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Abstract 
Oceanic microbial diversity covaries with physicochemical parameters. Temperature, for 
example, explains approximately half of global variation in surface taxonomic abundance. It is 
unknown, however, whether covariation patterns hold over narrower parameter gradients and 
spatial scales, and extending to mesopelagic depths. We collected and sequenced 45 epipelagic 
and mesopelagic microbial metagenomes on a meridional transect through the eastern Red Sea. 
We asked which environmental parameters explain the most variation in relative abundances of 
taxonomic groups, gene ortholog groups, and pathways—at a spatial scale of <2000 km, along 
narrow but well-defined latitudinal and depth-dependent gradients. We also asked how microbes 
are adapted to gradients and extremes in irradiance, temperature, salinity, and nutrients, 
examining the responses of individual gene ortholog groups to these parameters. Functional and 
taxonomic metrics were equally well explained (75–79%) by environmental parameters. 
However, only functional and not taxonomic covariation patterns were conserved when 
comparing with an intruding water mass with different physicochemical properties. Temperature 
explained the most variation in each metric, followed by nitrate, chlorophyll, phosphate, and 
salinity. That nitrate explained more variation than phosphate suggested nitrogen limitation, 
consistent with low surface N:P ratios. Covariation of gene ortholog groups with environmental 
parameters revealed patterns of functional adaptation to the challenging Red Sea environment: 
high irradiance, temperature, salinity, and low nutrients. Nutrient acquisition gene ortholog 
groups were anticorrelated with concentrations of their respective nutrient species, recapturing 
trends previously observed across much larger distances and environmental gradients. This 
dataset of metagenomic covariation along densely sampled environmental gradients includes 
online data exploration supplements, serving as a community resource for marine microbial 
ecology.  

Introduction 
Microbial communities play a central role in energy flow and carbon and nutrient cycling in the 
oceans. Shotgun sequencing and analysis of microbial community DNA (metagenomics) is now 
an established method for understanding the microbial genomic diversity underlying these 
processes (DeLong et al., 2006; Dinsdale et al., 2008). Distribution of microbial diversity and 
biogeochemistry is structured in large part by environmental gradients in light, temperature, 
oxygen, salinity, and nutrients. Oceanographic surveys spanning such environmental gradients, 
combining metagenomic sequencing and measurement of continuous environmental variables, 
are enabling quantitative understanding of microbial communities (Gianoulis et al., 2009; Raes 
et al., 2011). Global oceanographic surveys have sequenced hundreds of surface and moderately 
deep (epipelagic and mesopelagic) ocean microbial communities (Rusch et al., 2007; Sunagawa 
et al., 2015), cataloging the vast genomic diversity of ocean microbes; further analyses of these 
data have identified correlations between environmental parameters and genetic community traits 
(gene ortholog groups and pathways) with predictive power (Gianoulis et al., 2009; Raes et al., 
2011; Barberán et al., 2012). Local studies at individual ocean sites, meanwhile, have shown how 
microbial taxa and gene ortholog groups are partitioned at greater detail along the water column 
and between discrete ocean environments (DeLong et al., 2006; Coleman and Chisholm, 2010; 
Ghai et al., 2010; Thompson et al., 2013). Depth is a critical factor behind community structure 
in the open ocean (DeLong et al., 2006), and dense sampling is capable of capturing subtle 
changes in environmental parameters with sufficient replication for statistical power.  
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The Red Sea is an ideal oceanic site for dense sampling of metagenomes to study 
environment–microbe covariation. The Red Sea is a deep (>2000 m) incipient ocean with strong 
latitudinal and depth-dependent gradients in temperature, salinity, oxygen, and nutrients 
(Edwards, 1987). Like the open-ocean gyres of the Atlantic and Pacific Oceans, the Red Sea is 
oligotrophic with surface waters dominated by the picoplankton Prochlorococcus and 
Pelagibacter (Ngugi and Stingl, 2012). More so than these open-ocean gyres, however, the Red 
Sea lies at pelagic extremes of irradiance, temperature, and salinity. The Red Sea experiences a 
late-summer southern influx of water called the Gulf of Aden Intermediate Water (GAIW), a 
foreign water mass that is cooler, fresher, and more nutrient-rich than the native Red Sea water 
mass. The Red Sea is compact enough to sample across these gradients and water masses on a 
single month-long expedition, sampling more densely along transects and deeper through the 
water column than possible on a global survey.   

We undertook a high-resolution metagenomic survey of the Red Sea, conducting a multivariate 
community analysis of covariation between environmental parameters and metagenome-derived 
taxonomic and functional metrics. We followed three main lines of questioning. First, how well 
can both taxonomic and functional microbial diversity be explained by environmental 
parameters, and which environmental parameters explain the most variation? Sunagawa et al. 
(2015) showed in a recent global ocean survey that temperature could explain more variation in 
taxonomic abundance than any other parameter. At smaller spatial scales and narrower 
temperature ranges, does temperature still have the most explanatory power? Which parameters 
can best explain residual variation? Second, are patterns of environmental covariation conserved 
across co-occurring water masses? Sampling the GAIW allowed us to determine whether this co-
occurring water mass follows the same organizational principles (covariation with environmental 
parameters) as the native Red Sea water mass, across different taxonomic and functional metrics. 
Third, how are microbes functionally adapted along environmental gradients of irradiance, 
temperature, salinity, and nutrients, including extremes in these parameters? Do marine 
communities exhibit fine-scale genomic adapation to environmental parameters as has been 
observed between separate oceans? Our dataset has allowed us to address these questions, and 
supporting online resources will make the processed data avaible to the wider community for 
further investigations. 

Materials and methods 
Oceanographic sampling  
Samples were collected aboard the R/V Aegaeo on Leg 1 of the 2011 KAUST Red Sea 
Expedition, 15 September–11 October 2011. At eight stations, 20 L seawater was collected from 
each of depths 10, 25, 50, 100, 200, and 500 m; in two cases (Stations 12 and 34) where the 
seafloor was shallower than 500 m, the deepest sample was taken at the seafloor. Water was 
collected in 10-L Niskin bottles (i.e., two Niskin bottles per depth), attached to a CTD rosette. 
Back on deck, the seawater was filtered through a series of three 293-mm mixed cellulose esters 
filters (Millipore, Billerica, MA) of pore sizes 5.0 µm, 1.2 µm, and 0.1 µm. Filters were placed in 
sealed plastic bags and frozen at –20 °C. Station properties (location, depth of mixed layer, 
chlorophyll maximum, and oxygen minimum) are described in Table S1. Physical oceanographic 
measurements (pressure, temperature, conductivity, chlorophyll a, turbidity, and dissolved 
oxygen) were collected on a modified SeaBird 9/11+ rosette/CTD system, described in 
Supplementary Methods. Nutrient measurements (nitrate+nitrite, nitrite, ammonium, phosphate, 
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and silicate) on the final 0.1-µm filtrate were carried out at the UCSB Marine Science Institute 
and the Woods Hole Oceanographic Institution (Supplementary Methods). Sample water 
properties are described in Table S2. 
DNA extraction and whole-genome shotgun (WGS) sequencing of community metagenomes 

Community DNA was extracted from the 0.1-µm filters (0.1-1.2 µm size fraction) using phenol-
chloroform extraction, similar to Rusch et al. (2007) and Ngugi et al. (2012); the full protocol is 
described in Supplementary Methods. Yields of genomic DNA ranged from 200–1500 ng per 
sample. WGS libraries were made using the Nextera DNA Library Prep Kit (Illumina, San 
Diego, CA). Median insert size by sample ranged from 183–366 bp (Table S3). Libraries were 
sequenced using Illumina HiSeq 2000 paired-end (2 x 100 bp) sequencing, filling a total of three 
lanes (15 samples/lane). Sequence length after adapter removal was 93 bp, and 10 million reads 
(for each of reads 1 and 2) per sample were generated (Table S3). Reads were quality filtered and 
trimmed using PRINSEQ (Schmieder and Edwards, 2011) with parameters given in Table S4, 
and final read counts and metagenome sizes are given in Table S3. Although exact duplicates and 
reverse-complement exact duplicates were removed, we tested the effect of leaving in these 
duplicates, and it increased the number of reads retained by only 0.1–0.2%. Raw fastq files have 
been submitted to the NCBI BioSample database with accession numbers PRJNA289734 
(BioProject) and SRR2102994–SRR2103038 (SRA). All analyses presented here were carried 
out on the quality filtered and trimmed reads. Both reads 1 and 2 were analyzed initially; 
however, unless otherwise indicated, only the results of read 1 are presented here because of a 
high degree of redundancy between results of reads 1 and 2. Genomic assemblies were built from 
each sample; these assemblies were used to calculate insert sizes of metagenomic libraries 
(Table S3) but provided limited value for quantitation of taxa and gene ortholog groups. The 
assemblies did, however, yield contigs belonging to uncharacterized clades, which are the subject 
of a separate study (Haroon et al., in review). 
Calculation of metagenomic ‘response variables’ from metagenomic reads 

