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Abstract 

Genetic susceptibility to Intellectual disability (ID), autism spectrum disorder (ASD) 

and schizophrenia (SCZ) often arises from mutations in the same genes, suggesting 

that they share common mechanisms. We studied genes with de novo mutations in 

the three disorders and genes implicated by SCZ genome-wide association study 

(GWAS). Using biological annotations and brain gene expression, we show that 

mutation class explains enrichment patterns more than specific disorder. Genes with 

loss of function mutations and genes with missense mutations were enriched with 

different pathways, shared with genes intolerant to mutations. Specific gene 

expression patterns were found for each disorder. ID genes were preferentially 

expressed in fetal cortex, ASD genes also in fetal cerebellum and striatum, and genes 

associated with SCZ were most significantly enriched in adolescent cortex. Our study 

suggests that convergence across neuropsychiatric disorders stems from vulnerable 

pathways to genetic variations, but spatiotemporal activity of genes contributes to 

specific phenotypes. 
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Introduction 

The successful genetic dissection of Autism spectrum disorder (ASD), intellectual 

disability (ID) and schizophrenia (SCZ) has resulted in the discovery of a large number 

of candidate genes (Hamdan et al., 2014; Iossifov et al., 2014; O’Roak et al., 2012; 

Rauch et al., 2012; De Rubeis et al., 2014).  Surprisingly, analysis has suggested that 

the same genes and the same biological pathways are involved in more than one 

disorder. First, significant overlap has been found between genes with de novo 

mutations in ID, ASD and SCZ (Fromer et al., 2014; Hoischen et al., 2014; McCarthy et 

al., 2014). Second, similar pathways have been identified for each of the three 

disorders: chromatin regulators and synaptic proteins, especially glutamatergic 

synapses, are pathways affected by genes with de novo mutations in ID, ASD and SCZ 

(Ben-David and Shifman, 2013; Fromer et al., 2014; Hamdan et al., 2014; 

Hormozdiari et al., 2015; McCarthy et al., 2014; Parikshak et al., 2013; De Rubeis et 

al., 2014; Willsey et al., 2013). Third, in all three disorders, de novo mutations affect 

genes intolerant to mutations (so-called constrained genes). Specifically de novo loss 

of function (LoF) mutations in ASD and ID are enriched in a set of 1,003 genes that 

are significantly depleted from mutations in the general human population (and are 

presumably under the most significant selective constraint) (Samocha et al., 2014).  

While analyses of each disorder separately have identified shared pathways 

between genes, a systematic cross-disorder comparison has not yet been performed. 

Such an analysis could yield further insight into the shared, convergent etiology, but 

critically it could also identify distinct, divergent features that are hallmarks of genes 

associated with each of the different disorders.  
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In this study, we investigate the convergence and divergence between genes 

associated with ID, ASD and SCZ using a methodology applied for individual disorders 

(Ben-David and Shifman, 2012; Gilman et al., 2011, 2012; Gulsuner et al., 2013; 

O’Roak et al., 2012; Willsey et al., 2013). To make the analyses comparable and to 

avoid ascertainment bias, we studied genes identified using the same experimental 

strategy in each disorder. We focused on functional de novo mutations from exome 

sequencing studies as they represent a set of prime candidate genes. Our analyses 

revealed specific pathways that are associated with LoF mutations and different 

pathways with missense mutations across disorders. Despite the shared attributes, 

unique patterns of expression in the brain were identified for genes disrupted by de 

novo mutations in ASD and ID, as well as for genes in GWAS loci for SCZ.  

 

Results 

Enrichment of de novo mutations depending on diagnosis, mutation class and sex 

We collected sets of genes with coding de novo SNVs identified by genome wide 

screens in ID, ASD and SCZ (Table S1). The data included exome sequencing of 195 

ID, 3,953 ASD, and 1,027 SCZ cases. As a control, we included de novo mutations 

identified in unaffected siblings of ASD or SCZ individuals (n = 1,995), and unrelated 

typically developing individuals (n = 34). These mutations were divided into three 

classes based on their expected severity: (1) LoF (nonsense, splice site and 

frameshift), (2) missense (non-synonymous SNV and indels that did not result in a 

frameshift), and (3) synonymous mutations. Since most synonymous mutations are 

expected to be silent, across this study we treated the synonymous mutations as a 

negative control for the mutations more likely to be functional (LoF and missense). 
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Our strategy, focusing on de novo mutations, excludes recessive mutations, which 

were mostly identified for ID by homozygosity mapping (Najmabadi et al., 2011). 

We calculated for each disorder and each mutation class the mutation rate 

per individual and tested the ratios between functional and non-functional mutation 

rates to correct for experimental confounders. We replicated the higher rate of de 

novo mutations in ID and ASD, and found a significant enrichment for missense 

mutations in SCZ that was not reported before (Figures 1A and S1A). LoF mutations 

were significantly enriched in ID (FDR corrected P = 5.5×10-8) and ASD (FDR corrected 

P = 6.0×10-7), but not in SCZ (FDR corrected P = 0.063). For missense mutations, the 

ratio was significantly higher compared to the control in ID (FDR corrected P = 

4.7×10-5), ASD (FDR corrected P = 3.1×10-4), and SCZ (FDR corrected P = 2.3×10-4). 

Consistent with a previous study (Fromer et al., 2014), the rates of both LoF and 

missense mutations were higher in ID compared to ASD (FDR corrected PLoF  = 

1.7x10-6, FDR corrected Pmissense = 3.1x10-4) and SCZ (FDR corrected PLoF = 6.0x10-7 , 

FDR corrected Pmissense = 0.0027). No significant difference was found between ASD 

and SCZ (FDR corrected PLoF = 0.17, FDR corrected Pmissense = 0.090).  

Previous studies in ASD reported a higher rate of de novo SNVs in females 

compared to males (Iossifov et al., 2014; De Rubeis et al., 2014). We found evidence 

that de novo LoF mutations were at higher rate in females not only in ASD, but also 

across disorders (all uncorrected P < 0.05; FDR corrected P < 0.05 only for ASD). 

Surprisingly, de novo missense mutations were at significantly higher rate in males 

with ID, but not in ASD or SCZ (Figures 1B and S1B).  
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We next tested the overlap of genes between disorders. We found a 

significant overlap for both LoF (observed to expected ratio [O/E] = 2.94-15.24) and 

missense mutations (O/E = 2.24 – 2.80) between disorders (Table S2). The most 

significant overlap for genes with LoF mutations was between ID and ASD (O/E = 

15.24), and for genes with missense mutations between SCZ and ASD (O/E = 2.80). In 

some pairwise comparisons, there was a small but significant overlap between genes 

identified in the disorders and the controls (O/E = 0-1.8). For synonymous mutations, 

there was no significant overlap between conditions (all P values > 0.05). 

