure 3A shows one example V1 site (arrow) and illustrates with 5 colored lines the five 
distance intervals (colored lines were slightly displaced for illustration purposes). The mean V1 
distance for each distance interval is marked with a filled circle. Figure 3B shows the resulting JC 
computed for a ± 5 Hz frequency window around the peak 7A→V1 beta and V1→V4 gamma GC 
frequencies averaged over triplets and monkeys. It can be seen that as the distance between the two 
V1 sites increases from zero, there is a monotonic falloff of the correlation coefficient between 7A→V1 
beta and V1→V4 gamma GC. This indicates that top-down beta and bottom-up gamma GC influences 
are not global, but rather are spatially specific, such that the correlation is maximal when the top-down 
beta GC influence is targeting the same V1 region that is projecting the bottom-up gamma GC 
influence. This is not trivially explained by GC calculation using the same V1 site, as explained in more 
detail in the discussion section. 

Top-down Beta Influences Lead Bottom-up Gamma Influences in Time 
We have established that spontaneous fluctuations in endogenous top-down beta GC are correlated 
with fluctuations in stimulus-driven bottom-up gamma GC. Yet, this does not demonstrate causality. 
Therefore, we investigated whether the data contain evidence in support of a causal relation, using a 
similar reasoning to GC, i.e. we assessed whether top-down beta GC is predictive of subsequent 
bottom-up gamma GC. To accomplish this, we extended the JC by adding a temporal dimension not 
dissimilar from time-lagged cross-correlation. We compute the JC on time-frequency data, where we 
systematically offset the data by positive or negative lags. We call this procedure lagged jackknife 
correlation (LJC). This quantifies at what time delay between the top-down beta-band influence and 
the bottom-up gamma-band influence the JC between them is largest. We computed LJC for each 
triplet. Figure 4A shows that the LJC, averaged over triplets of monkey K, peaked at -0.095 s, 
indicating that top-down beta GC leads bottom-up gamma GC by 0.095 s, and significantly differed 
from zero lag (t(3943) = -3.438, p<<0.001, two-tailed jackknife-based t-test). This relation was also 
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present in monkey P, with top-down beta GC leading bottom-up gamma GC by 0.115 s (Figure 4B), 
and significantly differed from zero lag (t(6719) = -6.381, p<<0.001, two-tailed jackknife-based t-test). 
Figure 4C shows the LJC averaged over triplets and monkeys and exhibits a peak at -0.105 s 
(t(10663) = -7.576, p<<0.001, two-tailed jackknife-based t-test). 

DISCUSSION 

We used LFP recordings from 252-channel ECoG arrays covering large parts of the left hemispheres 
of two macaques to analyze the interaction between top-down and bottom-up GC influences. Top-
down influences were quantified between area 7a at the top of the visual hierarchy (Bastos et al., 
2015b; Markov et al., 2014) and V1 at the bottom. Bottom-up GC influences were quantified between 
V1 and V4, a known feedforward pathway carrying stimulus driven input (Bosman et al., 2012). Inter-
areal top-down influences showed a beta-band peak, that was independent of visual stimulation and 
therefore endogenously generated, that was significantly larger in the top-down than the bottom-up 
direction, and that increased with selective attention. Bottom-up influences showed a gamma-band 
peak, that was stimulus driven, that was significantly larger in the bottom-up than the top-down 
direction, and that also increased with selective attention. Jackknife Correlation between top-down 
beta-band influences and bottom-up gamma-band influences revealed a cross-frequency interaction. 
This interaction was spatially specific, as it was maximal between top-down and bottom-up inter-areal 
influences that shared the same V1 site. Finally, top-down beta-band influences best predicted 
bottom-up gamma-band influences ~100 ms later, suggesting that the cross-frequency interaction is 
causal. 