Data tables of merged environmental metadata and response variables are provided in 
Supplementary Information. Scripts used in the preparation of this manuscript are available at 
https://github.com/cuttlefishh/papers in the directory red-sea-spatial-series. 
Taxonomic composition. The 45 metagenomes were analyzed at the read level for the relative 
abundance of taxonomic groups using CLARK. CLARK (full mode) (Ounit et al., 2015) and 
CLARK-S (spaced mode) (Ounit and Lonardi, 2015) were used to classify paired metagenomic 
reads at species and genus level, respectively, based on a k-mer approach against the NCBI 
RefSeq database (Release 74). CLARK was run using default parameters but with the –
highconfidence option, which reports only results with high confidence (assignments with 
confidence score >= 0.75 and gamma value >= 0.03), as suggested by the developers. For both 
species-level and genus-level CLARK results, the column Proportion_All(%) (relative 
normalized abundance such that each sample sums to 100%) was exported and merged with 
sample metadata (environmental parameters) using the Python package Pandas. Hierarchically-
clustered heatmaps were generated using MetaPhlAn2 utilities (Truong et al., 2015). 

In order to specifically capture the diversity within the Pelagibacter and Prochlorococcus 
groups in the Red Sea, we used GraftM (https://github.com/geronimp/graftM), which classifies 
reads based on HMM profiles in concert with a reference phylogeny. HMM profiles of 
Pelagibacter 16S rRNA gene and Prochlorococcus rpoC1 were generated from forward reads 
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using HMMer v3.1b1 (Eddy, 2011). Reference phylogenies were constructed using MEGA6 
(Tamura et al., 2013) from ClustalW alignments (Larkin et al., 2007) of publicly available 
Pelagibacter 16S rRNA gene sequences (Luo et al., 2015) and Prochlorococcus rpoC1 (DNA-
directed RNA polymerase subunit gamma) genes (Shibl et al., in review). Phylogenies were 
estimated by maximum-likelihood using the GTR+I+G model of nucleotide evolution, chosen 
with the Perl script ProteinModelSelection.pl that comes with RAxML (Stamatakis 2014). 
GraftM was run with default parameters based on the the built GraftM packages, which are 
available here: https://github.com/fauziharoon/graftm-packages. Counts were fourth-root 
transformed. 
Gene ortholog group and pathway relative abundance. The 45 metagenomes were analyzed for 
the relative abundance of gene ortholog groups (KEGG orthologs or KOs) and biochemical 
pathways (KEGG pathways) using HUMAnN v0.99 (Abubucker et al., 2012) with KEGG release 
66.0. First, because the focus of this study was prokaryote genomes, and to increase search speed, 
reads were recruited to only the prokaryotic fraction of the KEGG genome database, containing 
all (as of the KEGG release) 1377 prokaryotic genomes (proteomes translated from open reading 
frames) using a translated search with USEARCH v7.0.1001 (Edgar, 2010) with options –ublast, 
–accel 0.8, and –evalue 1e–5. The fraction of reads mapped to the KEGG genome database 
averaged 26.2% (range 16.2–42.5%) across 45 samples (Table S6). Using these results, 
HUMAnN was run in both standard mode (all taxa merged) and in “per-organism” mode (option: 
c̲fOrg = True). KO counts and KEGG pathway counts were normalized to counts per million 
(CPM) counts, i.e., the number of reads mapped to the KO (or pathway) divided by the sum of all 
reads mapped in that sample times 1e6, such that all values for a given sample sum to 1 million. 
Note that KO counts were not normalized to gene size (e.g., average length of each KO in 
KEGG) because this was unnecessary: comparisons of KO relative abundances were to 
environmental parameters and not to each other, and the multivariate community models used are 
insensitive to absolute magnitudes. 
Statistical analyses 

We utilized multivariate statistical techniques to relate an array of environmental parameters to 
metagenomic response variables: taxon relative abundance, KO relative abundance, and pathway 
relative abundance. All analyses were completed using R v3.1.1 (www.r-project.org) and 
PERMANOVA+ (Anderson et al., 2008). 

Exploratory analyses. Pearson correlations between pairwise combinations of environmental 
parameters were calculated and displayed as a heat map. Similarity profile analysis (SIMPROF) 
was used to identify significant groupings within the KO relative abundance response matrix 
using the clustsig package (http://cran.r-project.org/web/packages/clustsig/index.html). 
Partitioning around medoids (PAM) was used to partition the KOs by relative abundance using 
the cluster package v1.15.2 (Kaufman and Rousseeuw, 2005) with Kullback–Leibler distances 
(Kullback and Leibler, 1951); 12 clusters were chosen based on minimization of the gap statistic. 
Explaining variability using environmental parameters. To quantify the spatial variation (both 
horizontally and vertically) in the response variable matrices explained by the co-occurring 
gradients in our environmental parameters, we used a multivariate distance-based linear model 
(DistLM) (McArdle and Anderson, 2001). Eight environmental parameters were considered: 
temperature, salinity, dissolved oxygen, chlorophyll, turbidity, nitrate, phosphate, and silicate. 
These parameters were normalized and fitted in a conditional manner to each response variable 
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matrix using step-wise selection and 9999 permutations of the residuals under a reduced model. 
Model selection was based on Akaike’s information criterion with a second-order bias correction 
applied (AICc) (Hurvich and Tsai, 1989). The best-fit model (the one that balanced performance 
with parsimony) was then visualized using distance-based redundancy analysis (dbRDA) 
(McArdle and Anderson, 2001) in order to identify the directionality of the correlations between 
the response variable matrix and the environmental parameters. Variation explained by all 
parameters combined was calculated by forcing all parameters to be included in the final model.  
Visualization of metagenome–environment relationships. Pairwise relationships between 
environmental parameters and KO relative abundance plus other metagenomic response variables 
were visualized using scatter plots, available using Bokeh-based HTML files in Supplementary 
Information. Environmental parameters and metagenomic response variables were visualized in 
the 3D volume of the Red Sea using the  ̀ili Toolbox, also available in Supplementary 
Information. KOs having strong correlations with environmental parameters were visualized with 
canonical correspondence analysis (CCA) using the vegan 2.3-1 package, implemented according 
to Legendre and Legendre (2012). For clarity, only KOs with abundance in the top half and 
variance in the top tenth of all KOs were visualized by CCA (Supplementary Methods). 

Results & Discussion 
Overview of Red Sea metagenomic dataset and analysis 
To measure covariation of microbial diversity with oceanic gradients, we sampled a north–south 
transect of the Red Sea at eight stations (Table S1), sampling six depths from the surface to 500 
m (Figure 1A), totaling 45 samples. Concurrent with microbial sampling we measured 
temperature, salinity, dissolved oxygen, chlorophyll a, turbidity, nitrate, phosphate, and silicate 
(values in Table S2, covariance matrix in Figure 2). The microbial size fraction (0.1–1.2 µm) was 
sequenced at 10M reads per sample with 93-bp paired reads (Table S3). From the metagenomic 
reads, we calculated five metagenomic response variables: genus-level taxon relative abundance, 
species-level taxon relative abundance, gene ortholog group (KEGG Orthology or KO) relative 
abundance, KEGG pathway coverage, and KEGG pathway relative abundance. Of the 1738 taxa, 
5775 KOs, and 162 pathways detected in the metagenomes, many exhibited ecologically 
meaningful correlations with environmental parameters. As an example, the inverse relationship 
between phosphate concentration and relative abundance of phosphate-acquisition gene pstS 
(K02040) is shown in Figure 1. Samples generally grouped by depth, as indicated by hierarchical 
clustering of samples based on all taxa (Figure 3) and KOs (Figure S1), and by abundance 
patterns of individual taxa and KOs (Figures 1B and 5 and Supplementary Information). 

The acquired set of metagenomic response variables and environmental parameters 
allowed us to assess the predictive power of environmental parameters at multiple levels of 
microbial genotype. We tested how much variation in genus-level taxonomy, KO relative 
abundance, and pathway relative abundance could be explained using a small number of 
environmental parameters. Distance-based multivariate linear models (DistLM) and redundancy 
analysis were used, balancing parsimony and performance (using AICc) to derive an optimal 
model for explaining variation in each response variable (Figure 4). We acknowledge that the 
analyses presented here, by necessity, are constrained by the databases available for assigning 
taxonomy and KOs and the available mappings of KOs to pathways. 

