bioRxiv preprint doi: https://doi.org/10.1101/054775; this version posted May 23, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Predicting Peptide-MHC Binding Affinities With
Imputed Training Data

Alex Rubinsteyn* Timothy O’Donnell
Icahn School of Medicine at Mount Sinai Icahn School of Medicine at Mount Sinai
Nandita Damaraju® Jeff Hammerbacher?
Georgia Institute of Technology Icahn School of Medicine at Mount Sinai
Abstract

Predicting the binding affinity between MHC proteins their peptide ligands is a key
problem in computational immunology. State of the art performance is currently
achieved by the allele-specific predictor NetMHC and the pan-allele predictor
NetMHCpan, both of which are ensembles of shallow neural networks. We explore
an intermediate between allele-specific and pan-allele prediction: training allele-
specific predictors with synthetic samples generated by imputation of the peptide-
MHC affinity matrix. We find that the imputation strategy is useful on alleles with
very little training data. We have implemented our predictor as an open-source
software package called MHCflurry and show that MHCflurry achieves competitive
performance to NetMHC and NetMHCpan.

1 Introduction

In most vertebrates, cytotoxic T-cells enforce multi-cellular order by killing infected or cancerous
cells. Each organism possesses a poly-clonal army of T-cells which collectively are able to distinguish
unhealthy cells from healthy ones. This amazing feat is achieved through the winnowing and
expansion of clonal T-cell populations possessing highly specific T-cell receptors (TCRs) (1). Each
distinct TCR recognizes a small number of similar peptides bound to an MHC molecule on the surface
of a cell (2). Though there are many steps in “antigen processing” (3), it has become apparent that
MHC binding is the most restrictive step. Peptide-MHC affinity prediction is the well-studied problem
of predicting the binding strength of a given peptide and MHC pair (4). Early approaches focused on
“sequence motifs”(5), followed by regularized linear models, linear models with interaction terms such
as SMM with pairwise features (6), and more recently the NetMHC family of predictors, a collection
of related models based on ensembles of neural networks. Two of these predictors, NetMHC (7)
and NetMHCpan (8), have emerged as the methods of choice across multiple fields of study within
immunology, including virology (9), tumor immunology (10), and autoimmunity (11).

NetMHC is an allele-specific method which trains a separate predictor for each allele’s binding
dataset, whereas NetMHCpan is a pan-allele method whose inputs are vector encodings of both a
peptide and a subsequence of a particular MHC molecule. The conventional wisdom is that NetMHC
performs better on alleles with many assayed ligands whereas NetMHCpan is superior for less
well-characterized alleles (12).

*alex.rubinsteyn@mssm.edu
ftim.odonnell@mssm.edu
i1'1andita94@gmail .com

§jeff .hammerbacher@mssm.edu

https://doi.org/10.1101/054775
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/054775; this version posted May 23, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

In this paper we explore the space between allele-specific and pan-allele prediction by imputing the
unobserved values of peptide-MHC affinities for which we have no measurements and using these
imputed values for pre-training of allele-specific binding predictors.

2 Data and evaluation metrics

Two datasets were used from a recent paper studying the relationship between training data and
pMHC predictor accuracy(13). The training dataset (BD2009) contained entries from IEDB (14) up
to 2009 and the test dataset (BLIND) contained IEDB entries from between 2010 and 2013 which
did not overlap with BD2009 (Table 1).

\ Alleles IC50 Measurements Expanded 9mers

|
BD2009 106 137,654 470,170
BLIND 53 27,680 83,752

Table 1: Train (BD2009) and test (BLIND) dataset sizes.
Throughout this paper we will evaluate a pMHC binding predictor using three different metrics:

¢ AUC: Area under the ROC curve. Estimates the probability that a “strong binder” peptide
(affinity < 500nM) will be given a stronger predicted affinity than one whose ground truth
affinity is > 500nM.

* F, score: Measures trade-off between sensitivity and specificity for predicting “strong
binders” with affinities < 500nM.

» Kendall’s 7: Rank correlation across the full spectrum of binding affinities.