The Potential Influence of Noise 
There are potential concerns related to the influence of noise. Noise can affect GC and it could 
thereby in principle affect the JC between GC fluctuations that we analyze here. One relevant scenario 
concerns noise that is shared between two signals, which can lead to artifactual GC (Nalatore et al., 
2007; Vinck et al., 2015). Shared noise is typically due to volume conduction, which is strongly 
attenuated in our signals due to the bipolar derivation (Trongnetrpunya et al., 2015). Furthermore, 
artifactual GC alone does not lead to JC between GC, because the latter requires correlated GC 
fluctuations. GC fluctuations could in principle be due to fluctuations in shared noise. However, such 
noise influences on the two GC metrics would occur simultaneously and therefore, the lagged JC 
would peak at zero lag, whereas we found a lag of ~100 ms. A second relevant scenario concerns 
noise on the V1 signal that fluctuates in strength. Noise can affect GC estimates, because it affects 
how well a signal can be explained by its own past. If the noise on the V1 signal increases, this signal 
can be less well explained by its own past, and as a consequence, a relatively larger part of its 
variance is left to be explained by the signal from other areas, thereby increasing the GC influence of 
7A to V1 (Nalatore et al., 2007). Crucially, noise on V1 at the same time decreases GC from V1 to V4, 
because it decreases the ability of V1 to explain variance in V4. Thus, fluctuations in V1 noise will lead 
to opposite changes in 7A→V1 GC and V1→V4 GC (Bastos and Schoffelen, 2015), whereas we 
found positively correlated changes. Other influences of noise can be envisaged, and with sufficiently 
complex assumptions on multiple noise sources, essentially any correlation can be explained. The set 
of observations presented here, namely the fact that GC is correlated between different frequency 
bands, that this correlation shows high spatial specificity and in particular that the peak correlation 
occurs at a lag, would require assumptions that appear extremely implausible. 

Correlation Magnitudes 
Whereas noise is unlikely to explain the overall pattern of results, it might well influence the magnitude 
of observed correlations. The magnitude of correlations might be relevant to assess their functional 
significance. The JC for some triplets was at the level of rho ≈ 0.2, i.e. of moderate strength. However, 
the mean JC over all triplets tended towards a value an order of magnitude lower. This relatively low 
magnitude might be explained by uncorrelated noise. Uncorrelated physiological, measurement, and 
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estimation noise will invariably lead to an underestimation of the true JC. These detrimental effects of 
noise are maximal for short data epochs and for correlations based on single trials, i.e. JC. Short data 
epochs, necessary to capture rapid fluctuations as the basis of our JC and LJC results, do not provide 
for the averaging out of stochastic physiological or measurement noise (Richter et al. (2015). JC 
across single trials, necessary for maximal sensitivity and fidelity, similarly reduces the correlation 
magnitude as compared to alternative approaches like sorting-and-binning that artificially inflate 
correlation magnitude (Richter et al. (2015). 

A Concrete Case of Cross-frequency Interaction 
Numerous studies in visual cortex have reported gamma-band synchronization within and between 
visual areas (Bichot et al., 2005; Engel et al., 1991; Fries, 2001; Fries et al., 1997; Gray and Singer, 
1989; Hoogenboom et al., 2006; Kreiter and Singer, 1996; Tallon-Baudry et al., 1996; Taylor et al., 
2005; Womelsdorf et al., 2006; Wyart and Tallon-Baudry, 2008), and numerous studies in parietal 
cortex have reported beta-band synchronization within parietal areas and between parietal and frontal 
areas (Buschman and Miller, 2007; Dotson et al., 2014; Salazar et al., 2012; Stetson and Andersen, 
2014). Recent ECoG recordings covering both visual and parietal areas revealed that inter-areal beta-
band influences predominate in the top-down and inter-areal gamma-band influences predominate in 
the bottom-up direction (Bastos et al., 2015b). These findings link parietal beta-band activity with 
visual gamma-band activity and suggest a concrete case of cross-frequency interaction (Bressler and 
Richter, 2015). In the present paper, we have tested some of the resulting predictions and found direct 
experimental support for such a cross-frequency interaction that allows top-down beta-band influences 
to enhance bottom-up gamma-band influences. 