Variation in metagenomic diversity metrics explained by environmental parameters 
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We first asked which environmental parameters explained the most variation in both taxonomic 
and functional diversity metrics, and we looked for differences in total variation explained. 
Environmental parameters explained similar amounts of variation in the various metrics used 
(Figure 4A). Total variation explained using all available environmental parameters was only 
marginally higher for KO relative abundance (79.0%) than for pathway relative abundance 
(77.0%) and genus-level taxon relative abundance (75.1%). Variation explained was similar even 
at greater phylogenetic resolution within two important marine microbial groups, the autotroph 
Prochlorococcus and the heterotroph Pelagibacter (SAR11 clade), which are the two most 
abundant genera across our dataset (Figure 3). At ecotype-level taxonomy (Prochlorococcus 
“ecotypes” and Pelagibacter “subclades”) and genus-level KO abundance, the percent variation 
explained was similar to the community as a whole (Figure 4B).  
 Overall, environmental parameters explained more variation in our dataset than in other 
microbial ecosystems where this has been tested. For example, in a similarly sized dataset on 
reef-associated microbes, the best parameter explained only 15% of taxonomic variation and 18% 
of metabolic variation (Kelly et al., 2014). Variations in water column microbial communities 
appear easier to predict. In an English Channel time-series, day length explained over 65% of 
variance in taxonomic diversity (Gilbert et al., 2011). The better performance of water column 
data could be because the open ocean is not patchy but well mixed and stably stratified by depth 
into layers, especially in the Red Sea in late summer. Relative to open-water samples, the 
increased complexity of the response matrix in reef-associated samples resulting from micro-
habitats and higher diversity likely reduces model performance. 
 Temperature explained the most variation in each of the response variables; this was 
followed in each case by nitrate (second) and then chlorophyll (third) for the functional response 
variables and salinity (third) for genus-level taxonomy (Figures 4A and S2). Although nitrate and 
phosphate (r=0.97) and silicate (r=0.95 with nitrate and phosphate) were very highly correlated 
(Figure 2), nitrate was consistently ranked higher (explaining more variation) than phosphate in 
the optimal model, and silicate was not implicated (Figure 4A). Across the whole dataset, 
temperature explained more variation than oxygen in every response variable. Although 
temperatue and oxygen were correlated (r=0.79), oxygen was never part of the optimal model. 
Temperature has been identified as a key predictor of microbial diversity in the ocean by other 
studies (Johnson et al., 2006; Sunagawa et al., 2015). Specifically, Sunagawa et al. (2015) 
showed that temperature is a better predictor of taxonomic composition than is oxygen. Here we 
show that the same is true for gene functional composition (KOs): the absence of oxygen in any 
optimal model suggests that temperature is a stronger predictor (and possibly also driver) of 
microbial diversity than oxygen.  

Nitrate (measured as nitrate+nitrite) and phosphate both formed part of the optimal model 
for each functional response variable, with nitrate always explaining slightly more variation than 
phosphate. This finding hints at the relative selective pressures these two key nutrients exert. The 
idea that limitation of a given nutrient leads to the gain of genes for uptake and assimilation of 
that nutrient is supported by numerous studies (Coleman and Chisholm, 2010; Kelly et al., 2013; 
Thompson et al., 2013). Here we extend that idea to the quantitative explanatory power of the 
nutrient’s concentration for predicting KO relative abundance. The predictive power of nitrate 
relative to phosphate in our genetic results may indicate that nitrogen (N) is relatively more 
limiting than phosphorus (P) in the Red Sea. Limited data exist on this topic, but N:P ratios of 
0.3–5 (well below the Redfield ratio of 16, the atomic ratio of N to P in phytoplankton (Redfield, 
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1958)) in the Gulf of Aqaba (Lindell et al., 2005) and a high frequency of N-acquisition genes in 
a Red Sea surface metagenome relative to the Atlantic ocean (Thompson et al., 2013) suggest N 
limitation; however, in the northern Gulf of Aqaba, a P-stress response and lack of N-stress ntcA 
response in Red Sea cyanobacteria supports the opposite conclusion (Post, 2005). Nevertheless, 
our own nutrient measurements from this cruise show that the N:P ratio (calculated here as the 
ratio of nitrate+nitrite to phosphate) in surface waters was 2, whereas a prototypical ratio of 16 
was observed in deeper waters (Figure S3), possibly due to remineralization of N from 
phytoplankton at depth. Regarding nitrate, it is interesting that for Pelagibacter KO relative 
abundance, nitrate (59.1%) not temperature explained the most variation. N limitation has strong 
effects on the transcriptional response of Pelagibacter in culture, with genes for assimilation of 
organic sources of N up-regulated under N stress (Smith et al., 2013). However, none of the 
differentially expressed genes identified by Smith et al. (2013) covaried strongly with nitrate in 
our dataset (reads from corresponding KOs assigned to Pelagibacter). Thus, the nature of a 
potential selective force of this putative N limitation on Pelagibacter gene content remains a 
mystery. 

Chlorophyll has a non-monotonic relationship with depth, unlike the other environmental 
parameters analyzed here, which are either low at the surface and high at depth (salinity, 
phosphate, nitrate, silicate) or high at the surface and low at depth (temperature, oxygen, 
turbidity). Chlorophyll peaks below the surface mixed layer at the deep chlorophyll maximum 
(100 m in the Red Sea, Table S1), due to a confluence of sunlight from above, nutrients from 
below, and the tendency of deeper phytoplankton to possess higher chlorophyll per cell. Because 
chlorophyll is effectively orthogonal to other environmental parameters, it should not be 
unexpected that it has significant explanatory power, and that chlorophyll and temperature (a key 
depth-dependent parameter) together could explain much of the genetic variation.  

Comparison with a foreign water mass 
We next asked whether the ability to predict metagenomic response variation from environmental 
parameters was sufficiently robust to extend to alternate water masses. Fortuitously, the Red Sea 
experiences a water influx each summer from the Indian Ocean, called the Gulf of Aden 
Intermediate Water (GAIW), which was captured in three of our samples. The GAIW brings 
cooler, less saline, oxygen-rich, nutrient-rich water from the Gulf of Aden (Churchill et al., 
2014). The three GAIW samples were clearly distinct from their neighboring samples in the 
temperature–salinity (T–S) profile (Figure S4A) and Red Sea water column (Figure S4B). The 
properties of GAIW samples resembled those of deeper samples in the native Red Sea water 
mass; the GAIW samples, which were from 50–100 m depth, had markedly different 
environmental parameters from non-GAIW samples from 50–100 m. We were curious if our 
multivariate community models would be able to highlight any differences between response 
variables in model performance across different water masses. 

Considering the distance-based redundancy analysis (Figures 4A and S2), all of the 
functional metrics placed the GAIW samples amidst the native Red Sea samples, though 
clustering with deeper samples, owing to the lower temperature and higher nutrients of the 
GAIW samples. The taxonomic metrics, however, placed the GAIW samples either far apart 
from the other samples (genus-level) or with much deeper samples than expected even based on 
physicochemical properties (species-level), driven by the high nitrate and low temperature and 
salinity of the GAIW samples relative to the non-GAIW samples (Figure 4A). These results 
suggest that environmental covariation patterns of taxonomy are less conserved across water 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 8, 2016. ; https://doi.org/10.1101/055012doi: bioRxiv preprint 

https://doi.org/10.1101/055012
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

masses (i.e., different combinations of environmental parameters) than are environmental 
covariation patterns of functional metrics. 

Supporting the idea that functional covariation with environmental parameters is 
conserved across different water masses, we note anecdotally that for most of the individual 
environment–KO relationships examined below (Figure 5), GAIW samples followed a similar 
pattern to the non-GAIW majority. One notable exception was salinity, with the salinity of 
GAIW much lower than anything in the native Red Sea water mass and the covariation of KOs 
with salinity very different for GAIW samples compared to non-GAIW samples. 

Environmental covariation patterns of individual KOs 
We finally turned our attention to the covariation patterns of individual KOs, which partition 
along the three-dimensional water column in ecologically meaningful ways. Which KOs have the 
strongest covariation with environmental parameters? Can previously observed patterns between 
oceans also be observed along gradients within a single sea? Which KOs are implicated in the 
adaptive response of microbes to the low nutrients and high irradiance, temperature, and salinity 
of the Red Sea?  

We used canonical correspondence analysis (CCA) to identify and visualize correlations 
between KOs and environmental parameters, with KOs organized by metabolic pathway 
(Figure 6 and Table S9). We note that all KOs were included in the distance-based linear model 
above, whereas a subset of the most differentially represented and abundant KOs are shown in 
the CCA (methods); most of the KOs discussed below are visualized in Figure 6. Additionally, 
KOs were ranked by total abundance across all samples (Table S7), and KO abundance patterns 
were clustered using partitioning around medoids (PAM) into 12 clusters (Table S8). 