3 Comparison of imputation algorithms as predictors

A dataset of peptide-MHC affinities for n peptides and a alleles may be thought of as a n X a matrix
where peptide/allele pairs without measurements are missing values. The task of predicting values at
these positions is known as matrix completion or imputation (depending on the community and data
source). We investigated the performance of several imputation algorithms as a standalone solution
to the peptide-MHC affinity prediction problem. The algorithms considered were:

* meanFill: Replace each missing pMHC binding affinity with the mean affinity for that
allele. This is a very simple imputation method which serves as a baseline against which
other methods can be compared.

* knnImpute (15): Each missing entry X;; is imputed using the values in the %k closest

d

. L o . _d?
columns with observation in row <. Similarity between alleles is computed as e~ “s¢, where

dg¢ 1s the mean squared difference between observed entries of alleles s and ¢.
» svdImpute (15): Imputation using iterative fixed rank SVD decomposition.

« softImpute (16): A singular value thresholding method which iteratively estimates a low-
rank matrix completion without forcing the pre-specification of a particular solution rank.
Instead, the softImpute method is parameterized by a shrinkage value A that is subtracted
from each singular value.

* MICE (17): Average multiple imputations generated using Gibbs sampling from the joint
distribution of columns.

We evaluated the performance of these methods using three-fold cross validation on BD2009, only
considering peptides which occurred in at least three alleles and excluding alleles with less than
five measurements (Table 2). All imputation methods were implemented in the fancyimpute Python
library (18). Since MICE outperformed the other methods on two of the three predictor metrics, we
selected it for the subsequent neural network experiments.

https://doi.org/10.1101/054775
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/054775; this version posted May 23, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Imputation Method ~ Parameter || AUC Fj score Kendall’s 7

meanFill | 0.67665 0.04950 0.17675
knnImpute k=1 0.80907 0.57952 0.40201
k=3 0.83189 0.57594 0.42086

k=5 0.83103 0.56118 0.41703

MICE n =25 0.85861 0.57597 0.44978
n = 50 0.86127 0.56527 0.45944

softlmpute A=5H 0.78981 0.39158 0.33408

A=10 0.83248 0.53575 0.39763
A=20 0.85608 0.60599 0.43754

svdlmpute rank =5 0.82305 0.57040 0.39117
rank = 10 || 0.83667 0.58433 0.40048
rank =20 || 0.82986 0.57038 0.38817

Table 2: Cross-validation performance of imputation algorithms on BD2009 dataset

4 Neural network architecture

Each MHCflurry predictor is a feed-forward neural network containing (1) an embedding layer
which transforms amino acids to learned vector representations, (2) a single hidden layer with tanh
nonlinearity, (3) a sigmoidal scalar output. This network is implemented using Keras (19).

Three-fold cross validation on the training set was used to select the hyper-parameters. The best
model had 32 output dimensions for the amino acid vector embedding, a hidden layer size of 64,
a dropout rate of 50%, and 250 training epochs. These hyper-parameters achieved reasonable
performance across alleles, but it’s likely that performance could be further improved by setting the
hyper-parameters separately for each allele.

5 Data encoding

Like the NetMHC family of predictors (20), MHCflurry uses fixed length 9mer inputs which requires
peptides of other lengths to be transformed into multiple 9mers. Shorter peptides are mapped onto
9mer query peptides by introducing a sentinel “X” at every possible position, whereas longer peptides
are cut into multiple 9mers by removing consecutive stretches of residues. The predicted affinity for a
non-9mer peptide is the geometric mean of the predictions for the generated 9mers. When n training
samples derive from a single non-9mer sequence then their weights are adjusted to 1/n.

We map IC50 concentrations onto a regression targets between 0.0 and 1.0 using the same scheme as
NetMHC, y = 1.0 — max (1.0, logs0000 (IC50)).

6 Training

For each allele, we train a MHCflurry model using the measured peptide affinities for the allele and
the values imputed by MICE based on other alleles in the training set. As training progresses, we
place quadratically decreasing weight on the imputed values.