Mechanisms 
Cortical anatomy has revealed a distinct laminar pattern of top-down and bottom-up projections 
(Felleman and Van Essen, 1991; Markov et al., 2014). Bottom-up projections originate predominantly 
in superficial layers, and this predominance increases with the number of hierarchical levels bridged 
by the bottom-up projection. Furthermore, bottom-up projections terminate predominantly in layer 4. 
Top-down projections originate predominantly in deep layers, and this predominance increases with 
the number of hierarchical levels bridged by the top-down projection. Furthermore, top-down 
projections terminate predominantly outside layer 4, primarily in layers 1 and 6. Determining how the 
respective top-down influences interact with local processing and thereby ultimately with bottom-up 
influences remains a central neuroscientific quest. One potential mechanism has been proposed in a 
model that entails details of both layer-specific anatomy and cellular biophysics (Lee et al., 2013), and 
that replicates effects of top-down selective attention on bottom-up gamma-band coherence. The 
model implicates a subclass of inhibitory interneurons, the slow-inhibitory (SI) interneurons, as targets 
of top-down modulation. These cells may span multiple cortical laminae and thus are suitably situated 
for integration of neuronal activity across layers. A subpopulation of these cells, low-threshold spiking 
(LTS) cells, are found in deep layers of the cortex and are: 1) hypothesized to receive top-down input, 
2) implicated in the generation of beta oscillations and in the resonant response to beta-rhythmic top-
down input and 3) selectively modulate gamma band activation in layer 2/3, leading to an enhanced 
gamma band output. Our present analysis confirms the central prediction of the Lee et al. (2013) 
paper, namely that specifically top-down beta-band influences enhance stimulus-driven gamma-band 
processes. Lee et al. show how this mechanism can support the implementation of attentional 
stimulus selection. The current results, which mechanistically link the previously reported attentional 
enhancements of top-down beta and bottom-up gamma influences, provide the hitherto missing 
experimental bridge. Together, experiments, modeling and model-testing data analysis have led to an 
intriguingly coherent understanding of the neuronal processes behind the implementation of 
attentional stimulus selection. 
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EXPERIMENTAL PROCEDURES 

Visual Stimulation and Behavioral Task 
The experiment was approved by the ethics committee of the Radboud University Nijmegen 
(Nijmegen, The Netherlands). Two adult male macaque monkeys (monkey K and monkey P, both 
macaca mulatta) were used in this study. During experiments, monkeys were placed in a dimly lit 
booth facing a CRT monitor (120 Hz non-interlaced). When they touched a bar, a fixation point was 
presented, and gaze had to remain within the fixation window throughout the trial (monkey K: 0.85 deg 
radius, monkey P: 1 deg radius), otherwise the trial would be terminated and a new trial would 
commence. Once central fixation had been achieved and a subsequent 0.8 s pre-stimulus interval had 
elapsed, two isoluminant and isoeccentric drifting sinusoidal gratings were presented, one in each 
visual hemifield (diameter: 3 deg, spatial frequency: ~1 cycle/deg, drift velocity: ~1 deg/s, resulting 
temporal frequency: ~1 cycle/s, contrast: 100%). Blue and yellow tints were randomly assigned to 
each of the gratings on each trial (Figure 1A). Following a random delay interval (monkey K : 1 - 1.5 s; 
monkey P : 0.8 - 1.3 s), the central fixation point changed color to match one of the drifting gratings, 
indicating that this grating was the target stimulus, i.e. the fixation point color was the attentional cue. 
When the target stimulus was positioned in the visual hemifield contralateral to the recorded 
hemisphere, we refer to this condition as attend contra, whereas when the target was in the ipsilateral 
hemifield with respect to the ECoG grid, this condition is labeled attend ipsi. Either the target or 
distracter stimulus could undergo a subtle change in shape consisting of a transient bending of the 
bars of the grating (0.15 s duration of the full bending cycle). This change could occur at any monitor 
refresh from 0.75 s to 5 s (monkey K), and 4 s (monkey P) after stimulus onset. Bar releases within 
0.15-0.5 s after target changes were rewarded. If stimulus changes occurred before the cue indicated 
which stimulus was the target, reports were rewarded in a random half of trials. Bar releases after 
distracter changes terminated the trial without reward. Trials were pooled from both contra and ipsi 
conditions, except where explicit comparisons of these conditions were made. 