Nutrient acquisition and energy metabolism contributed most of the functional covariation 
with environmental parameters (Figure 6). The patterns documented here were not exclusively 
depth-dependent but also captured subtle covariation with gradients along isobaths. The full set 
of environmental parameters and metagenomic response variables can be visualized interactively 
in the 3D volume of the Red Sea using web-based tools with files in Supplementary Information. 
Visualization examples showing the temperature–salinity profile, and temperature in the 3D 
volume of the Red Sea, are provided in Figure S4. 

Depth is a spatial parameter that is not ‘felt’ by microorganisms, except as it relates to 
pressure, but nevertheless structures virtually all environmental parameters in the water column. 
Light attenuates with depth, and thus photosynthesis is mostly confined to the upper 200 m of the 
water column. As expected, KOs for photosynthesis were most abundant in shallow waters and 
gradually less abundant in deeper waters. This was true for both oxygenic (psbA/K02703) and 
anoxygenic (pufL/K08928) photosynthesis, photosynthetic electron transport (petH/K02641, 
ndhD/K05575), and pigment biosynthesis (por/K00218) (Figure 5). Some heterotrophic bacteria 
accumulate carbon-rich polymers called polyhydroxyalkanoates when organic carbon is readily 
available but growth is limited by nutrients (Stubbe et al., 2005). We observed that 
polyhydroxyalkanoate synthase (phbC/K03821) was more abundant in mesopelagic samples than 
epipelagic samples, consistent with relatively more heterotrophy than phototrophy at depth. 

Temperature covaries with depth (warmer at surface, colder at depth), but in the Red Sea 
southern surface waters are warmer than northern surface waters, and the GAIW is cooler than 
surrounding depths in the native Red Sea water mass. We observed that KOs for chaperonins, 
including heat-shock proteins GroEL/ES (K04077, K04078), and proteases, including Clp 
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protease (clpP/K01358), had greater relative abundance in warm (24–32°C) samples than in 
cooler (21–23°C) samples (Figure 5). Both GroEL/ES (Zeilstra-Ryalls et al., 1991) and Clp 
protease (Zybailov et al., 2009) have important roles in protein folding, which is sensitive to high 
temperature. The increase in groEL relative abundance leveled off above 23 °C, whereas the 
increase in clpP relative abundance increased along the full temperature range from 21 to 32 °C. 
In an opposite trend, glycolysis was relatively more abundant in colder samples than warmer 
samples, as exemplified by phosphofructokinase (pfk/K00850). This is likely related to the 
relative increase in heterotrophy at depth, as deeper waters tend to be cooler. The most cold, 
eutrophic samples from the GAIW have the highest relative abundance of pfk by far, indicating 
relatively more heterotrophy in this foreign water mass. 

Salinity in the Red Sea is higher at depth and in northern surface waters and lower in 
southern surface waters and the GAIW. Saline-rich waters of the the Mediterranean and Red Seas 
were previously shown to have high relative abundance of genes for degradation of osmolytes, in 
particular recruiting to Pelagibacter (Thompson et al., 2013). We put forth a hypothesis that high 
salinity leads to high production of osmolytes by algae and other organisms, a valuable organic 
carbon and nutrient source for Pelagibacter (Sun et al., 2011), and therefore there is selective 
pressure to encode osmolyte-degrading enzymes (Thompson et al., 2013). Across the 45 Red Sea 
metagenomes, KOs for glycine betaine (GBT) transport and degradation (Sun et al., 2011) – 
glycine betaine/proline transporter (proV/K02000), betaine-homocysteine S-methyltransferase 
(bhmT/K00544), dimethylglycine dehydrogenase (DMGDH/K00315), and sarcosine oxidase 
(soxB/K00303) – were correlated with high chlorophyll and with high or moderate salinity 
(Figure 6). The shape of covariation of these four KOs was not as clearly dependent on salinity as 
we expected (Figure 5). As suggested by the CCA plot (Figure 6), both salinity and chlorophyll 
help explain the relative abundance of GBT transport and degradation KOs. The legend at top-
right of Figure 5 indicates chlorophyll a fluorescence of the samples as a function of depth. 
Among the GBT-utilization KOs, samples with either high chlorophyll (green and yellow-black) 
or high salinity (blue and purple) tended to have the highest abundance. Thus this multifaceted 
trend is completely consistent with the hypothesis of phototroph (chlorophyll) production of 
osmolytes in high-salinity waters as a source of reduced carbon and nutrients for heterotrophic 
bacteria. Regarding the phototrophs responsible for producing GBT, we note that while 
Prochlorococcus are thought to use glucosylglycerate and sucrose as their main osmolytes, some 
low-light Prochlorococcus strains and Synechococcus strains are thought to accumulate GBT as 
well (Scanlan et al., 2009), and these low-light strains are more abundant in the high-chlorophyll 
samples. Interestingly, the KO patterns with reads assigned to Pelagibacter specifically (e.g., 
proV/K02000) – one- to two-thirds of the recruited reads for these salinity-related KOs – were 
similar to the overall KO patterns but more dependent on salinity than chlorophyll (Figure 5). 

Phosphate and nitrate are both low in Red Sea surface waters but higher at depth and in 
the GAIW (for example, phosphate shown in Figure 1A). Several studies have shown that genes 
for nutrient acquisition are enriched in waters limited for those nutrients, e.g., phosphate 
acquisition in the low-phosphate Mediterranean and Sargasso Seas (Coleman and Chisholm, 
2010; Kelly et al., 2013; Thompson et al., 2013). Across the gradients of the Red Sea, numerous 
KOs for nutrient transport and assimilation were differentially distributed between nutrient-poor 
(surface and non-GAIW) and nutrient-rich (deep and GAIW) samples. Although depth was a 
major factor underlying the covariation observed here, we also detected more subtle differences 
along gradients within isobaths, as well as more striking differences between GAIW and non-
GAIW samples at the same depth. This is to our knowledge the first demonstration of differential 
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abundance patterns of nutrient-acquisition genes on such a small scale, not between disparate 
oceans but across environmental gradients within a single sea.  

Phosphate-acquisition and phosphate-response KOs were enriched in low-phosphate 
samples (Figure 5), including phosphate ABC transporter (pstS/K02040), phosphate two-
component system PhoBR (K07657, K07636), alkaline phosphatase (phoA/K01077), and 
phosphate stress-response protein PhoH (K06217). Trends were observed even within isothermal 
samples binned in two-degree increments, both for cooler isotherms with a wide range of 
phosphate concentrations, and for warmer isotherms with a narrow and low range of phosphate 
concentrations, e.g. phoB/K07657 (Figure S5). Phosphonate-acquisition genes, in an opposite 
pattern, were enriched in high-phosphate (and low-chlorophyll) samples, as exemplified by the 
phosphonate ABC transporter (phnD/K02044). Phosphonate utilization genes (phn) are abundant 
in proteobacteria such as Pelagibacter (Villarreal-Chiu et al., 2012), and are enriched in deeper 
waters of the Sargasso Sea (Martinez et al., 2010) and generally in low-P waters (Coleman and 
Chisholm, 2010; Feingersch et al., 2010). Although phosphonate-acquisition genes are found in 
some Prochlorococcus in the environment (Feingersch et al., 2012), genomes and transcriptional 
responses of cultured strains (Martiny et al., 2006) suggest that inorganic phosphate is the major 
P source for Prochlorococcus. Therefore, in addition to ecotype-level genome variability tuned to 
ambient concentrations of phosphate and phosphonate (Martiny et al., 2006), different 
distributions of phosphate- and phosphonate-acquisition genes along the water column are likely 
also due to genus-level differences in taxonomic composition (and therefore gene content) along 
the water column, for example, phosphate-utilizing Prochlorococcus in the epipelagic and 
phosphonate-utilizing Pelagibacter in the mesopelagic. Indeed, many of the low-nutrient-
associated KOs such as phosphate and urea transporters had very similar abundance patterns to 
KOs typical of a phototrophic bacterium like Prochlorococcus: photosystems and photosynthetic 
electron transport, chlorophyll binding proteins, the Calvin cycle, and transport and chelation of 
metal cofactors essential for photosynthesis (PAM cluster 8, Table S8).  