 

Genes with missense mutations have significantly more protein–protein interactions 

while genes with LoF mutations show less variation in gene expression 

There are differences between genes in the sensitivity to functional mutations. We 

compared the degree of intolerance to mutation (constraint) for genes with different 

class of de novo mutations and between the disorders. For genes with LoF and 

missense mutations there was a significant difference in the average constraint score 

among the different conditions (PLoF = 4.9×10-9, Pmissense = 6.7×10-8), but this was not 

significant for synonymous mutations (P = 0.39) (Figure 1C). The average constraint 

score for genes with LoF and missense mutations was significantly higher for ID, 

following by ASD and SCZ, which were not significantly different from each other, but 

were significantly different from the controls (Post-hoc tests, Table S3). The overlap 

between previously defined constrained genes (n = 1003) (Samocha et al., 2014) and 

the genes with mutations was significant across the three disorders for LoF and 

missense mutations (all FDR corrected P < 0.05), but not for genes with synonymous 

mutations (all FDR corrected P > 0.05) (Figure S1C). 
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Since genes mutated in ID, ASD and SCZ are under higher selective constraint, 

we asked why those genes were sensitive to mutations. We hypothesized that the 

genes may code for proteins having more protein–protein interactions (PPIs). It has 

been previously shown that mutations in highly connected proteins (hub proteins) 

are more likely to be lethal (Jeong et al., 2001). Consistent with our hypothesis, we 

found a significant positive correlation between the median weighted number of 

interactions and the level of constraint across disorders and mutation types (Pearson 

correlation r = 0.92, P = 2.4×10-5, Figure 2A). The level of constraint and the number 

of interactions were also positively correlated across all genes (r = 0.24, P < 2.2×10-

16), and the number of interactions for constrained genes was significantly higher 

compared to non-constrained genes (P < 2x10-16) (Figure 2B).  

We expected the genes with functional mutations to be enriched with hub 

proteins, but we found this to be significant only for missense mutations.  We tested 

the difference between the number of interactions per protein in the three disorders 

compared to the control. For genes with synonymous and LoF mutations, there was 

no statistical difference between any of the three disorders and the control (Figure 

S2). In contrast, there was significant higher number of interaction partners for 

genes with missense mutations in ID, ASD and SCZ (FDR corrected PID = 0.0066, PASD = 

0.018, PSCZ = 0.0072) (Figure 2C-E).  

Pathogenic missense mutations may be especially associated with hub 

proteins, because changes in the protein sequence may lead to changes in the ability 

to interact with other protein partners. Genes may also be under strong selective 

constraint if the level of expression is critical for proper function (dosage-sensitive 
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genes). Under this hypothesis, we expect constrained genes, as well as genes with 

pathogenic LoF mutations to show low variation in gene expression (Hasegawa et al., 

2015). To test this, we studied previously published single-cell gene expression from 

human brain (Darmanis et al., 2015). For each gene, we calculated a standardized 

measure of expression variation across single-cell neurons (based on coefficient of 

variation (CV) controlled for mean expression). Consistent with our prediction, 

constrained genes had on average a significantly lower variation in expression 

relative to unconstrained genes (P < 2x10-16) (Figure 3). Similarly, we observed across 

the disorders a trend of lower variation in gene expression for genes mutated by 

functional mutations, with a stronger effect size for LoF mutations (Figure 3).  When 

testing all the disorders together, genes with LoF mutations have a significantly 

lower expression variation relative to genes with missense mutations (Figure S3).  

Thus, our analysis supports a pathogenic role in all three disorders for mutations in 

genes intolerant to functional mutations, possibly because some of those genes code 

for ‘hub’ proteins or proteins sensitive to changes in expression levels 

(haploinsufficient).  

 

Constrained genes are involved in generation of neurons, expressed in multiple brain 

regions, but most significantly in early mid-fetal cortex 

Since constrained genes are not linked to any specific phenotype, we wanted to 

characterize their biological processes and expression patterns in the brain. We 

found that the constrained genes were enriched for biological processes that 

included generation of neurons, axon development, neurogenesis, and chromatin 

modification (FDR corrected P < 5x10-31) (Figure 4A). In addition, the constrained 
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genes were significantly associated with neurodevelopmental phenotypes in humans 

(based on the Human Phenotype Ontology), including neurodevelopmental 

abnormality, global developmental delay and cognitive impairment (FDR corrected P 

< 6x10-11). 

We next evaluated whether constrained genes are enriched in specific brain 

regions and developmental stages. We used a previously published method 

(Dougherty et al., 2010; Xu et al., 2014) that gives a measure of enrichment of a gene 

in a tissue or cell type (specificity index probability (pSI) statistic). We used a pSI 

dataset based on human brain gene expression to test for enrichment of constrained 

genes in six different brain region (amygdala, cerebellum, cortex, hippocampus, 

striatum, thalamus) and ten developmental periods (from early fetal to young 

adulthood). Consistent with previous study (Wells et al., 2015), the constrained 

genes were significantly enriched (FDR corrected P < 0.05) across many brain regions 

(all regions excluding the hippocampus) and across different stages of development, 

but mid-fetal cortex was the most significant (FDR corrected P = 2.6x10-17) (Figure 

4B). The cortex stood up as the brain region most enriched with constrained genes 

(FDR corrected P = 1.1x10-13) (Figure 4C), as well as three critical developmental 

periods, early fetal, early mid-fetal and adolescence (FDR corrected P = 2x10-8-4x10-3) 

(Figure 4D).  

 

Preferential expression of genes mutated in ID and ASD in specific brain regions and 

developmental stages 

We next studied the enrichment of genes mutated in the disorders across multiple 

brain regions and developmental stages (Figure 5). In the case of ID, the enrichment 
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was restricted to the cortex. ID genes with LoF mutations were most significantly 

enriched in early mid-fetal cortex (FDR corrected P = 0.024) (Figure 5A), while genes 

with missense mutations showed the strongest enrichment in young adulthood 

cortex (FDR corrected P = 0.0060) (Figure 5B). Genes with missense mutations in ASD 

did not show significant enrichment in any brain region. Consistent with previous 

studies (Parikshak et al., 2013; Willsey et al., 2013), genes with LoF mutations in ASD 

showed a significant enrichment in early mid-fetal cortex (FDR corrected P = 0.0019) 

(Figure 5C), a region that was the most significantly associated with ID genes 

disrupted by LoF mutations and constrained genes.  

However, in contrast to ID, the enrichment in ASD was not restricted to the 

cortex. Two additional regions were enriched in ASD genes with LoF mutations: early 

mid-fetal striatum (FDR corrected P = 0.0019) and early fetal cerebellum (FDR 

corrected P = 0.0019) (Figure 5C). Since there is a significant overlap between genes 

with LoF mutations in ASD and ID, we retested the enrichment excluding the 

overlapping genes. Despite the smaller number of non-overlapping genes in ID and 

ASD with LoF mutations (nID = 39, nASD = 506), the enrichment pattern did not change 

in a noteworthy way in both cases (Figure S4). Unlike ASD or ID, in SCZ none of the 

regions showed significant enrichment, after correcting for multiple testing. The 

most nominally significant enrichment was in the cerebellum during middle-late 

childhood, when testing genes with missense mutations (nominal P = 0.030, FDR 

corrected P = 0.62) (Figure 5D). Gene with synonymous mutations and genes with 

mutations in the control did not show any significant enrichment.   
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We next analyzed the genes mutated in the three disorders for enrichment of 

biological processes (Figures S4C and S4D). Genes with LoF mutations in ID were 

enriched for chromosome organization and regulation of transcription (FDR 

corrected P = 0.013). Genes with LoF mutations in ASD were enriched for similar 

biological processes, including chromatin modification (FDR corrected P = 1.6×10-10) 

and chromosome organization (FDR corrected P = 4.7×10-8). Genes with LoF 

mutations in SCZ did not show any significant enrichment. Genes with missense 

mutations across disorders were significantly enriched with similar and overlapping 

biological processes related to neuron development (FDR corrected P = 3.4×10-5 - 

1.7×10-13) (Figure S4D).  