Neurophysiological Recordings 
LFP recordings were made via a 252 channel electrocorticographic grid (ECoG) implanted subdurally 
over the left hemisphere (Rubehn et al., 2009). Data from the same animals, partly overlapping with 
the data used here, have been used in several previous studies (Bastos et al., 2015b; 2015a; Bosman 
et al., 2012; Brunet et al., 2015; 2014; Lewis et al., 2016; Pinotsis et al., 2014; Richter et al., 2015; 
Vinck et al., 2015). Recordings were sampled at approximately 32 kHz with a passband of 0.159 – 
8000 Hz using a Neuralynx Digital Lynx system. The raw recordings were low-pass filtered to 250 Hz, 
and downsampled to 1 kHz. The electrodes were distributed over eight 32-channel headstages, and 
referenced against a silver wire implanted onto the dura overlying the opposite hemisphere. The 
electrodes were re-referenced via a bipolar scheme to achieve 1) greater signal localization 2) 
cancellation of the common reference, which could corrupt the validity of connectivity metrics, 3) to 
reject headstage specific noise. The bipolar derivation scheme subtracted the recordings from 
neighboring electrodes (spaced 2.5 mm) that shared a headstage, resulting in 218 bipolar derivations, 
henceforth referred to as “sites” (see Bastos et al. (2015b) for a detailed discussion of the re-
referencing procedure). The site locations are shown as spheres in Figure 1B (monkey K: green, 
monkey P: black).  

Three ROIs were selected for the current study: V1, V4, and area 7A (referred to simply as “7A”). 
ROIs were defined based on comparison of the electrode locations (co-registered to each monkey’s 
anatomical MRI and warped to the F99 template brain in CARET (Van Essen, 2012), with multiple 
cortical atlases of the macaque (see Bastos et al. (2015b) for a detailed discussion). Recording sites 
composing each ROI were co-registered to a common template (INIA19, (Rohlfing et al., 2012)), as 
were the Paxinos ROI definitions (Paxinos et al., 1999). The V1/V2 combined definition of Paxinos et 
al. (1999), is shown in Figure 1B/K (red) for simplicity due to uncertainty across atlases of the V1/V2 
border, though recording site selection was based on multiple atlases with no recording sites selected 
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that were believed to belong to area V2. Based on these ROI definitions, 77 recording sites were 
selected from area V1 (monkey K: 29, monkey P: 48), 31 from area V4 (monkey K: 17, monkey P: 14), 
and 18 from area 7A (monkey K: 8, monkey P: 10).  

Preprocessing and Spectral Analysis General 
Signal processing was conducted using the FieldTrip toolbox (Oostenveld et al., 2011). The raw data 
was line noise rejected via the subtraction of 50, 100, and 150 Hz components fit to the data using a 
discrete Fourier transform. Following trial epoching, specific to each analysis, epochs for each site 
were de-meaned. Epochs exceeding 5 standard deviations of all data from the same site in the same 
session were rejected. In addition, epochs were manually inspected and epochs with artifacts were 
rejected. The remaining epochs were normalized by the variance across all data in all epochs from the 
same site in the same recording session. Subsequently, all epochs were combined across sessions. 

Spectral analysis was performed via the fast Fourier transform (FFT) on 0.5 s epochs. For frequencies 
from 0-50 Hz, a Hann taper was utilized, whereas for frequencies above 50 Hz, the multitaper method 
(MTM) was used to improve the spectral concentration of the gamma rhythm (Percival and Walden, 
1993; Thomson, 1982). We applied 5 tapers, resulting in a spectral smoothing of +/- 6 Hz. All epochs 
were zero-padded to 1 s resulting in a spectral resolution of 1 Hz. The coefficients resulting from the 
FFT were used to determine the cross spectral density, which is the basis for two connectivity metrics 
employed: pairwise phase consistency (PPC) (Vinck et al., 2010), and Granger causality (GC) 
(Bressler and Seth, 2011; Granger, 1969). When GC is computed from the cross-spectral density, this 
is known as a non-parametric approach in contrast to the traditional parametric method based on 
autoregressive modeling (Dhamala et al., 2008). Connectivity metrics were computed between all 
inter-areal pairings of sites between ROIs: V1-V4, and V1-7A.  