Nitrogen-acquisition KOs were differentially distributed with respect to nitrate 
concentration and, like with phosphorus, also followed one of two opposite patterns (Figure 5), 
which were also observed within isotherms (Figure S5). KOs for urea transport (urtA/K11959) 
and assimilatory ferredoxin–nitrate reductase (narB/K00367) were enriched in low-nitrate 
relative to high-nitrate samples. Conversely, KOs for ammonium transport (amt/K03320), nitrite 
reductase (nirK/K00368), and nitrate reductase-like protein (narX/K00369) were enriched in 
high-nitrate relative to low-nitrate samples, with the shift to high abundance occurring at 5 µM 
for amt and 15 µM for nirK and narX. Opposite of narB, narX was most abundant in the 
mesopelagic, where oxygen was low (1 mL/L at 500 m); this is consistent with a putative nitrate 
reductase fusion gene (narX) being up-regulated under anaerobic conditions in Mycobacterium 
(Hutter and Dick, 1999). Our measurements of N species besides nitrate were either below 
detection (nitrite) or unreliable (ammonium), but using global averages, nitrite and ammonium 
peak around the chlorophyll maximum and nitracline (where nitrate increases most rapidly) and 
then decrease through the deep epipelagic and mesopelagic (Gruber, 2008); urea is generally low 
and patchy through the water column (Remsen, 1971). Abundance patterns of several N-
acquisition KOs thus appear to follow the “low nutrient–high KO” paradigm: nitrate reductase 
was abundant where nitrate was low (surface), and ammonium transport and nitrite reductase 
were abundant where ammonium and nitrite were low (mesopelagic). Urea transport, if it follows 
the same paradigm, indicates that urea in the surface of the Red Sea is also very low relative to 
depth. 
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Conclusions 
We have analyzed a 3D array of marine metagenomes across environmental gradients in the Red 
Sea, showing that three-quarters of taxonomic and functional variation could be explained by 
temperature, nitrate, and chlorophyll. Covariation patterns with environmental parameters were 
largely conserved across water masses, notably more so for gene orthologs and pathways than for 
taxonomic groups. Individual patterns of KO covariation with environmental parameters revealed 
protein folding functions highly correlated with temperature, osmolyte degradation functions 
correlated with salinity and chlorophyll, and acquisition functions of nitrogen and phosphorus 
species anti-correlated with concentrations of their respective species. Subtle trends shown here 
across isobathic and isothermal gradients have hitherto been observed only between distant and 
disparate oceans. It is expected that this high-resolution marine metagenomic map of the Red 
Sea, accessible using interactive visualization tools, will serve as an important resource for 
marine microbiology and modeling. 
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Figures 
Figure 1: Covariation of gene ortholog group abundance and environmental parameters in the 
water column. (A) 3D contour map of the Red Sea, with outlines (isobaths) showing boundaries 
of the Red Sea at sampling depths, and samples colored by phosphate concentration (outer circle) 
and relative abundance of gene ortholog group (KO) for phosphate ABC transporter pstS (inner 
circle). (B) Scatter plot of KO relative abundance versus phosphate concentration. Samples taken 
within the foreign water mass Gulf of Aden Intermediate Water (GAIW) are indicated. KO 
relative abundance is given in units of counts per million (CPM) of total KO counts in each 
sample (i.e., all KOs sum to 1 million in each sample). 

Figure 2: Pearson correlations between environmental parameters shown as a colored covariance 
matrix. A Pearson’s r value of 1 (red) indicates a total positive correlation, a value of -1 (blue) 
indicates a total negative correlation, and a value of 0 (white) indicates no correlation. 
Figure 3: Relative abundance of genera across metagenomes displayed as a hierarchically-
clustered heatmap, with clustering of samples by Bray-Curtis distance (top dendrogram) and 
clustering of taxa by correlation between samples (left dendrogram), with branch colors 
indicating major clusters. GAIW sample labels are colored red. The top 50 most abundant genera 
are shown. Relative abundances of all 683 genera detected for each sample sum to 100. Genus-
level taxonomy was calculated based on k-mer frequency in comparison with the NCBI RefSeq 
database (methods). 

Figure 4: Maximization of linear relations between environmental parameters and metagenomic 
response variables using a distance-based multivariate linear model and distance-based 
redundancy analysis for (A) the whole data set and (B) genera Prochlorococcus and Pelagibacter 
(see methods). Percent variation explained by each parameter is shown as a bar graph. The 
optimal model using AICc to balance performance and parsimony is shown for both (A) and (B); 
also shown for (A) is the remainder of variation explained by other environmental parameters 
unused in the optimal model. The dbRDA ordination of the optimal model is shown along 
dbRDA axes 1 and 2, with stations colored by depth and water mass (GAIW in black). 

Figure 5: Covariation of select KOs with environmental parameters. KO relative abundance is 
given in units of counts per million of total KO counts in each sample (i.e., all KOs sum to 1 
million in each sample). 
Figure 6: Canonical correspondence analysis of KO relative abundance with environmental 
parameters. Samples are shown as black numerals indicating depth in meters (GAIW samples 
marked with asterisk), environmental parameters as dark blue arrows, and KOs colored by 
KEGG pathway. For clarity, only KOs were displayed that were found in all samples, with a total 
count of at least one per thousand counts over all samples, and variance in the top 10% (see 
methods). The large arrow indicates the trend of sample position from surface (epipelagic), to 
deep chlorophyll maximum, to deep (mesopelagic). 
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Supplementary Information 
Supplementary Methods 
Physical and chemical measurements of seawater 

Oceanographic measurements were collected on a modified SeaBird 9/11+ rosette/CTD system. 
Sensors on the CTD included those for pressure, temperature and conductivity (SBE9+ CTD), 
chlorophyll a and turbidity (WETLabs), and dissolved oxygen (SeaBird). Seawater samples were 
collected at nearly all stations for shipboard calibrations of salinity and oxygen CTD 
measurements. For nutrient measurements, filtrate from the final 0.1-µm filters was collected and 
frozen at –20 °C, then analyzed by flow injection analysis at the UCSB Marine Science Institute 
(nitrate+nitrite, nitrite, ammonium, and phosphate) and the Woods Hole Oceanographic 
Institution (silicate). Ammonium was measured at less than 2 µM and nitrite at less than 0.7 µM 
for all samples; these data were determined to be insufficiently precise for statistical analyses 
because nitrite concentrations were near or below the detection limit and the ammonium 
measurements could not be done on fresh (unfrozen) samples. 
DNA extraction 
Filters were cut aseptically into small pieces and placed in tubes. Lysis buffer (0.1 M Tris-HCl, 
0.1 M Na-EDTA, 0.1 M Na2H2PO4, 1.5 M NaCl, pH 8.0) was added to a volume of 15 mL. 
Three cycles of freeze-thaw (–80 °C, then 65 °C) were carried out. Lysozyme (2.5 mg/mL final 
conc.) and RNase A (2 mg/mL final conc.) was added, and the tubes were heated with rotation at 
37 °C for 1 h. Next, proteinase K (0.2 mg/mL final conc.) and SDS (1% final conc.) was added, 
and the tubes were heated with rotation at 55 °C for 2 h. Lysate was extracted with an equal 
volume of phenol:chloroform:isoamyl alcohol (25:24:1), then an equal volume of 
chloroform:isoamyl alcohol (24:1). DNA was concentrated and washed with 10 mM TE (pH 8.0) 
using Amicon Ultra filters (10 kDa MWCO). Finally, DNA was ethanol precipitated for 
additional purity. 
Additional statistical exploratory analyses 
Testing for zonation patterns across depth gradients was carried out using a hypothesis-driven, 
constrained approach to test whether clear gradients existed in microbial diversity across depth 
(fixed factor), a prediction supported by numerous studies to date (DeLong et al., 2006; Ngugi 
and Stingl, 2012). We used a permutational multivariate analysis of variance (PERMANOVA) 
(Anderson, 2001), with subsequent pairwise comparisons, to formally test for differences in 
multivariate response variables across six a priori defined depth zones (10, 25, 50, 100, 200, 500 
m). Analyses were based on Bray–Curtis similarity matrices, type III (partial) sums-of-squares, 
and unrestricted permutations of the raw data. The results of the PERMANOVA were visualized 
using a canonical analysis of principal coordinates (CAP) (Anderson and Willis, 2003), with 
allocation success (Anderson and Robinson, 2003) quantified across groups. Allocation success 
(expressed as a percentage) gave a measure of how distinct one depth group was relative to all 
other depth groups in the CAP multivariate space. Multidimensional scaling (MDS) was used to 
determine similarity between samples using the vegan package v2.3-1 (http://vegan.r-forge.r-
project.org/).  
Alternate taxonomy composition methods 
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In addition to CLARK (main methods), two other metagenomic taxonomy composition methods, 
described below, were tested. Based on the percent of reads mapping (Table S6), the percent 
taxonomic variation explained using environmental parameters, and an independent comparison 
of the methods (Lindgreen et al., 2016), we chose CLARK for determining taxonomic 
composition of each metagenomic library. 