 

The analysis of gene co-expression network in the developing human cortex show 

similar patterns for ID and ASD genes, strongly depending on mutation class 

Our analysis points to enrichment in fetal cortex for genes with functional mutations 

in both ID and ASD. Since previous studies showed that ASD genes are co-expressed 

in fetal cortex, we wanted to test the specificity of the enrichment by comparing 

between ID and ASD and between different mutation classes. We used a weighted 

gene co-expression network analysis based on gene expression from cortical 

development that divided the genes into 18 different modules (labeled M1 - M18) 

(Parikshak et al., 2013). The statistical power to detect enrichment may differ 

considerably between disorders as the power is a function of the degree of 

enrichment, but is also a function of the sample size (number of genes in each 

category) and the fraction of genuine risk genes among the list of mutated genes. To 

alleviate this problem and directly assess the convergence of mutations in the 
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different disorders to the same modules, we calculated the correlation between the 

enrichment strength in each module across the different disorders and the different 

mutation categories. We used the correlation as the input for hierarchical clustering, 

allowing us to globally survey how related are the different disorders and mutation 

classes (Figure 6A).  

We observed a strong relationship between ASD and ID genes highly 

influenced by the mutation class (Figure 6A). Specifically, the most significant 

correlation is observed between genes with LoF mutations in ID and ASD (r = 0.93, 

FDR corrected P = 1.5×10-7) (Figure 6B). This correlation across disorders (r = 0.93) 

was significantly higher than the correlations within disorders between LoF and 

missense mutations (PASD = 0.0018, PID = 0.0006); correlations which were non-

significantly different than 0 (FDR corrected P > 0.05, rASD = 0.53, rID = 0.44). Similarly, 

genes with missense mutations in ASD are most correlated with missense mutation 

in ID (r = 0.67, FDR corrected P = 0.015).  

When looking at specific modules (Figure 6C), the most significant 

enrichment was in the M2 module for genes with LoF mutations in ID (FDR corrected 

P = 0.029) and ASD (FDR corrected P = 0.0018), as well as for constrained genes (FDR 

corrected P = 3.2×10-12). Based on functional annotations the M2 module is enriched 

for chromatin modification (FDR corrected P = 8.4×10-12), chromosome organization 

(FDR corrected P = 8.8×10-9), and genes known to cause embryonic lethality in mice 

(FDR corrected P = 4.2×10-6). Across all modules, there was no significant enrichment 

for SCZ or for genes with synonymous mutations, nor for mutations in the control 

(Figure 6C).  
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A previous study included genes with recessive inheritance in the analysis of 

ID  (Parikshak et al., 2013). Based on the sensitivity of our analysis to mutation class, 

our hypothesis was that genes sensitive to mutations in both copies would be 

involved in different biological processes. To explore this possibility we tested the 

enrichment of ID autosomal recessive genes in the WGCNA modules, as well as for 

functional annotations. Consistent with our hypothesis, the recessive ID genes were 

not significantly enriched in any module (all FDR corrected P > 0.05), and were 

enriched for very different functional annotations. The biological processes 

annotations enriched for autosomal recessive ID genes were mainly related to 

metabolism (e.g. organic acid metabolic process and oxoacid metabolic process) 

(Figure S5). A similar functional annotation enrichment for metabolic process was 

observed for genes associated with autosomal recessive inheritance annotation in 

the Human Phenotype Ontology (HPO). 

 

Genes implicated by schizophrenia genome-wide association preferentially expressed 

in the cortex during adolescence and in DRD2 medium spiny neurons 

Since the analysis of de novo mutations in SCZ did not yield a conclusive enrichment 

in the brain, we turned to analyze common variants associated with SCZ. A genome-

wide association study (GWAS) of 36,989 SCZ cases identified 108 loci significantly 

associated with a small increase in SCZ risk (Ripke et al., 2014). Many of the loci 

identified by SCZ GWAS contain multiple SNPs in linkage disequilibrium and more 

than one gene. We therefore used a multistep procedure to prioritize the most likely 

causal genes. 
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Testing the list of genes for enrichment of functional annotations revealed a 

significant enrichment of multiple relevant biological processes and cellular 

components, such as synaptic transmission, generation of neurons, somatodendritic 

compartment, and synapse (FDR corrected P < 8x10-4) (Figure S6). The 60 genes that 

were included in at least one of the significant annotations were considered as the 

most likely SCZ candidate genes (Table S4). We found that the 60 genes are 

preferentially expressed in specific brain regions, developmental stages, and in 

neural cell types. Across brain regions and developmental stages the most significant 

enrichment was for the cortex during adolescence and young adulthood (FDR 

corrected P = 0.004) (Figure 7A), and across cells for DRD2+ (FDR corrected P = 

0.008) and DRD1+ medium spiny neurons (FDR corrected P = 0.01) (Figure 7B).  

 

Discussion 

Our analyses of genes that contain de novo mutations in ID, ASD and SCZ revealed 

the existence of different enrichment patterns for different classes of mutations. 

This enrichment is not related to a specific disorder. Table 1 summarizes our findings 

and shows the molecular and neuronal processes most vulnerable to specific types 

of mutation. The three disorders show divergence in the specific brain regions and 

developmental periods affected by genetic variations, consistent with differences in 

their age of onset.  

Our results point to molecular convergence across disorders that in part is 

due to the fact that de novo mutations affect only one copy of each gene; in other 

words, the functional mutations have dominant phenotypes. Genes sensitive to LoF 
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or missense mutations influence different types of sensitive pathways that are 

involved in brain development and function. Our study shows that the analysis of 

functional de novo mutations is not only influenced by disorder-specific mechanisms, 

but also captures the processes that are sensitive to specific class of mutations. Thus, 

we suggest that previous functional studies of neuropsychiatric disorders may have 

reached specific conclusions based on which classes of mutations they studied.  

 Our results indicate that the mechanisms leading to specific disorders are 

sensitive to different class of mutations. The sensitive processes, shared across 

disorders occur at different levels. First, at the molecular level, highly connected 

‘hub genes’ are more sensitive to perturbations (Jeong et al., 2001). A gene can be 

highly connected because the protein product has many interactions with other 

proteins or because it has a role in regulation of multiple genes via transcription or 

translation. Our analysis suggests that genes involved in neuron development that 

are also highly connected in the PPI network are more affected by missense 

mutations, possibly because those mutations affect protein structure or function. 

Genes sensitive to LoF mutations are characterized by being chromosome and 

chromatin organizers and by having low variation in gene expression.  

In the analysis of gene co-expression, the correlation between ID and ASD 

depended on mutation class. It suggests that genes intolerant to specific types of 

functional mutations are co-expressed during development. For instance, the M2 

module that is enriched for chromatin regulators was unsurprisingly associated 

specifically with genes with LoF mutations in both ASD and ID. The three modules 

that are enriched for genes with functional mutations in ASD are also enriched with 
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constrained genes. Thus, previous findings that genes with LoF mutations in ASD co-

expressed in fetal cortex (Parikshak et al., 2013; Willsey et al., 2013) do not 

necessarily reveal ASD specific mechanisms, but instead expose the type of genes 

and processes that are sensitive to LoF mutations. This is also supported by the 

analysis of ID recessive genes that points to a completely different pathway that is 

sensitive to mutations affecting both copies of the gene.  