High Resolution Spectral Comparisons 
For the analyses of Figure 1, we used all 0.5 s epochs that could be defined with 60% overlap. This 
overlap allows for the application of Welch’s method (Welch, 1967) and was selected as an optimal 
overlap for the multitaper method, while maintaining a reasonable computational load (Percival and 
Walden, 1993; Thomson, 1977) For the analysis of stimulation versus fixation, each trial was 
segmented into a fixation and stimulation period. The fixation period was defined as the 0.5 s prior to 
stimulus onset, while the stimulation period was defined from 0.3 s post-stimulus onset (to avoid onset 
related transients) until the first of three possible events 1) the onset of the cue, 2) a change in the 
distracter stimulus, or 3) a change in the target stimulus. This resulted in 6822 fixation epochs 
(Monkey K: 3384, Monkey P: 3438) and 13675 stimulation epochs (Monkey K: 8109, Monkey P: 
5566). Fixation versus stimulation was only compared for PPC, which inherently controls for sample 
size bias, thus no adjustments needed to be made to the large disparity in the number of trials 
between the fixation and stimulation conditions. Statistical assessment of the within-subject difference 
between fixation and stimulation conditions employed a non-parametric technique (Maris and 
Oostenveld, 2007) that inherently controls for multiple comparisons, where epochs were pooled and 
then randomly distributed between the fixation and stimulation conditions. FFT was then performed, 
followed by PPC. The difference between conditions was then computed, with the maximum absolute 
difference across the frequencies retained. This critical step ensures that the statistical test is 
corrected for multiple comparisons across the frequency dimension. The procedure was repeated 
1000 times, forming a distribution of surrogate values against which the empirical values at each 
frequency may be compared. Group statistics were performed on the peak-aligned data by first 
averaging over all site pairs within-subject, and then averaging these results across the monkeys. This 
ensured that each monkey contributed equally to the overall result, despite having different numbers 
of site pairs. This averaging procedure was performed for each permutation, followed by the same 
max-based multiple-comparison correction. This gives rise to a surrogate distribution of data against 
which the group data may be assessed. Multiple comparisons correction was performed across all 
frequencies tested (1-45 Hz and 55-100 Hz in steps of 1 Hz). 
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To compare attention to the hemifield contralateral (“attend contra”) versus ipsilateral (“attend ipsi”) to 
the recorded hemisphere, we defined the post-cue period as the time from 0.3 s after cue presentation 
(to avoid cue presentation transients) until the first change in either the target or distracter stimulus. 
This period was segmented into as many 0.5 s epochs as possible with 60 % overlap. This resulted in 
8313 attend contra epochs (Monkey K: 3819, Monkey P: 4494) and 7899 attend ipsi epochs (Monkey 
K: 3456, Monkey P: 4443), i.e. a total of 16212 attend epochs (Monkey K: 7275, Monkey P: 8937). 
Non-parametric GC is known to be biased by sample size (Bastos and Schoffelen, 2015), thus the 
number of epochs per attention condition needed to be balanced for each monkey. This was 
accomplished by finding the condition with the fewest epochs, and randomly selecting this number of 
epochs from the other condition. The statistical difference between conditions was also assessed 
using a non-parametric statistical framework as described for the fixation versus stimulation contrast. 

The comparison of top-down versus bottom-up GC was performed on the pooled data from the attend 
contra and ipsi conditions. Since this was a within-condition comparison, no balancing of epoch 
numbers was needed, and all epochs from both attend conditions were used. The statistical analysis 
of the difference between top-down and bottom-up GC could not be obtained using a non-parametric 
randomization framework, because top-down and bottom-up GC are not properties of specific sets of 
epochs, but rather are expressed by all trials simultaneously. Therefore, an alternative statistical 
approach was used, namely the bootstrap (Efron and Tibshirani, 1994). Like with the randomization 
approach, the statistic of interest – in this case the top-down/bottom-up GC difference – is recomputed 
on each bootstrap resample, giving rise to a distribution of surrogate values. Following Efron and 
Tibshirani (1994), a confidence interval can be constructed from the surrogate distribution. To assess 
the statistical significance at p=0.05 (two-tailed), we find the 2.5th and 97.5th percentile values from the 
surrogate distribution of differences between top-down and bottom-up GC. This naturally forms the 
95% confidence interval such that if zero lies outside of this interval, we may conclude that the result is 
significant at a level of p=0.05. This method does not control for multiple comparisons, but we can 
easily modify it to do so using the same logic employed by Maris and Oostenveld (2007). We 
performed 1000 bootstrap resamples. For each resample we determined the absolute difference 
across frequencies between the bootstrap resample spectrum and the average of all bootstrap 
resamples, and retained the maximum of this value across frequencies. Thus we are guaranteed to 
form the largest confidence interval possible across frequencies and in so doing construct an omnibus 
confidence interval that controls for the multiple comparisons. This confidence interval is applied to 
each frequency, and where it does not contain zero, the result is significant at p=0.05. To conduct 
group level statistics, the omnibus statistic is derived from the mean of each bootstrap resample of the 
difference between top-down and bottom-up spectra across both monkeys (first averaged within-
subject across pairs), such that the mean of the empirical difference across the monkeys can be 
assessed for significance. 