GraftM v0.6.3 (https://github.com/geronimp/graftM) employs a Hidden Markov Model 
(HMM) with pattern recognition to identify 16S rRNA gene sequences 
(https://www.orau.gov/gsp2015/abstracts/TysonG_02.pdf) and assign them to taxonomic groups 
based on tree placement using the SILVA database (Release 119, Quast et al. (2012)), to the most 
granular phylogenetic level possible using pplacer (Matsen et al., 2010). This non-BLAST 
approach allows more accurate classification regardless of incomplete databases 
(https://www.orau.gov/gsp2015/abstracts/TysonG_02.pdf). GraftM was then used with default 
parameters, using forward reads only. Total counts were presence/absence transformed or fourth 
root transformed. 

Kraken (Wood and Salzberg, 2014) attempts to assign taxonomy to each read or read pair 
using k-mer analysis. Metagenomes were analyzed in ‘paired’ mode using the NCBI RefSeq 
database. Genus-level counts were normalized to the total number of paired reads per 
metagenome. Several key genera—‘Candidatus Pelagibacter ubique’, hereafter Pelagibacter, and 
groups of phages infecting Prochlorococcus, Synechococcus, and Pelagibacter—were manually 
curated to include taxa inadequately classified in NCBI Taxonomy. Total counts were normalized 
to total paired reads.  

Kraken and GraftM were not selected because they mapped fewer sequence reads (avg. 
8.8% for Kraken genus-level, 0.05% for GraftM genus-level, Table S6) and had lower percent 
variation explained. Further, a recent comparison of metagenomic taxonomy assignment tools 
found that CLARK performed best among tools tested in correlation between predicted and 
known relative abundances with a test data set (Lindgreen et al., 2016). 

Total variation explained of species-level taxon relative abundance (Table S5) was similar 
(76.1%) to genus-level relative abundance (75.1%). Given this similarity, along with the two-fold 
greater number of reads mapped for genus-level (avg. 11.6%) than species-level (avg. 6.2%) 
assignment (Table S6) by the k-mer based CLARK software (Ounit et al., 2015) and the observed 
greater accuracy of genus-level taxonomic assignments, we chose to focus on genus-level 
taxonomy for analyses.  

CCA visualization of metagenome–environment relationships 
The filtering described here was used only for selecting KOs to visualize by CCA in the main 
text (Figure 6); the full set of KOs was used for all other analyses, as well as the CCA of all KOs 
in Supplementary Information (Figure S6). Starting with all KOs (5775), KOs were sequentially 
filtered if they were not found in all samples (3311 remained), if they had a relative count 
abundance across all samples less than one per thousand counts or 0.001 (2455 remained), or if 
they had variance less than 5e–8 (252 remained); after CCA, only KOs with non-hypothetical 
functions were plotted (224 remained). KOs were colored by pathway; note that most KOs 
belong to multiple KEGG pathways, each with two tiers below ‘Metabolism’. In order to keep 
the number of pathways displayed to a digestible number, pathways were colored as follows: 
KOs among the top-ten most represented second-tier pathways were assigned if those pathways 
had at least five representatives (this corresponded to seven second-tier pathways in Figure 3); 
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the remaining KOs among the top-ten most represented first-tier pathways were assigned if those 
pathways had at least five representatives (this corresponded to seven first-tier pathways in 
Figure 3); the remaining KOs were assign to pathway ‘Other’. 
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Supplementary Figures 
Figure S1: Similarity profile analysis (SIMPROF) of KO relative abundance data using Bray–
Curtis similarity. Samples are colored by depth layer, and Gulf of Aden Intermediate Water 
(GAIW) samples are marked with an asterisk (*). 

Figure S2: Distance-based redundancy analysis (dbRDA) plots for each response variable. The 
dbRDA ordination maximizes linear relations of response variables with the predictors. 
Environmental parameters in the optimal model to the AICc model are plotted. Percent total 
variation explained by axes 1 and 2 is given. 

Figure S3: N:P ratio, calculated as nitrate+nitrite to phosphate ratio, across samples plotted as (A) 
nitrate+nitrite vs. phosphate and (B) depth vs. N:P ratio. Typical Redfield ratio of N:P = 16 is 
shown as well as the observed N:P = 2 in surface samples. 
Figure S4: Temperature–salinity (T–S) relationship shown using publicly available interactive 
visualization tools. (A) T–S profile generated with Bokeh Python package and (B) 3D map of 
Red Sea colored by temperature generated with  ̀ili Toolbox. Points shown are the 45 samples 
used in this study. The three GAIW foreign water mass samples are clearly visible as distinct 
from native Red Sea water mass samples by T–S profile and temperature anomaly in the water 
column. 
Figure S5: Covariation of nutrient acquisition KOs with phosphate and nitrate, separated by 
isotherms in 2-degree increments. KO relative abundance is given in units of counts per million 
of total KO counts in each sample (i.e., all KOs sum to 1 million in each sample). 
Figure S6: Canonical correspondence analysis of KO relative abundance with environmental 
parameters, with all KOs displated. Samples are shown as black numerals indicating depth in 
meters (GAIW samples marked with asterisk), environmental parameters as dark blue arrows, 
and KOs colored by pathway. 
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Supplementary Tables 
Table S1: Station properties. For each station, the following oceanographic features were 
calculated from CTD measurements: mixed layer depth (temperature decrease of 0.5 °C from 
surface), chlorophyll maximum, and oxygen minimum. Values of the chlorophyll maximum and 
oxygen minimum are given. 
Table S2: Sample water properties. 

Table S3: Illumina metagenome properties. Number of reads and total size in bp of forward 
(Fwd) and reverse (Rev) sequenced reads are after PRINSEQ preprocessing. 

Table S4: Parameters used in PRINSEQ preprocessing, listed in the order that processing steps 
were applied. 

Table S5: Results of AICc, the stepwise explanation of variation in response variables by 
sequentially adding environmental parameters (predictors), balancing performance and 
parsimony.  
Table S6: Percent of all forward reads mapped by HUMAnN and taxonomy assignment methods. 
Columns from left to right: HUMAnN translated search to prokaryotic KO sequences in KEGG; 
CLARK genus-level k-mer; CLARK species-level k-mer; Kraken genus-level k-mer; GraftM 
genus-level 16S; GraftM ecotype-level Prochlorococcus rpoC1; GraftM ecotype-level 
Pelagibacter 16S. 
Table S7: KOs ranked by total abundance across all samples.  

Table S8: KOs clustered by total abundance across all samples using partitioning around medoids 
(PAM) with 12 clusters.  

Table S9: Cartesian and polar coordinates of the 224 KEGG KOs (gene ortholog groups) plotted 
in the CCA ordination. KOs were first assigned to second-tier KEGG pathways (if total pathway 
count was at least 5), then first-tier KEGG pathways (if total pathway count was at least 5), and 
the remaining KOs were grouped as ‘Other’. Direction is in degrees from the polar axis. For 
reference, environmental parameter directions are as follows: salinity, 0.5°; chlorophyll, 94.3°; 
turbidity, 169.6°; oxygen, 171.7°; temperature, –160.5°; depth, –16.9°; nitrate, –11.2°; silicate, –
9.4°; phosphate, –9.1°. 
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Online Content 
Interactive 3D maps. Point the Chrome browser to http://ili-toolbox.github.io/ or install the  ̀ili 
Toolbox Chrome app. Drag the PNG file then one of the CSV data files to the web page. Use the 
on-screen menu to change the heatmap appearance; we recommend setting spot border to 1, 
hotspot quantile to 1, and color map to Blue-Red. Select data categories to view or search for 
terms in the selection menu. Drag another CSV file to change datasets. 
 
Map file (PNG):  
Thompson̲RedSea̲Map.png 
 
Data files (CSV):  
Thompson̲RedSea̲TaxaRelAbund̲Genus.csv  
Thompson̲RedSea̲TaxaRelAbund̲Species.csv  
Thompson̲RedSea̲TaxaCounts̲Pelagibacter.csv  
Thompson̲RedSea̲TaxaCounts̲Prochlorococcus.csv  
Thompson̲RedSea̲KORelativeAbundance̲AllTaxa.csv  
Thompson̲RedSea̲KORelativeAbundance̲Nitrosopumilus.csv  
Thompson̲RedSea̲KORelativeAbundance̲Pelagibacter.csv  
Thompson̲RedSea̲KORelativeAbundance̲Prochlorococcus.csv  
Thompson̲RedSea̲PathwayCoverage̲AllTaxa.csv  
Thompson̲RedSea̲PathwayRelativeAbundance̲AllTaxa.csv  
 
Interactive scatter plots. Open the HTML files in any web browser and choose any set of two 
environmental parameters or response variables to plot. Type the first few letters to go directly to 
a selection. Plots can be resized and then saved to PNG. 
 