Second, at the level of the brain, the analysis of ASD and ID genes together 

with constrained genes suggests that the cortex, especially during early 

development, is the most vulnerable region to LoF mutations. It was previously 

suggested that the cortex might be more vulnerable to genetic mutations because of 

the intense evolution in the recent lineage leading to humans, and the insufficient 

time to evolve enough buffering capacity (McGrath et al., 2011). We found that 

across different brain regions, the genes intolerant to mutations are preferentially 

expressed in early fetal and to a lesser degree during adolescence, suggesting that 

those two periods of brain development are the most sensitive to genetic insults.  

Third, our analysis across disorders suggests that males are more vulnerable 

to LoF mutations, but not necessarily to missense mutations. The trend of increasing 

rate of LoF mutations in females is consistent with biological differences between 

the sexes and with more robust brain development in females (Suliman et al., 2014).  

Despite the extensive convergence across disorders discussed above, we can 

still identify unique patterns of preferential expression in the brain for the different 

disorders. In ID, the enrichment of genes with functional mutations was restricted to 

the cortex in both fetal and young adulthood, depending on the type of mutations. 
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Genes with LoF mutations in ASD showed enrichment not only in fetal cortex, but 

also in additional brain regions – the cerebellum and striatum. The different 

enrichment patterns seen in ID, suggest that altered function of multiple brain 

regions account for the range of cognitive, social and restrictive behaviors seen in 

ASD. 

The analysis of genes located in the 108 SCZ loci suggests that common 

variants associated with SCZ affect synaptic and neuronal processes that are active in 

the cortex during adolescence and that influence dopaminergic neurons. These 

results elucidate potential causative mechanisms, which are consistent with SCZ age 

of onset as well as with the classical theories of cortical dysfunction and the role of 

dopamine in SCZ (Howes and Kapur, 2009; Winterer and Weinberger, 2004). Not 

only that antipsychotic drugs increase presynaptic dopamine metabolism and block 

dopamine D2 receptors, but also brain imaging and postmortem studies have found 

strong evidence for a dopaminergic hyper-function in the striatum of patients with 

SCZ (Howes and Kapur, 2009; Winterer and Weinberger, 2004).  

Our analysis provides evidence that dopamine is not only part of the 

pathophysiology of the disorder but also involved in its etiology. Since extensive 

GWAS loci are not available for ASD or ID, we cannot directly test the specificity of 

the results. However, a recent GWAS study of educational attainment, which is 

genetically correlated with cognitive performance (but not with SCZ), found the 

candidate genes to preferentially expressed in the brain during the prenatal period 

(Okbay et al., 2016). The preferential expression of SCZ genes in adolescent cortex 

and educational attainment in prenatal period are consistent with a close 
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relationship between the temporal expression of the genes and the phenotypic 

manifestation of the genetic variants. 
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Methods 

Data Collection 

The de novo mutations analyzed in this paper were collected from 14 different 

studies: (1) mutations found in children with ASD and their unaffected siblings 

(Iossifov et al., 2012, 2014; Neale et al., 2012; O’Roak et al., 2012; De Rubeis et al., 

2014; Sanders et al., 2012), (2) mutations found in SCZ patients and their unaffected 

siblings (Fromer et al., 2014; Girard et al., 2011; Gulsuner et al., 2013; McCarthy et 

al., 2014; Xu et al., 2008), (3) mutations found in ID patients (Gilissen et al., 2014; 

Hamdan et al., 2014; de Ligt et al., 2012; Rauch et al., 2012), and (4) mutations found 

in control families (Rauch et al., 2012; Xu et al., 2008). We annotated all the 

mutations using Annovar (Wang et al., 2010) with the Ensembl annotation, and 

included only protein coding mutations for further analysis. In total, we analyzed 

4,481 ASD mutations, 309 ID mutations, 975 schizophrenia mutations, 1,931 

mutation in unaffected siblings, and 44 mutations in control families. The mutations 

were grouped into LoF, missense and synonymous mutations. LoF mutations 

included frameshift, stop codon and splicing mutations. Missense mutations were 

defined as non-synonymous SNVs and indels, which were not LoF. 

 

De novo mutations rates 

The average number of de novo mutations per individual was calculated for each 

disorder and each mutation category (LoF, missense and synonymous). To control 

for factors that influence estimates of absolute rates of de novo mutations we 

normalized the number of functional mutations (LoF or missense) to the number of 

synonymous mutations identified in each study. We then compared the normalized 
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measure between cases and controls. We excluded from the calculation the study of 

de Ligt et al. (2012), which has was partly overlapping with Gilissen et al. (2014). In 

ASD, we used data from two studies that included all the samples from previous 

work (Iossifov et al., 2014; De Rubeis et al., 2014). A pairwise t-test was used to 

compare between the per-individual mutation rate in the three disorders and the 

control sample. In order to test for differences in mutation rates between males and 

females we used a two-way ANOVA to test for interactions between sex and disease 

status. For each mutation type, P-values were corrected for multiple testing using 

FDR correction. 

 

Overlap between conditions 

To examine the overlap across different class of mutations, we used the dnenrich  

software (Fromer et al., 2014) to test whether genes with mutations in one disorder 

were significantly enriched among the genes with same type of mutations in the 

other disorders. The dnenrich permutation framework generates random set of 

mutations but controls for gene size, structure and local trinucleotide mutation rate. 

The overlap of mutated genes between the different disorders was tested using 

10,000 permutations. For each mutation category, we tested the overlap of the list 

of genes in each condition with all other conditions. Genes that were mutated more 

than once in a specific list were given a weight based on the number of occurrences. 

The program preforms permutations on the entire exome using the original 

mutation list and creates multiple permutated gene lists, controlling for GC content 

and gene length. The degree of overlap was calculated by dividing the observed 

number of overlapping genes by the number of overlaps in the permutations. For 
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each mutation type, P-values were corrected for multiple testing using FDR 

correction. 

 

Analysis of constrained genes  

We used levels of gene constraint, and the list of genes with significant constraint 

from Samocha et al. (Samocha et al., 2014).  We calculated the mean constraint level 

for genes with mutations in each disorder using the constraint score available for 

missense mutations (presented as z scores). ANOVA was used to test for differences 

in constraint score, followed by pairwise t-test with FDR correction (pairwise.t.test 

function in R). We tested the enrichment of the 1,003 constrained genes among the 

genes mutated in each disorder relative to the control using Fisher’s exact test with 

FDR correction. 

 

Protein–protein interactions 

Protien-protein interaction (PPI) data was downloaded from the Mentha project 

(Calderone et al., 2013) (on August 24, 2015). The dataset contains an integrated PPI 

information with a reliability score for each interaction. We used the reliability score 

to generate a weighted measure of the number of interactors of each protein by 

summing the reliability score of each of the protein interactions. We then tested the 

difference between the weighted average number of interactions for genes mutated 

in the different disorders relative the control, and across the different mutation 

categories. Significance was based on a Kolmogorov–Smirnov test, followed by FDR 

correction. Similarly, we tested for the difference between the 1,003 constrained 

genes and the unconstrained genes.  
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Variation in gene expression 

We used a previously published single-cell gene expression from human brain 

(Darmanis et al., 2015).  The data was comprised of 465 samples.  We converted the 

raw read counts to counts per million (cpm) and normalized to gene exonic length. 

We divided the dataset to different cell types (Astrocytes, Endothelial, Microglia, 

Neuron, Oligodendrocytes and Oligodendrocyte progenitors) by clustering them 

using cell type-specific marker genes, which were used in the original study 

(Darmanis et al., 2015). We calculated a standardized measure of expression 

variation controlled for the mean expression based on the coefficient of variation 

(CV) (standard deviation divided by mean) for genes expressing (cpm > 0) in more 

than 10% of the 247 neuronal cells. Since the log of the CV showed linear correlation 

with the log of the average expression, we calculated the residuals from the linear 

regression as a standardized measure of expression variation. ANOVA was used to 

test for the differences between the standardized measures across conditions. P-

values were adjusted by FDR correction.  