Jackknife Correlation 
We aimed at quantifying the correlation between moment-by-moment co-fluctuations in two GC 
influences. This is normally precluded by the fact that GC influences are not defined per single data 
epoch (without substantially sacrificing spectral resolution and/or signal-to-noise ratio). Therefore, we 
used the Jackknife Correlation (JC), which quantifies the correlation by first calculating GC influences 
for all leave-one-out subsamples (i.e. the jackknife replications of all epochs) and then correlating 
these values (Richter et al., 2015). For each leave-one-out subsample, the GC or any other smooth 
function F of the data can be defined as follows: 

 

 ��� � ����, ��, … , ����, ����, … , ��� (1) 
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, where x specifies the recording site and j specifies the index of the left-out observation, here the 
epoch. JC requires independent epochs. Thus, we followed the same segmentation strategy as for the 
comparison of the attend conditions, but with zero overlap, which resulted in fewer epochs, totaling 
6414 (Monkey K: 2655, Monkey P: 3759). Contra and ipsi conditions were combined for the JC 
analysis. The JC is defined using the following formula: 

 

 �	���� � 1�  1 � ����  ������ ��

�	�

��
�  �
���� � (2) 

 

, where � is defined as the number of jackknife replications and is equal to the total number of epochs, ��� and �
�  are the jackknife replications, ���  and �
�  are the means of the jackknife replications, and ��� 
and ��� are the standard deviations of the jackknife replications. To use the JC with the Spearman 

correlation metric, we applied the above formula on the ranks of ��� and �
� . 
For statistical testing, we created a distribution of 1000 JC values under a realization of the null 
hypothesis of independence between 7A→V1 and V1→V4 GC influences. This was realized by 
calculating JC between randomly permuted jackknife replications of 7A→V1 and V1→V4 GC 
influences. This is equivalent to calculating the JC between GC influences after leaving out a random 
epoch for the 7A→V1 GC and a random epoch for the V1→V4 GC without replacement. To control for 
multiple comparisons across the frequency-frequency combinations, the max-based approach (see 
above) was again employed, where for each permutation the maximum absolute Spearman’s rho 
value was selected, giving rise to an omnibus distribution of surrogate correlation coefficients for each 
triplet. For maps showing the average correlation across triplets, this max-based method was 
performed on the mean over triplets, where for a given permutation each triplet was randomized in the 
same order as all others. This was done individually per monkey and after averaging across the two 
monkeys. When monkeys were combined, spectra were aligned to the beta- and gamma-peak 
frequencies and averages were first taken across all triplets of each monkey to weight both monkeys 
equally. 

For testing spatial specificity, we analyzed recording site triplets, which did not share the same V1 site 
(see main text for details): 7A→V1aV1b→V4. Since a vast number of such triplets exist, yet we wished 
to select a number equal to the original number of triplets to control potential statistical bias, we 
selected a unique number of 7A→V1aV1b→V4 triplets that matched the original number of 
7A→V1→V4 triplets evaluated for each monkey and then the performed the same JC procedure. To 
smooth the result statistically (exploring the large space of possibilities), we repeated this procedure 
100 times, resulting in unique selections of V1 sites for each distance interval, and averaged the 
outcomes. Results were plotted against the average distance obtained for each distance interval. 

Lagged Jackknife Correlation (LJC) 
We used the jackknife correlation (JC) to quantify the correlation between top-down beta GC and 
bottom-up gamma GC. To this end, we left out one data epoch at a time, calculated GC influences, 
and determined the correlation between the resulting GC influences across all leave-one-out 
(jackknife) replications. Since a given jackknife replication eliminated the same epoch for the 
calculation of both GC influences, this established the correlation at zero time lag. Next, we were 
interested in whether the correlation depends on the time lag. To test this, we computed JC between 
GC influences calculated from epochs offset by a variable lag. The epochs were stepped at t intervals 
of 5 ms. The offsets were stepped at � intervals of 5 ms. Note that stepping of intervals and offsets 
was in principle independent and could have been different, but it was chosen to be identical to speed 
up computation. We refer to this as lagged JC (LJC): 
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 ��	������� �  1�  1 �����,�  ������� ��

�	�

��
�,���  �
������� � (3) 

 