Plot files (HTML):  
Thompson̲RedSea̲TaxaRelAbund̲Genus.html  
Thompson̲RedSea̲TaxaRelAbund̲Species.html  
Thompson̲RedSea̲TaxaCounts̲Pelagibacter.html  
Thompson̲RedSea̲TaxaCounts̲Prochlorococcus.html  
Thompson̲RedSea̲KORelativeAbundance̲AllTaxa.html  
Thompson̲RedSea̲KORelativeAbundance̲Nitrosopumilus.html  
Thompson̲RedSea̲KORelativeAbundance̲Pelagibacter.html  
Thompson̲RedSea̲KORelativeAbundance̲Prochlorococcus.html  
Thompson̲RedSea̲PathwayCoverage̲AllTaxa.html  
Thompson̲RedSea̲PathwayRelativeAbundance̲AllTaxa.html  
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Figure 1. Covariation of gene ortholog group abundance and environmental parameters in the
water column. (A) 3D contour map of the Red Sea, with outlines (isobaths) showing boundaries
of the Red Sea at sampling depths, and samples colored by phosphate concentration (outer
circle) and relative abundance of gene ortholog group (KO) for phosphate ABC transporter
pstS (inner circle). (B) Scatter plot of KO relative abundance versus phosphate concentration.
Samples taken within the foreign water mass Gulf of Aden Intermediate Water (GAIW) are
indicated. KO relative abundance is given in units of counts per million (CPM) of total KO
counts in each sample (i.e., all KOs sum to 1 million in each sample).
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Figure 2. Pearson correlations between environmental parameters shown as a colored covari-
ance matrix. A Pearson’s r value of 1 (red) indicates a total positive correlation, a value of –1
(blue) indicates a total negative correlation, and a value of 0 (white) indicates no correlation.
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Figure 3. Relative abundance of genera across metagenomes displayed as a hierarchically-
clustered heatmap, with clustering of samples by Bray–Curtis distance (top dendrogram) and
clustering of taxa by correlation between samples (left dendrogram), with branch colors indi-
cating major clusters. GAIW sample labels are colored red. The top 50 most abundant genera
are shown. Relative abundances of all 683 genera detected for each sample sum to 100. Genus-
level taxonomy was calculated based on k-mer frequency in comparison with the NCBI RefSeq
database (methods).

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 8, 2016. ; https://doi.org/10.1101/055012doi: bioRxiv preprint 

https://doi.org/10.1101/055012
http://creativecommons.org/licenses/by-nc-nd/4.0/


Taxa genus-level 

(k-mers)

KOs

(KEGG)

Pathways

(KEGG)

temperature
nitrate

chlorophyll

phosphate

temperaturenitrate

chlorophyll

phosphate

A
V

a
ri
a

ti
o

n
 e

x
p

la
in

e
d

 (
%

)

0

20

40

60

80

100

Temperature

Nitrate

Chlorophyll

Phosphate

Salinity

Silicate

Turbidity

Turbidity

Silicate

Salinity

Phosphate

Chlorophyll

Nitrate

Temperature

Taxa ecotype-level

(rpoC1)

KOs

(KEGG)

Taxa ecotype-level 

(16S)

KOs

(KEGG)

B

temperature

chlorophyll

phosphate
turbidity

temperature

chlorophyll

salinity

phosphate

temperature
silicate nitrate

chlorophyll
phosphate

temperature

Prochlorococcus Pelagibacter

V
a

ri
a

ti
o

n
 e

x
p

la
in

e
d

 (
%

)

0

20

40

60

80

100

temperature

nitrate

salinity

10 m

25 m

50 m

50 m/GAIW

100 m

100 m/GAIW

200 m

258 m

500 m

(remainder)

Salinity

Phosphate

Chlorophyll

Nitrate

Temperature

Figure 4. Maximization of linear relations between environmental parameters and metage-
nomic response variables using a distance-based multivariate linear model and distance-based
redundancy analysis for (A) the whole data set and (B) genera Prochlorococcus and Pelagibac-

ter (see methods). Percent variation explained by each parameter is shown as a bar graph. The
optimal model using AICc to balance performance and parsimony is shown for both (A) and
(B); also shown for (A) is the remainder of variation explained by other environmental parame-
ters unused in the optimal model. The dbRDA ordination of the optimal model is shown along
dbRDA axes 1 and 2, with stations colored by depth and water mass (GAIW in black).
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Figure 5. Covariation of select KOs with environmental parameters. KO relative abundance is
given in units of counts per million of total KO counts in each sample (i.e., all KOs sum to 1
million in each sample).
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Figure 6. Canonical correspondence analysis of KO relative abundance with environmental
parameters. Samples are shown as black numerals indicating depth in meters (GAIW sam-
ples marked with asterisk), environmental parameters as dark blue arrows, and KOs colored by
KEGG pathway. For clarity, only KOs were displayed that were found in all samples, with a
total count of at least one per thousand counts over all samples, and variance in the top 10%
(see methods). The large arrow indicates the trend of sample position from surface (epipelagic),
to deep chlorophyll maximum, to deep (mesopelagic).
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Figure S1. Similarity profile analysis (SIMPROF) of KO relative abundance data using Bray–
Curtis similarity. Samples are colored by depth layer, and Gulf of Aden Intermediate Water
(GAIW) samples are marked with an asterisk (*).
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Figure S2. Distance-based redundancy analysis (dbRDA) plots for each response variable.
The dbRDA ordination maximizes linear relations of response variables with the predictors.
Environmental parameters in the optimal model to the AICc model are plotted. Percent total
variation explained by axes 1 and 2 is given.
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A

B

Figure S4. Temperature–salinity (T–S) relationship shown using publicly available interactive
visualization tools. (A) T–S profile generated with Bokeh Python package and (B) 3D map of
Red Sea colored by temperature generated with `ili Toolbox. Points shown are the 45 samples
used in this study. The three GAIW foreign water mass samples are clearly visible as distinct
from native Red Sea water mass samples by T–S profile and temperature anomaly in the water
column.
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Figure S6. Canonical correspondence analysis of KO relative abundance with environmental
parameters, with all KOs displated. Samples are shown as black numerals indicating depth in
meters (GAIW samples marked with asterisk), environmental parameters as dark blue arrows,
and KOs colored by pathway.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 8, 2016. ; https://doi.org/10.1101/055012doi: bioRxiv preprint 

https://doi.org/10.1101/055012
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Tables

Table S1. Station properties. For each station, the following oceanographic features were
calculated from CTD measurements: mixed layer depth (temperature decrease of 0.5 �C from
surface), chlorophyll maximum, and oxygen minimum. Values of the chlorophyll maximum
and oxygen minimum are given.

Station Latitude Longitude Mixed layer Chlorophyll max. Oxygen min.
(�N) (�E) (m) (m) (mg/m3) (m) (mL/L)

12 17.662 40.905 31 44 (2.351) n/a
22 17.996 39.799 57 63 (1.159) 311 (0.554)
34 18.580 40.743 40 48 (1.563) n/a
91 20.525 38.781 35 83 (0.502) 278 (0.487)

108 22.046 37.929 53 97 (0.443) 381 (0.600)
149 23.604 37.054 52 99 (0.456) 465 (0.756)
169 25.772 36.116 47 97 (0.390) 546 (1.311)
192 27.897 34.507 40 58 (0.635) 498 (1.335)

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 8, 2016. ; https://doi.org/10.1101/055012doi: bioRxiv preprint 

https://doi.org/10.1101/055012
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table S2. Sample water properties.

Sample Station Latitude Longitude Depth Temp. Salinity Oxygen Chlorophyll Turbidity Nitrate Phosphate Silicate
(�N) (�E) (m) (�C) (psu) (mL/L) (mg/m3) (V) (µM) (µM) (µM)

1 | | | 10 31.20 38.87 4.25 0.001 0.255 0.17 0.13 2.15
2 12 17.662 40.905 25 31.14 38.87 4.25 0.016 0.262 0.12 0.13 2.22
3 | | | 47 23.04 37.39 1.97 1.519 0.328 12.60 1.07 10.85

4 10 30.45 39.06 4.29 0.001 0.260 0.23 0.13 2.21
5 25 29.91 39.07 4.32 0.001 0.299 0.07 0.12 2.29
6 22 17.996 39.799 50 29.68 39.07 4.32 0.098 0.263 0.12 0.11 2.36
7 100 24.37 40.05 3.64 0.081 0.238 4.23 0.26 3.02
8 200 21.93 40.45 1.55 0.001 0.233 14.50 0.82 9.60
9 500 21.57 40.53 1.09 0.001 0.234 16.50 1.26 15.32