 

Gene expression enrichment in specific brain regions 

We used a previously published method (Dougherty et al., 2010; Xu et al., 2014), 

which is based on a specificity index probability (pSI) statistic – a measure of 

enrichment of a gene in a tissue or cell type. We used the pSI R package to calculate 

the enrichment P-values for gene lists in different brain regions (Amygdala, 

Cerebellum, Cortex, Hippocampus, Striatum, Thalamus), and across different 

developmental stages (early fetal, early mid  fetal, late mid fetal, late fetal, neonatal-
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early Infancy, late Infancy, early childhood, middle-late childhood, adolescence, 

young adulthood). Significance of the overlap with the list of genes with de novo 

mutations was calculated using the dnenrich program (Fromer et al., 2014) with 

10,000 permutations. An FDR procedure was used to correct for multiple regions and 

stages. 

 

Gene co-expression analysis in the cortex 

We used an approach that was previously applied to identify convergence in ASD-

associated genes (Ben-David and Shifman, 2012; Parikshak et al., 2013) based on 

weighted gene co-expression network analysis (WGCNA) (Zhang and Horvath, 2005). 

The approach relies on the assumption that co-expressed genes are functionally 

related. By dividing the genes in the genome into modules of co-expressed genes, it 

is possible to test the enrichment of risk genes in each module (Ben-David and 

Shifman, 2012; Parikshak et al., 2013). We used a published WGCNA that was based 

on gene expression from the developing human cortex (PCW 8 – 12 months) 

(Parikshak et al., 2013). The network was comprised of 22,084 genes mapped to 18 

modules. The enrichment analysis was performed only on protein coding genes (n = 

15,591). For each mutation class and each disorder, we tested the enrichment in 

each module using dnenrich (Fromer et al., 2014) with 10,000 permutations. For the 

constrained genes, we tested the enrichment using Fisher's exact test (using 

fisher.test function in R). P-values were corrected for multiple testing using FDR 

correction across all modules. In order to study the relationship between the 

disorders and mutation categories we calculated the Pearson correlation between 

the -log10 of the nominal P-values (-logP), which was used for hierarchical clustering 
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(using heatmap.2 function in R). The -logP was used to measure the correlation in 

enrichment across modules since the effect sizes were highly influenced by the size 

of the modules. The significance of the difference between correlation coefficients 

was calculated using Fisher r-to-z transformation. 

 

Analysis of SCZ GWAS 

We used a multistep procedure to prioritize the most likely causal genes. First, we 

selected a single SNP in each of the 108 loci with the most significant association 

signal as the most likely causal SNP. The list of the 108 most significant SNPs was 

extracted from Ripke et al. (Ripke et al., 2014). Second, assuming that most 

regulatory variants are within a relatively short distance from the gene we included 

only genes overlapping 100 kb window around the most significant SNP. RefSeq 

genes overlapping the 100kb windows around the SNPs were downloaded from the 

USCS genome browser. On average, there were around two genes per window, 

totaling 210 RefSeq genes (including non-coding RNAs) (Table S4). Third, we 

prioritize the genes based on the assumption that SCZ risk genes share functional 

annotations and will be more functionally similar to each other relative to other 

genes in the list. The list of genes were tested for annotation enrichment using the 

ToppGene Suite (Chen et al., 2009). Genes that were included in at least one of the 

significant annotations were considered as the most likely SCZ candidate genes. One 

of the GWAS loci includes three genes that are a part of the nicotinic receptor cluster 

(CHRNA5-CHRNA3-CHRNB4). To correct for possible bias due to duplicated genes 

that are physically located within the same loci we treated them as a single entity. 

Specifically, to avoid the overrepresentation of nicotinic receptor genes we included 
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only one representative gene in the analysis. Control gene lists were created by 

shifting the 100 kb windows by one Mb or by selecting random sets of 108 SNPs that 

were found to be significantly associated with other unrelated traits in GWASs. No 

significant enrichment was found for simulated control gene lists. Tests for 

enrichment of genes in brain regions or cell types was as described above using 

previously published method and data (Dougherty et al., 2010). 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 27, 2016. ; https://doi.org/10.1101/054460doi: bioRxiv preprint 

https://doi.org/10.1101/054460
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 
 

 
 

Acknowledgments 

We thank Jonathan Flint for his valuable comments on the manuscript. This research 

was supported by the National Institute for Psychobiology in Israel – founded by The 

Charles E. Smith Family and by the Israel Science Foundation (grant no. 688/12). Eyal 

Ben-David was supported by the Dennis Weatherstone Pre-doctoral Fellowship from 

Autism Speaks (grant no. 8595).  

 

 

 

Financial Disclosures 

All authors report no biomedical financial interests or potential conflicts of interest. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 27, 2016. ; https://doi.org/10.1101/054460doi: bioRxiv preprint 

https://doi.org/10.1101/054460
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 
 

 
 

References 

Ben-David, E., and Shifman, S. (2012). Networks of neuronal genes affected by 
common and rare variants in autism spectrum disorders. PLoS Genet. 8, e1002556. 

Ben-David, E., and Shifman, S. (2013). Combined analysis of exome sequencing 
points toward a major role for transcription regulation during brain development in 
autism. Mol. Psychiatry 18, 1054–1056. 

Calderone, A., Castagnoli, L., and Cesareni, G. (2013). mentha: a resource for 
browsing integrated protein-interaction networks. Nat. Methods 10, 690–691. 

Chen, J., Bardes, E.E., Aronow, B.J., and Jegga, A.G. (2009). ToppGene Suite for gene 
list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 37, 
W305-11. 

Darmanis, S., Sloan, S.A., Zhang, Y., Enge, M., Caneda, C., Shuer, L.M., Hayden 
Gephart, M.G., Barres, B.A., and Quake, S.R. (2015). A survey of human brain 
transcriptome diversity at the single cell level. Proc. Natl. Acad. Sci. 201507125. 

Dougherty, J.D., Schmidt, E.F., Nakajima, M., and Heintz, N. (2010). Analytical 
approaches to RNA profiling data for the identification of genes enriched in specific 
cells. Nucleic Acids Res. 38, 4218–4230. 

Fromer, M., Pocklington, A.J., Kavanagh, D.H., Williams, H.J., Dwyer, S., Gormley, P., 
Georgieva, L., Rees, E., Palta, P., Ruderfer, D.M., et al. (2014). De novo mutations in 
schizophrenia implicate synaptic networks. Nature 506, 179–184. 

Gilissen, C., Hehir-Kwa, J.Y., Thung, D.T., van de Vorst, M., van Bon, B.W.M., 
Willemsen, M.H., Kwint, M., Janssen, I.M., Hoischen, A., Schenck, A., et al. (2014). 
Genome sequencing identifies major causes of severe intellectual disability. Nature 
511, 344–347. 

Gilman, S.R., Iossifov, I., Levy, D., Ronemus, M., Wigler, M., and Vitkup, D. (2011). 
Rare de novo variants associated with autism implicate a large functional network of 
genes involved in formation and function of synapses. Neuron 70, 898–907. 

Gilman, S.R., Chang, J., Xu, B., Bawa, T.S., Gogos, J.A., Karayiorgou, M., and Vitkup, D. 
(2012). Diverse types of genetic variation converge on functional gene networks 
involved in schizophrenia. Nat. Neurosci. 15, 1723–1728. 