� was chosen to cover a range of lags from -500 ms to 500 ms. The GC calculation itself was as in the 
previous zero-lag JC, using 500 ms and the tapering specified above. We used data from 0.3 s post-
cue to 2 s post-cue, eliminating shorter trials so that longer lags could be tested (878 trials used, 
Monkey K: 398, Monkey P: 480). LJC was calculated across trials, i.e. leaving out an entire trial at a 
time (this is different from the previous zero-lag JC, which used multiple non-overlapping epochs per 
trial if available). The data that was available per trial allowed for multiple realizations of the two 
epochs with a particular lag. For each lag, LJC was calculated separately for all possible realizations 
and averaged. The number of possible realizations decreases as the lag between top-down beta GC 
and bottom-up gamma GC increases, resulting in fewer LJC computations that are averaged. This 
results in a noisier estimate at larger lags, but no systematic bias in the mean JC value. The number 
of epochs that each LJC is computed upon always equals the number of trials. Formally, this 
implementation of the LJC is defined as: 

 

 ��	������� �  1�  � � � 1�  1 � ����,�  �������� ��

�	�

��
�,���  ��
��������� �����

	�

 (4) 

 

, where m is the number of 500 ms windows, stepped at 5 ms, that fitted into the trial length of 1.7 s. 

Statistical significance was assessed using the same logic as used for the JC, where the epoch order 
of one member of the JC was permuted with respect to the other. For the LJC, the permutation was 
identical for each time step and lag, to be conservative. Multiple comparison correction must take 
place over the multiple lags, which is achieved by taking the maximum absolute Spearman’s rho value 
across lags for each permutation. The resulting distribution is used to assess the probability that the 
empirical result at each lag occurred by chance. The empirical and the permutation metrics were first 
averaged over all triplets per monkey and then averaged over the two monkeys, to give equal weight 
to both subjects. 

We wished to assess whether the LJC peak lag of -105 ms was significantly different from a lag of 
zero. We did so using a jackknife method to determine the standard error of the peak position in 
milliseconds (Efron, 1981). In this case we leave out a specific triplet to assess the variability of the 
peak. The jackknife procedure causes a compression of the variance (Richter et al., 2015), thus the 
5 ms sampling grid would not be sufficient to represent the peak positions of the jackknife replications. 
To account for this, we cubic spline interpolated each replication to a resolution of 0.001 ms, which 
proved adequate to represent the variance of the peak. The peak of each jackknife replication was 
found using a Gaussian fit of the smoothed correlation as a function of lag (findpeaksG.m by T.C 
O’Haver). We then derived the standard error of the estimator, and converted this to a t-score by 
dividing the mean peak lag value of the jackknife replications by the estimated standard error. The 
significance of this t-value was then assessed against Student’s t-distribution. At the group level, this 
procedure entails concatenating the data from both monkeys, and leaving out each triplet once. Based 
on this group estimate of the standard error, a t-value is derived, as above, and assessed for statistical 
significance. 
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Figure 1. Behavioral Task, Recording Locations, and High Resolution Spectra 
(A) The task commenced with a fixation period followed by the presentation of two differently 
colored stimuli. The fixation point color then indicated the visual stimulus to covertly attend in 
either the visual hemifield ipsilateral (ipsi) or contralateral (contra) to the recording grid. 
(B) Recording sites for areas V1/V2 (red), V4 (blue), and 7A (yellow) from monkey K (white 
spheres) and monkey P (black spheres), co-registered to a common macaque template. 
(C and E) LFP-LFP PPC for 7A-V1 (C) and V1-V4 (E) during fixation (dark shading) and 
stimulation (light shading), averaged over all respective site pairs of monkey K. Gray bars 
indicate frequency regions with significant condition differences (p<0.05, two-tailed non-
parametric randomization test, corrected for comparisons across multiple frequencies). Inset 
brackets denote the minimum separation required for significance. Error bars show ±1 
standard error of the mean (SEM) over site pairs. Frequencies from 45 – 55 Hz were omitted 
due to line-noise pollution. 
(D and F) Same as (C and E), but averaged over both monkeys after alignment to their beta 
and gamma peak frequencies. 
(G and I) GC influence for 7A→V1 (G) and V1→V4 (I) during attention to the contralateral 
hemifield (light shading) and to the ipsilateral hemifield (dark shading), averaged over all site 
pairs of monkey K. Same statistics conventions as C and E. 
(H and J) Same as (G and I), but averaged over both monkeys after alignment to their beta 
and gamma peak frequencies. 
(K) Top-down modulatory stream shown by the blue arrow from 7A→V1, and bottom-up 
feedforward path from V1→V4 shown by the green arrow. 
(L and N) Bidirectional GC influences for 7A-V1 (L) and V1-V4 (N), averaged over all site 
pairs of monkey K. For 7A-V1, top-down influences are shown in blue shading, and bottom-
up influences in dark shading. For V1-V4, bottom-up influences are shown in green shading, 
and top-down influences in light shading. Same statistical conventions as C and E, but with 
the statistical distribution based on a non-parametric bootstrap procedure. 
(M and O) Same as (L and N), but averaged over both monkeys after alignment to their beta 
and gamma peak frequencies. 

