Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

DeepCyTOF: Automated Cell Classification of Mass Cytometry Data by Deep Learning and Domain Adaptation

Huamin Li, Uri Shaham, Kelly P. Stanton, Yi Yao, Ruth Montgomery, Yuval Kluger
doi: https://doi.org/10.1101/054411
Huamin Li
1Applied Mathematics Program, Yale University, 51 Prospect St., New Haven, CT 06511, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Uri Shaham
2Department of Statistics, Yale University, 24 Hillhouse Ave., New Haven, CT 06511, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kelly P. Stanton
3Department of Pathology and Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yi Yao
4Department of Internal Medicine, Yale School of Medicine, 333 Cedar St., New Haven, CT 06520, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ruth Montgomery
4Department of Internal Medicine, Yale School of Medicine, 333 Cedar St., New Haven, CT 06520, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yuval Kluger
1Applied Mathematics Program, Yale University, 51 Prospect St., New Haven, CT 06511, USA
3Department of Pathology and Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
5Interdepartmental Program in Computational Biology and Bioinformatics,Yale University, New Haven, CT, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: yuval.kluger@yale.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Mass cytometry or CyTOF is an emerging technology for high-dimensional multiparameter single cell analysis that overcomes many limitations of fluorescence-based flow cytometry. New methods for analyzing CyTOF data attempt to improve automation, scalability, performance, and interpretation of data generated in large studies. However, most current tools are less suitable for routine use where analysis must be standardized, reproducible, interpretable, and comparable. Assigning individual cells into discrete groups of cell types (gating) involves time-consuming sequential manual steps untenable for larger studies. The subjectivity of manual gating introduces variability into the data and impacts reproducibility and comparability of results, particularly in multi-center studies. The FlowCAP consortium was formed to address these issues and it aims to boost user confidence in the viability of automated gating methods. We introduce DeepCyTOF, a standardization approach for gating based on a multi-autoencoder neural network. DeepCyTOF requires labeled cells from only a single sample. It is based on domain adaptation principles and is a generalization of previous work that allows us to calibrate between a source domain distribution (reference sample) and multiple target domain distributions (target samples) in a supervised manner. We apply DeepCyTOF to two CyTOF datasets generated from primary immune blood cells: (i) 14 subjects with a history of infection with West Nile virus (WNV), and (ii) 34 healthy subjects of different ages. Each blood sample was labeled with 42 antibody markers, 12 of which were used in our analysis, at baseline and three different stimuli (PMA/ionomycin, tumor cell line K562, and infection with WNV). In each of these datasets we manually gated a single baseline reference sample to automatically gate the remaining uncalibrated samples. We show that DeepCyTOF cell classification is highly concordant with cell classification obtained by individual manual gating of each sample with over 99% concordance. Additionally, we apply a stacked autoencoder, which is one of the building blocks of DeepCyTOF, to cytometry datasets used in the 4th challenge of the FlowCAP-I competition and demonstrate that it over performs relative to all gating methods introduced in this competition. We conclude that stacked autoencoders combined with a domain adaptation procedure offers a powerful computational approach for semi-automated gating of CyTOF and flow cytometry data.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted June 14, 2016.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
DeepCyTOF: Automated Cell Classification of Mass Cytometry Data by Deep Learning and Domain Adaptation
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
DeepCyTOF: Automated Cell Classification of Mass Cytometry Data by Deep Learning and Domain Adaptation
Huamin Li, Uri Shaham, Kelly P. Stanton, Yi Yao, Ruth Montgomery, Yuval Kluger
bioRxiv 054411; doi: https://doi.org/10.1101/054411
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
DeepCyTOF: Automated Cell Classification of Mass Cytometry Data by Deep Learning and Domain Adaptation
Huamin Li, Uri Shaham, Kelly P. Stanton, Yi Yao, Ruth Montgomery, Yuval Kluger
bioRxiv 054411; doi: https://doi.org/10.1101/054411

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Bioinformatics
Subject Areas
All Articles
  • Animal Behavior and Cognition (4233)
  • Biochemistry (9128)
  • Bioengineering (6774)
  • Bioinformatics (23989)
  • Biophysics (12117)
  • Cancer Biology (9523)
  • Cell Biology (13773)
  • Clinical Trials (138)
  • Developmental Biology (7627)
  • Ecology (11686)
  • Epidemiology (2066)
  • Evolutionary Biology (15506)
  • Genetics (10638)
  • Genomics (14322)
  • Immunology (9479)
  • Microbiology (22832)
  • Molecular Biology (9089)
  • Neuroscience (48974)
  • Paleontology (355)
  • Pathology (1480)
  • Pharmacology and Toxicology (2568)
  • Physiology (3844)
  • Plant Biology (8327)
  • Scientific Communication and Education (1471)
  • Synthetic Biology (2296)
  • Systems Biology (6187)
  • Zoology (1300)