Girard, S.L., Gauthier, J., Noreau, A., Xiong, L., Zhou, S., Jouan, L., Dionne-Laporte, A., 
Spiegelman, D., Henrion, E., Diallo, O., et al. (2011). Increased exonic de novo 
mutation rate in individuals with schizophrenia. Nat. Genet. 43, 860–863. 

Gulsuner, S., Walsh, T., Watts, A.C., Lee, M.K., Thornton, A.M., Casadei, S., Rippey, C., 
Shahin, H., Nimgaonkar, V.L., Go, R.C.P., et al. (2013). Spatial and temporal mapping 
of de novo mutations in schizophrenia to a fetal prefrontal cortical network. Cell 154, 
518–529. 

Hamdan, F.F., Srour, M., Capo-Chichi, J.-M., Daoud, H., Nassif, C., Patry, L., 
Massicotte, C., Ambalavanan, A., Spiegelman, D., Diallo, O., et al. (2014). De novo 
mutations in moderate or severe intellectual disability. PLoS Genet. 10, e1004772. 

Hasegawa, Y., Taylor, D., Ovchinnikov, D.A., Wolvetang, E.J., de Torrenté, L., and 
Mar, J.C. (2015). Variability of Gene Expression Identifies Transcriptional Regulators 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 27, 2016. ; https://doi.org/10.1101/054460doi: bioRxiv preprint 

https://doi.org/10.1101/054460
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 
 

 
 

of Early Human Embryonic Development. PLOS Genet. 11, e1005428. 

Hoischen, A., Krumm, N., and Eichler, E.E. (2014). Prioritization of 
neurodevelopmental disease genes by discovery of new mutations. Nat. Neurosci. 
17, 764–772. 

Hormozdiari, F., Penn, O., Borenstein, E., and Eichler, E.E. (2015). The discovery of 
integrated gene networks for autism and related disorders. Genome Res. 25, 142–
154. 

Howes, O.D., and Kapur, S. (2009). The dopamine hypothesis of schizophrenia: 
version III--the final common pathway. Schizophr. Bull. 35, 549–562. 

Iossifov, I., Ronemus, M., Levy, D., Wang, Z., Hakker, I., Rosenbaum, J., Yamrom, B., 
Lee, Y., Narzisi, G., Leotta, A., et al. (2012). De Novo Gene Disruptions in Children on 
the Autistic Spectrum. Neuron 74, 285–299. 

Iossifov, I., O’Roak, B.J., Sanders, S.J., Ronemus, M., Krumm, N., Levy, D., Stessman, 
H.A., Witherspoon, K.T., Vives, L., Patterson, K.E., et al. (2014). The contribution of de 
novo coding mutations to autism spectrum disorder. Nature advance on. 

Jeong, H., Mason, S.P., Barabási, A.L., and Oltvai, Z.N. (2001). Lethality and centrality 
in protein networks. Nature 411, 41–42. 

de Ligt, J., Willemsen, M.H., van Bon, B.W.M., Kleefstra, T., Yntema, H.G., Kroes, T., 
Vulto-van Silfhout, A.T., Koolen, D. a., de Vries, P., Gilissen, C., et al. (2012). 
Diagnostic Exome Sequencing in Persons with Severe Intellectual Disability. 

McCarthy, S.E., Gillis, J., Kramer, M., Lihm, J., Yoon, S., Berstein, Y., Mistry, M., 
Pavlidis, P., Solomon, R., Ghiban, E., et al. (2014). De novo mutations in 
schizophrenia implicate chromatin remodeling and support a genetic overlap with 
autism and intellectual disability. Mol. Psychiatry 19, 652–658. 

McGrath, J.J., Hannan, A.J., and Gibson, G. (2011). Decanalization, brain 
development and risk of schizophrenia. Transl. Psychiatry 1, e14. 

Najmabadi, H., Hu, H., Garshasbi, M., Zemojtel, T., Abedini, S.S., Chen, W., Hosseini, 
M., Behjati, F., Haas, S., Jamali, P., et al. (2011). Deep sequencing reveals 50 novel 
genes for recessive cognitive disorders. Nature 478, 57–63. 

Neale, B.M., Kou, Y., Liu, L., Ma’ayan, A., Samocha, K.E., Sabo, A., Lin, C.-F., Stevens, 
C., Wang, L.-S., Makarov, V., et al. (2012). Patterns and rates of exonic de novo 
mutations in autism spectrum disorders. Nature 485, 242–245. 

O’Roak, B.J., Vives, L., Girirajan, S., Karakoc, E., Krumm, N., Coe, B.P., Levy, R., Ko, A., 
Lee, C., Smith, J.D., et al. (2012). Sporadic autism exomes reveal a highly 
interconnected protein network of de novo mutations. Nature 485, 246–250. 

Okbay, A., Beauchamp, J.P., Fontana, M.A., Lee, J.J., Pers, T.H., Rietveld, C.A., Turley, 
P., Chen, G.-B., Emilsson, V., Meddens, S.F.W., et al. (2016). Genome-wide 
association study identifies 74 loci associated with educational attainment. Nature 
advance on. 

Parikshak, N.N., Luo, R., Zhang, A., Won, H., Lowe, J.K., Chandran, V., Horvath, S., and 
Geschwind, D.H. (2013). Integrative functional genomic analyses implicate specific 
molecular pathways and circuits in autism. Cell 155, 1008–1021. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 27, 2016. ; https://doi.org/10.1101/054460doi: bioRxiv preprint 

https://doi.org/10.1101/054460
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 
 

 
 

Rauch, A., Wieczorek, D., Graf, E., Wieland, T., Endele, S., Schwarzmayr, T., Albrecht, 
B., Bartholdi, D., Beygo, J., Di Donato, N., et al. (2012). Range of genetic mutations 
associated with severe non-syndromic sporadic intellectual disability: an exome 
sequencing study. Lancet 380, 1674–1682. 

Ripke, S., Neale, B.M., Corvin, A., Walters, J.T.R., Farh, K.-H., Holmans, P.A., Lee, P., 
Bulik-Sullivan, B., Collier, D.A., Huang, H., et al. (2014). Biological insights from 108 
schizophrenia-associated genetic loci. Nature 511, 421–427. 

De Rubeis, S., He, X., Goldberg, A.P., Poultney, C.S., Samocha, K., Ercument Cicek, A., 
Kou, Y., Liu, L., Fromer, M., Walker, S., et al. (2014). Synaptic, transcriptional and 
chromatin genes disrupted in autism. Nature advance on. 

Samocha, K.E., Robinson, E.B., Sanders, S.J., Stevens, C., Sabo, A., McGrath, L.M., 
Kosmicki, J.A., Rehnström, K., Mallick, S., Kirby, A., et al. (2014). A framework for the 
interpretation of de novo mutation in human disease. Nat. Genet. 46, 944–950. 

Sanders, S.J., Murtha, M.T., Gupta, A.R., Murdoch, J.D., Raubeson, M.J., Willsey, A.J., 
Ercan-Sencicek, A.G., DiLullo, N.M., Parikshak, N.N., Stein, J.L., et al. (2012). De novo 
mutations revealed by whole-exome sequencing are strongly associated with autism. 
Nature 485, 237–241. 

Suliman, R., Ben-David, E., and Shifman, S. (2014). Chromatin regulators, phenotypic 
robustness, and autism risk. Front. Genet. 5, 81. 