A randomly generated peptide is unlikely to bind a given MHC strongly, but a data acquisition bias
toward strong binders in the training set can lead models to assign a high affinity to most peptides. As
a form of regularization, we augment the training set at each epoch to include random peptides with
affinity set to be maximally weak. The number of random negative peptides is 20% of the training
size (without imputation). At each training epoch, a fresh set of random peptides is generated.

https://doi.org/10.1101/054775
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/054775; this version posted May 23, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

7 Results

We evaluated the effect of imputation by drawing subsets of the BD2009 training set for the well-
characterized allele HLA-A*02:01. Predictors were trained on a range of simulated training set sizes
and tested on the remaining data (Figure 1). We find that imputation gives a modest improvement up
to approximately 100 training samples. With more training data there is no benefit to imputation.

AUC I} score Kendall's 7
1.0 1.0 0.60 . ,
—}— with imputation
== without imputation
0.9 0.8
0.45
0.8 0.6
0.30
0.7 0.4
0.15
0.6 0.2
0.5 0.0 0.00
10" 102 10° 10" 102 108 10" 102 108

Training set size

Figure 1: MHCflurry performance on down-sampled training data for HLA-A*02:01 with and without
imputation

We then compared the performance of MHCflurry against NetMHC, NetMHCpan, and SMM on
the blind test data. The MHCflurry ensemble model contains 32 predictors initialized with different
random weights. The MHCflurry ensemble is competitive with NetMHC and NetMHCpan.

AUC Fy score Kendall’s 7

MHCAlurry (ensemble) 0.93260 0.78459 0.58686
MHCAlurry (single predictor) 0.93225 0.78106 0.58572
NetMHC 0.93234 0.80722 0.58633
NetMHCpan 0.93264 0.79957 0.58138
SMM-PMBEC 0.92134 0.79026 0.56488

Table 3: Performance on BLIND dataset

8 Discussion

Imputing training data shows promise in cross-validation as a way to improve performance on alleles
with few observations, but only seems to help for very small training sizes (< 100). Unfortunately,
none of the alleles included in the BLIND dataset had fewer than 100 samples in BD2009, and only
one had fewer than 200. Thus, additional work is required to assess the accuracy of MHCflurry and
other predictors on alleles with scarce training data. Additionally, we need to further investigate the
interaction between imputation parameters, the decay schedule for the weights of imputed samples,
and stopping criteria for training individual allele-specific predictors.

9 Code

MHCflurry is available at https://github.com/hammerlab/mhcflurry. The data, scripts,
and notebooks used to generate the plots and tables in this paper are available at
https://github.com/hammerlab/mhcflurry-icml-compbio-2016/.

https://github.com/hammerlab/mhcflurry
https://github.com/hammerlab/mhcflurry-icml-compbio-2016
https://doi.org/10.1101/054775
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/054775; this version posted May 23, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

References

[1] M. Blackman, J. Kappler, and P. Marrack, “The role of the T cell receptor in positive and
negative selection of developing T cells,” Science, vol. 248, pp. 1335-1341, June 1990.

[2] E. S. Huseby, J. White, F. Crawford, T. Vass, D. Becker, C. Pinilla, P. Marrack, and J. W.
Kappler, “How the T Cell Repertoire Becomes Peptide and MHC Specific,” Cell, vol. 122,
pp. 247-260, July 2005.

[3] P. Cresswell, A. L. Ackerman, A. Giodini, D. R. Peaper, and P. A. Wearsch, “Mechanisms
of MHC class I-restricted antigen processing and cross-presentation,” Immunol Rev, vol. 207,
pp- 145-157, October 2005.

[4] C.Lundegaard, O. Lund, C. Kesmir, S. Brunak, and M. Nielsen, “Modeling the adaptive immune
system: predictions and simulations,” Bioinformatics, vol. 23, pp. 3265-3275, November 2007.

[5] A. Sette, S. Buus, E. Appella, J. A. Smith, R. Chesnut, C. Miles, S. M. Colon, and H. M. Grey,
“Prediction of major histocompatibility complex binding regions of protein antigens by sequence
pattern analysis.,” Proceedings of the National Academy of Sciences, vol. 86, pp. 3296-3300,
May 19809.

[6] B. Peters, W. Tong, J. Sidney, A. Sette, and Z. Weng, “Examining the independent binding
assumption for binding of peptide epitopes to MHC-I molecules,” Bioinformatics, vol. 19,
pp. 1765-1772, September 2003.