Figure 2. Jackknife Correlation 
(A) The 4 colored panels show JC averaged over all 7A→V1→V4 triplets for monkey K. The 
frequencies of 7A→V1 GC are shown on the vertical axis, the frequencies of V1→V4 GC are 
shown on the horizontal axis. The frequency ranges 1-50 Hz and 51-100 Hz are shown 
separately, because they required slightly different spectral analyses (see Experimental 
Procedures). Non-significant regions are partially masked by white (p>0.01, two-tailed non-
parametric randomization test, corrected for multiple comparisons across both frequency 
axes). The line plots at the bottom show the GC spectra (±1 SEM) averaged over all V1→V4 
site pairs. The line plots to the left show the GC spectra (±1 SEM) averaged over all 7A→V1 
site pairs. Dashed lines mark the top-down beta GC spectral peak and the bottom-up gamma 
GC spectral peak. 
(B) Same as (A) but averaged over both monkeys after aligning to the beta and gamma GC 
peak frequencies. 
(C) Same as lower right color-panel in (A), but for an example triplet from monkey K showing 
a strong JC between 7A→V1 GC and V1→V4 GC. As in (A), dashed lines mark the GC 
spectral peaks. Due to more noisy spectra for this single example, peaks were found by a 
specialized algorithm (findpeaksG.m by T.C O’Haver). 
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Figure 3. Spatial Specificity of Correlation Between Top-down Beta and Bottom-up Gamma 
GC. 
(A) Inset: MRI of monkey K with the surgical trepanation and prominent sulci overlayed. The 
blow-up shows recording sites in 7A (yellow), V1 (red), and V4 (blue) that were analyzed. 
The V1 site marked by the arrow serves as an example to demonstrate the distance intervals 
from which another V1 site may have been chosen, which were 0 to 1 cm (magenta), 0.25 to 
1.25 cm (orange), 0.5 to 1.5 cm (yellow), 0.75 to 1.75 cm (green), and 1 to 2 cm (cyan). Solid 
circles mark the average distance between V1 sites that were chosen for each distance 
interval. The particular arrangement of the distance intervals was chosen solely for the 
purpose of illustration. 
(B) Average jackknife correlation over a ± 5 Hz window around the top-down beta and 
bottom-up gamma GC peak frequencies, averaged over triplets, and monkeys. The solid 
black circle shows the result for triplets, i.e. where the top-down beta and bottom-up gamma 
GC influences are connected through the same V1 site. As the distance between V1 sites 
increases, there is a monotonic falloff in the correlation coefficient. The mean distance 
between V1 sites is color-coded as solid circles matching the mean distances of the five 
distance intervals shown in A. 

Figure 4. Lagged Jackknife Correlation (LJC) Analysis 
(A) Average LJC across triplets at the top-down beta and bottom-up gamma peak GC 
frequencies for monkey K over ± 0.5 s lag. The blue dashed line denotes the significance 
level (p=0.05, two-tailed non-parametric randomization test) of the LJC. A dashed black line 
is drawn at zero lag. The green vertical line indicates the lag of the maximum LJC value, with 
± 1 SEM in red. The lag of the peak LJC value is significantly different from zero (t(3943) = -
3.438, p<<0.001, two-tailed).  
(B) Same format as in (A), but for monkey P. The lag of the peak LJC value is significantly 
different from zero (t(6719) = -6.381, p<<0.001, two-tailed). 
(C) Same format as in (A), but for both monkeys combined. The lag of the peak LJC value is 
significantly different from zero (t(10663) = -7.576, p<<0.001, two-tailed).  
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