Wang, K., Li, M., and Hakonarson, H. (2010). ANNOVAR: functional annotation of 
genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164. 

Wells, A., Kopp, N., Xu, X., O’Brien, D.R., Yang, W., Nehorai, A., Adair-Kirk, T.L., 
Kopan, R., and Dougherty, J.D. (2015). The anatomical distribution of genetic 
associations. Nucleic Acids Res. 43, 10804–10820. 

Willsey, A.J., Sanders, S.J., Li, M., Dong, S., Tebbenkamp, A.T., Muhle, R.A., Reilly, 
S.K., Lin, L., Fertuzinhos, S., Miller, J.A., et al. (2013). Coexpression networks 
implicate human midfetal deep cortical projection neurons in the pathogenesis of 
autism. Cell 155, 997–1007. 

Winterer, G., and Weinberger, D.R. (2004). Genes, dopamine and cortical signal-to-
noise ratio in schizophrenia. Trends Neurosci. 27, 683–690. 

Xu, B., Roos, J.L., Levy, S., van Rensburg, E.J., Gogos, J.A., and Karayiorgou, M. (2008). 
Strong association of de novo copy number mutations with sporadic schizophrenia. 
Nat. Genet. 40, 880–885. 

Xu, X., Wells, A.B., O’Brien, D.R., Nehorai, A., and Dougherty, J.D. (2014). Cell type-
specific expression analysis to identify putative cellular mechanisms for neurogenetic 
disorders. J. Neurosci. 34, 1420–1431. 

Zhang, B., and Horvath, S. (2005). A general framework for weighted gene co-
expression network analysis. Stat. Appl. Genet. Mol. Biol. 4, Article17. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 27, 2016. ; https://doi.org/10.1101/054460doi: bioRxiv preprint 

https://doi.org/10.1101/054460
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 
 

 
 

Tables 

Table 1. Features enriched in genes with specific types of genetic variants 

    ID ASD SCZ Constrained  

LoF 

Mutation rate relative to control *** *** NS - 

GO: chromatin/chromosome organization * *** NS *** 

Low variance in expression NS ** NS *** 

Expression: Mid-fetal cortex * ** NS *** 

WGCNA: M2 module *** *** NS *** 

Missense 

Mutation rate relative to control *** *** *** - 

GO: neuron development *** *** *** *** 

Hub proteins ** * ** *** 

Expression: Young adulthood cortex ** NS NS *** 

WGCNA: M3 module NS ** NS *** 

GWAS 
GO: synaptic transmission NA NA *** *** 

Expression: Adolescence cortex NA NA ** *** 

*, FDR corrected P < 0.05. **, FDR corrected P < 0.01. ***, FDR corrected P < 0.001. 

NS, non-significant. NA, data not available. GO, gene ontology. Expression, 

enrichment based on gene expression in the brain. WGCNA, weighted gene 

coexpression network analysis. Hub proteins, proteins with a large number of 

interactions. ID, intellectual disability. ASD, autism spectrum disorder. SCZ, 

schizophrenia. Constrained, constrained genes.  
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Figures 

 

 

Figure 1. Rates of de novo mutations and levels of constraint for genes with de 

novo mutations (See also Figure S1). (A) The per-individual rate of functional 

mutations (LoF or missense) relative to the study-specific rate of non-functional 

mutations (synonymous). Error bars are standard error of the mean (SEM). P-values 

represent the significance of the difference from the controls. P-values were 

corrected for multiple testing with the Benjamini and Hochberg false discovery rate 

(FDR) procedure. ***, FDR corrected P < 0.001. (B) Differences between females and 

males in the rate of de novo mutations (values as above). P-values represent 

significant interaction between sex and disease status. *, FDR corrected P < 0.05. (C) 

The mean level of constraint (Z-score) ± SEM for genes with different types of 

mutations in the three disorders and the control. P-values were obtained by one-way 

ANOVA test for equal means. Post-hoc test can be found in table S3. #, significantly 

different from control. ##, significantly different form all other disorders.  
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Figure 2. Constrained genes and genes with functional de novo mutations in the 

disorders tend to have more protein-protein interactions (See also Figure S2). (A) 

Positive correlation (r = 0.92) between the median number of interactions and the 

mean constraint score across different mutation categories and disorders. (B) 

Cumulative distribution function (CDF) of the number of interactions (log10) plotted 

for constrained and unconstrained genes. The P-values were calculated using a two-

sample Kolmogorov–Smirnov test. (C-E) CDF of the number of interactions (log10) 

plotted for genes with missense mutations in the control relative to ID, ASD or SCZ. 

P-values were calculated using a two-sample Kolmogorov–Smirnov test, and 

corrected by FDR. 
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Figure 3. Constrained genes and genes with functional mutations tend to have 

lower variation in gene expression (See also Figure S3). Values are the effect size 

(Cohen’s d) for the difference in the standardized measure of expression variation 

between genes with mutations in the disorders and the control (± 95% confidence 

interval). *, FDR corrected P < 0.05. **, FDR corrected P < 0.01. ****, FDR corrected 

P < 0.0001. 
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Figure 4. Constrained genes are involved in specific biological processes and show 

specific spatiotemporal patterns of expression in the brain. (A) Biological processes 

(left) and human phenotypes (right) that are significantly enriched in constrained 

genes. The analysis was based on the pathway enrichment tool ToppGene Suite, 

which includes phenotypes from the Human Phenotype Ontology (HPO). Values are -

log10 of the FDR corrected P-values. (B-D) Enrichment in brain regions and during 

specific developmental epochs. Darker colors signify higher enrichment, presented 

as -log10 of the P-values. P-values are calculated using the Fisher’s exact test, and are 

corrected for multiple tests using FDR. *, FDR corrected P < 0.05. **, FDR corrected P 

< 0.01. ***, FDR corrected P < 0.001. The enrichment analysis was performed on (B) 

expression in brain regions during different developmental stages, (C) expression in 

different brain regions, averaged across development stages, and (D) expression in 

different developmental stage averaged across brain regions. 
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Figure 5. Region and stage specific enrichment in the human brain for genes with 

functional de novo mutations in ID and ASD (see also Figure S4). Heatmap colors 

represent the enrichment significance presented as -log10 of the P-values. P-values 

are calculated based on permutations in the dnenrich software and are corrected for 

multiple tests using FDR. *, FDR corrected P < 0.05. **, FDR corrected P < 0.01. (A) 

Enrichment analysis of genes with LoF mutations in ID. (B) Enrichment analysis of 

genes with missense mutations in ID. (C) Enrichment analysis of genes with LoF 

mutations in ASD. (D) Enrichment analysis of genes with missense mutations in SCZ.  
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Figure 6. Coexpression in the developing cortex of genes mutated by de novo 

mutations in ASD, SCZ, ID and unaffected control (see also Figure S5). (A) The 

correlations between disorders and mutation classes are visualized as a heatmap. 