[7] C. Lundegaard, K. Lamberth, M. Harndahl, S. Buus, O. Lund, and M. Nielsen, “NetMHC-3.0:
accurate web accessible predictions of human mouse and monkey MHC class I affinities for
peptides of length 8-11,” Nucleic Acids Research, vol. 36, pp. W509-W512, May 2008.

[8] M. Nielsen, C. Lundegaard, T. Blicher, K. Lamberth, M. Harndahl, S. Justesen, G. Rgder,
B. Peters, A. Sette, O. Lund, and S. Buus, “NetMHCpan a Method for Quantitative Predictions
of Peptide Binding to Any HLA-A and -B Locus Protein of Known Sequence,” PLoS ONE,
vol. 2, p. €796, August 2007.

[9] O.Lund, E.J. M. Nascimento, M. Maciel, M. Nielsen, M. V. Larsen, C. Lundegaard, M. Harn-
dahl, K. Lamberth, S. Buus, J. Salmon, T. J. August, and E. T. A. Marques, “Human Leukocyte
Antigen (HLA) Class I Restricted Epitope Discovery in Yellow Fewer and Dengue Viruses:
Importance of HLA Binding Strength,” PLoS ONE, vol. 6, p. €26494, October 2011.

[10] M. M. Gubin, M. N. Artyomov, E. R. Mardis, and R. D. Schreiber, “Tumor neoantigens:
building a framework for personalized cancer immunotherapy,” Journal of Clinical Investigation,
vol. 125, pp. 3413-3421, August 2015.

[11] J.R. F. Abreu, S. Martina, A. A. V. Stuart, Y. E. Fillié, K. L. M. C. Franken, J. W. Drijfhout, and
B. O. Roep, “CDS8 T cell autoreactivity to preproinsulin epitopes with very low human leucocyte
antigen class I binding affinity,” Clinical & Experimental Immunology, vol. 170, pp. 57-65,
September 2012.

[12] D. Gfeller, M. Bassani-Sternberg, J. Schmidt, and I. F. Luescher, “Current tools for predicting
cancer-specific T cell immunity,” Oncolmmunology, pp. 00-00, April 2016.

[13] Y. Kim, J. Sidney, S. Buus, A. Sette, M. Nielsen, and B. Peters, “Dataset size and composition
impact the reliability of performance benchmarks for peptide-MHC binding predictions,” BMC
Bioinformatics, vol. 15, no. 1, p. 241, 2014.

[14] N. Salimi, W. Fleri, B. Peters, and A. Sette, “The immune epitope database: a historical
retrospective of the first decade,” Immunology, vol. 137, pp. 117-123, September 2012.

[15] O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastie, R. Tibshirani, D. Botstein,
and R. B. Altman, “Missing value estimation methods for DNA microarrays,” Bioinformatics,
vol. 17, pp. 520-525, June 2001.

[16] R. Mazumder, T. Hastie, and R. Tibshirani, “Spectral Regularization Algorithms for Learning
Large Incomplete Matrices,” The Journal of Machine Learning Research, vol. 11, pp. 2287—
2322, 3 2010.

[17] M. J. Azur, E. A. Stuart, C. Frangakis, and P. J. Leaf, “Multiple imputation by chained equations:
what is it and how does it work?,” International Journal of Methods in Psychiatric Research,
vol. 20, pp. 4049, February 2011.

https://doi.org/10.1101/054775
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/054775; this version posted May 23, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

[18] S. Feldman and A. Rubinsteyn, “fancyimpute: Version 0.0.16,” May 2016.
[19] F. Chollet, “keras.” https://github.com/fchollet/keras, 2015.

[20] C. Lundegaard, O. Lund, and M. Nielsen, “Accurate approximation method for prediction of
class I MHC affinities for peptides of length 8, 10 and 11 using prediction tools trained on
9mers,” Bioinformatics, vol. 24, no. 11, pp. 1397-1398, 2008.

https://github.com/fchollet/keras
https://doi.org/10.1101/054775
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Data and evaluation metrics
	Comparison of imputation algorithms as predictors
	Neural network architecture
	Data encoding
	Training
	Results
	Discussion
	Code