Samples are sorted using hierarchical clustering. Red colors signify positive 

correlation and green negative correlation. (B) A scatter plot showing the correlation 

between mutations classes and disorders. Below the diagonal are plots of the P-

values (-log10) for each module in one condition & mutation class as a function of 

another. The red line is the linear best fit. Above the diagonal are the correlation 

values, with the size of the font proportional to the correlations strength. (C) 

Enrichment across 18 WGCNA modules of genes with mutations. The enrichment is 

shown for constrained genes and for different disorders divided to different classes 

of mutations. Statistical significance of enrichment of de novo mutations within each 

module is calculated with the dnenrich software (Fromer et al., 2014). Heatmap 

colors represent -log10 of the nominal P-values. The numbers are enrichment odds 

ratios, shown only for significant (FDR corrected) and positive enrichments. 
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Figure 7. Preferential expression in the human brain for neuronal genes associated 

with SCZ (see also Figure S6). Heatmap colors represent the enrichment significance 

presented as -log10 of the P-values. P-values are calculated based on Fisher's exact 

test corrected for multiple tests using FDR. *, FDR corrected P < 0.05. **, FDR 

corrected P < 0.01. (A) Analysis of adult brain regions and development. (B) Analysis 

across cell types is shown for different specificity Index thresholds (pSI). The outer 

hexagons represent a pSI < 0.05 and the inner hexagons a more stringent pSI. The 

size of the hexagons is scaled to the size of the gene list. 
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Varying intolerance of gene pathways to mutational classes explain genetic 

convergence across neuropsychiatric disorders. 
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Supplemental Figures and Figure legends 

 

Figure S1, related to Figure 1 

 

 

Figure S1 (related to Figure 1). Rates of de novo missense mutation per study and overlap with genes 

under selective constraint. (A) Rates of missense mutation in SCZ and matching controls. Values are 

mean rate of missense mutations relative to synonymous mutations (± SEM). The size of the symbols is 

proportional to the sample size. Test of  significance are for differences in missense mutation rate between 

SCZ and controls used in each study (Fromer et al., 2014; Gulsuner et al., 2013; McCarthy et al., 2014; Xu 

et al., 2008). *, P < 0.05. ***, P < 0.001. (B) Rates of missense mutations in males and females with ID 

across studies (Gilissen et al., 2014; Hamdan et al., 2014; Rauch et al., 2012). Values are mean rate of 

missense mutations relative to synonymous mutations (± SEM). The size of the symbols is proportional to 

the sample size. *, Significant interaction between sex and disease status (P < 0.05). (C) Association 

between 1003 constrained genes and genes with de novo mutations. Values are odds ratio relative to the 

control (± 95% confidence interval). The red dotted line indicates an odds ratio of 1.  
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Figure S2, related to Figure 2 

 

Figure S2 (related to Figure 2). Number of protein-protein interactions for genes with LoF and 

synonymous mutations. Cumulative distribution function (CDF) of the number of interactions (log10) 

plotted for genes with LoF mutations (left) and synonymous mutations (right) in ID, ASD and SCZ relative 

to control. P-values were calculated using a two-sample Kolmogorov–Smirnov test, and corrected by FDR. 
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Figure S3, related to Figure 3 

 

Figure S3 (related to Figure 3) Genes harboring functional mutations in the disorders show less 

vitiation in gene expression, especially genes with LoF mutations. Values are the effect size (Cohen's d) 

of the difference in expression variation between different mutation classes. Error bars are 95% confidence 

interval.  *, P < 0.05. ***, P < 0.001. 

  

-0.4

-0.2

0.0

0.2

E
ff

e
c
t 

s
iz

e
 (

C
o

h
e

n
's

 d
) factor(mut, levels = lev3)

LoF vs Synonymous

LoF vs Missense

Missense vs Synonymous

factor(phen, levels = lev2)

Disorders

Control

Mutation Class

-0.4

-0.2

0.0

0.2

E
ff

e
c
t 

s
iz

e
 (

C
o

h
e

n
's

 d
) factor(mut, levels = lev3)

LoF vs Synonymous

LoF vs Missense

Missense vs Synonymous

factor(phen, levels = lev2)

Disorders

Control

-0.4

-0.2

0.0

0.2

E
ff

e
c
t 

s
iz

e
 (

C
o

h
e

n
's

 d
) factor(mut, levels = lev3)

LoF vs Synonymous

LoF vs Missense

Missense vs Synonymous

factor(phen, levels = lev2)

Disorders

Control

Phenotype
***

***

*

St
an

d
ar

d
iz

ed
 m

ea
su

re
 o

f 
ex

p
re

ss
io

n
 v

ar
ia

ti
o

n
 (

ef
fe

ct
 s

iz
e)

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 27, 2016. ; https://doi.org/10.1101/054460doi: bioRxiv preprint 

https://doi.org/10.1101/054460
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

Figure S4, related to Figure 5 

 

Figure S4 (related to Figure 5). Region and stage specific enrichment in the human brain and 

functional enrichment analysis of genes with de novo mutations. (A) Enrichment analysis of genes with 

LoF mutations in different regions of the human brain and during different stages of development for genes 

with mutations only in ID (non-overlapping genes) or (B) ASD-specific genes. Heatmap colors represent 

the enrichment significance presented as -log10 of the P-values. P-values are calculated based on 

permutations in the dnenrich software and are corrected for multiple tests using FDR. *, FDR corrected P < 

0.05. **, FDR corrected P < 0.01. (C) Functional enrichment analysis of genes with LoF mutations, and (D) 

missense mutations. Top five significantly enriched biological processes are shown for each disorder. The 

analysis was based on the pathway enrichment tool, ToppGene Suite. Values are -log10 of the FDR 

corrected P-values.   
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Figure S5, related to Figure 6 

 

Figure S5 (related to Figure 6). Functional enrichment analysis of ID genes with autosomal recessive 

inheritance (top) and all genes with autosomal recessive inheritance (HP:0000007) based on the 

Human Phenome Ontology (bottom). Top five significantly enriched biological processes are shown for 

each. The analysis was based on the pathway enrichment tool, ToppGene Suite. Values are -log10 of the 

FDR corrected P-values. 
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Figure S6, related to Figure 7 

 

Figure S6 (related to Figure 7). Functional enrichment analysis of genes implicated in schizophrenia 

GWAS. Significantly enriched cellular component and biological processes for genes in 100 kb window 

around the most significant SNPs in schizophrenia GWAS. The analysis was based on the pathway 

enrichment tool, ToppGene Suite. Values are -log10 of the FDR corrected P-values. 
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Supplemental Tables: 

 

Table S2. Overlap between genes with de novo mutations across conditions  

    LoF   Missense   Synonymous 

Conditions O/E Corrected P   O/E Corrected P   O/E Corrected P 

ID ASD 15.24 0.00030   2.24 0.00017   0.88 0.84 

ID SCZ 10.06 0.00063   2.71 0.00017   0.86 0.84 

ID Control 0.00 1.0   1.56 0.0011   0.37 0.93 

ASD SCZ 2.94 0.0013   2.80 0.00017   1.19 0.71 

ASD Control 1.80 0.040   1.43 0.016   1.15 0.71 

SCZ Control 0.91 0.81   1.05 0.47   1.12 0.81 

O/E, observed to expected ratio. Corrected P, P values generated by permutations with the 
dnenrich software (Fromer et al., 2014) and corrected with the Benjamini and Hochberg false 
discovery rate (FDR) procedure. 
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Table S3. Differences in mean constraint score between conditions (related to Figure 1C) 

        

  

Post-hoc pairwise t test with FDR correction 

Mutation 
type 

ANOVA P 
value 

ASD-
Control 

ASD-  
ID 

ASD- 
SCZ 

ID-
Control 

ID-  
SCZ 

SCZ-
Control 

LoF 4.9E-09 1.3E-05 3.0E-04 0.25 8.2E-09 2.4E-04 0.035 

Missense 6.7E-08 5.0E-04 5.2E-05 0.82 7.8E-08 1.2E-04 0.025 

Synonymous  0.39 - - - - - - 
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