10 10 31.02 38.92 4.34 0.001 0.241 0.27 0.14 2.27
11 25 30.87 38.94 4.59 0.012 0.247 2.18 0.25 2.07
12 34 18.58 40.743 50 21.57 37.01 1.29 1.097 0.289 17.50 1.34 14.51
13 100 22.38 38.44 1.93 0.034 0.250 9.97 0.71 15.20
14 200 22.20 40.40 2.84 0.001 0.237 13.20 0.79 16.13
15 258 21.81 40.48 0.60 0.001 0.258 16.50 1.22 16.43

16 10 30.36 39.29 4.38 0.001 0.272 0.23 0.13 2.86
17 25 30.37 39.29 4.38 0.001 0.274 0.20 0.16 2.10
18 91 20.525 38.781 50 28.50 39.43 4.64 0.058 0.258 4.23 0.22 2.60
19 100 24.12 40.10 3.48 0.227 0.242 0.23 0.17 2.80
20 200 21.94 40.45 1.67 0.001 0.244 12.10 0.64 7.95
21 500 21.58 40.53 0.92 0.001 0.235 17.50 0.96 16.75

22 10 30.53 39.37 4.37 0.001 0.248 0.44 0.14 1.63
23 25 30.51 39.37 4.38 0.001 0.250 0.39 0.20 1.83
24 108 22.046 37.929 50 30.44 39.37 4.38 0.002 0.256 0.06 0.13 2.08
25 100 24.21 40.12 4.00 0.453 0.249 2.40 0.20 2.60
26 200 22.12 40.42 2.79 0.001 0.238 9.79 0.52 7.13
27 500 21.58 40.53 1.00 0.001 0.223 18.60 1.12 13.89

28 10 29.80 40.02 4.37 0.001 0.244 0.24 0.10 2.18
29 25 29.80 40.02 4.38 0.001 0.244 0.08 0.07 2.37
30 149 23.604 37.054 50 27.54 39.86 4.68 0.002 0.251 0.15 0.07 2.08
31 100 24.55 40.08 4.43 0.399 0.249 0.40 0.16 2.66
32 200 22.94 40.33 4.08 0.057 0.231 2.36 0.20 2.69
33 500 21.58 40.53 0.78 0.001 0.226 19.00 1.04 14.58

34 10 28.94 40.51 4.46 0.001 0.245 0.09 0.09 2.02
35 25 28.94 40.51 4.46 0.001 0.246 0.12 0.08 1.96
36 169 25.772 36.116 50 28.00 40.40 4.63 0.001 0.241 0.09 0.10 2.18
37 100 24.83 40.33 4.61 0.336 0.239 0.16 0.08 2.55
38 200 22.35 40.41 3.57 0.001 0.240 5.35 0.28 6.39
39 500 21.60 40.53 1.41 0.001 0.225 15.70 0.84 13.90

40 10 27.89 40.51 4.52 0.001 0.244 0.25 0.09 2.19
41 25 27.85 40.52 4.51 0.003 0.254 0.15 0.07 2.41
42 192 27.897 34.507 50 26.23 40.44 4.61 0.305 0.252 0.05 0.07 2.21
43 100 23.68 40.40 4.19 0.125 0.235 1.31 0.11 2.61
44 200 22.41 40.44 3.46 0.001 0.236 5.21 0.26 4.89
45 500 21.61 40.53 1.39 0.001 0.239 15.70 0.81 13.19
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Table S3. Illumina metagenome properties. Number of reads and total size in bp of forward
(Fwd) and reverse (Rev) sequenced reads are after PRINSEQ preprocessing.

Sample Station Insert size Paired reads Total basepairs
(median, bp) (MAD, bp) (mean, bp) (SD, bp) (M) (Gbp)

1 | 299 118.6 311.6 130.8 9.6 1.8
2 12 305 118.6 315.5 129.7 13.5 2.5
3 | 284 120.1 294.2 128.1 11.5 2.1

4 204 106.7 215.0 102.7 9.9 1.8
5 270 115.6 278.7 121.6 7.7 1.4
6 22 274 120.1 282.9 124.8 7.7 1.4
7 279 117.1 288.7 124.6 8.8 1.6
8 273 117.1 282.0 122.8 8.0 1.5
9 356 129.0 367.8 140.6 8.1 1.5

10 316 121.6 324.9 131.7 13.5 2.5
11 302 124.5 311.4 132.8 11.5 2.1
12 34 286 124.5 292.1 126.8 9.9 1.8
13 230 111.2 237.8 108.0 7.7 1.4
14 258 117.1 264.3 117.0 7.7 1.4
15 283 124.5 288.3 126.7 8.8 1.6

16 359 133.4 373.3 145.7 15.7 2.9
17 366 134.9 380.1 147.9 8.1 1.5
18 91 244 134.9 252.5 124.8 8.0 1.5
19 186 106.7 198.8 98.4 11.5 2.1
20 183 102.3 194.8 93.8 9.9 1.8
21 233 117.1 239.4 111.2 11.3 2.1

22 353 129.0 362.4 139.8 11.7 2.2
23 273 123.1 279.2 123.6 10.5 2.0
24 108 203 102.3 211.6 97.6 11.6 2.2
25 284 126.0 289.8 126.7 9.6 1.8
26 274 127.5 279.4 125.9 11.1 2.1
27 277 124.5 283.6 125.8 10.5 2.0

28 315 129.0 322.8 135.8 11.5 2.1
29 357 136.4 369.0 146.8 9.6 1.8
30 149 316 129.0 325.6 136.0 11.7 2.2
31 339 129.0 352.6 139.7 8.0 1.5
32 219 103.8 228.6 104.2 11.6 2.2
33 245 115.6 252.6 114.2 9.6 1.8

34 328 126.0 337.4 136.3 13.5 2.5
35 284 121.6 295.1 129.6 10.5 2.0
36 169 305 123.1 313.1 129.2 13.9 2.6
37 227 109.7 237.8 109.5 11.3 2.1
38 245 120.1 252.4 115.6 13.5 2.5
39 188 100.8 199.4 95.3 8.8 1.6

40 324 124.5 334.2 133.5 15.7 2.9
41 348 126.0 357.4 136.9 8.1 1.5
42 192 337 127.5 344.9 136.7 13.5 2.5
43 364 132.0 372.1 141.7 10.9 2.0
44 267 121.6 273.5 120.6 11.5 2.1
45 259 115.6 266.8 117.3 11.3 2.1

Max: 366 380.1 Total: 477.7 88.8
Min: 183 194.8

Mean: 282.7 291.9
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Table S4. Parameters used in PRINSEQ preprocessing, listed in the order that processing steps
were applied.

Parameter Value Description

trim qual left 20 Trim sequence from 5’-end with quality threshold of 20
trim qual right 20 Trim sequence from 3’-end with quality threshold of 20
trim ns left 1 Trim poly-N tail from 5’-end
trim ns right 1 Trim poly-N tail from 3’-end
min len 40 Filter sequences shorter than 40 bp (after trimming)
min qual mean 20 Filter sequences with mean quality threshold of 20 (after trimming)
ns max p 5 Filter sequences with more than 5% Ns (after trimming)
lc method entropy Filter low complexity sequences with Shannon entropy. . .
lc threshold 50 . . . less than 50 (after trimming)
derep 14 Filter exact duplicates and reverse complement exact duplicates (after trimming)

Table S5. Results of AICc, the stepwise explanation of variation in response variables by
sequentially adding environmental parameters (predictors), balancing performance and parsi-
mony.
File: Table_S5_AICc_Results.xlsx

Table S6. Percent of all forward reads mapped by HUMAnN and taxonomy assignment meth-
ods. Columns from left to right: HUMAnN translated search to prokaryotic KO sequences in
KEGG; CLARK genus-level k-mer; CLARK species-level k-mer; Kraken genus-level k-mer;
GraftM genus-level 16S; GraftM ecotype-level Prochlorococcus rpoC1; GraftM ecotype-level
Pelagibacter 16S.
File: Table_S6_Percent_Reads_Mapped.xlsx

Table S7. KOs ranked by total abundance across all samples.
File: Table_S7_KOs_Ranked_By_Abundance.xlsx

Table S8. KOs clustered by total abundance across all samples using partitioning around
medoids (PAM) with 12 clusters.
File: Table_S8_KOs_Partitioned_Around_Medoids.xlsx
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Table S9. Cartesian and polar coordinates of the 224 KEGG KOs (gene ortholog groups) plotted
in the CCA ordination. KOs were first assigned to second-tier KEGG pathways (if total pathway
count was at least 5), then first-tier KEGG pathways (if total pathway count was at least 5), and
the remaining KOs were grouped as ‘Other’. Direction is in degrees from the polar axis. For
reference, environmental parameter directions are as follows: salinity, 0.5�; chlorophyll, 94.3�;
turbidity, 169.6�; oxygen, 171.7�; temperature, –160.5�; depth, –16.9�; nitrate, –11.2�; silicate,
–9.4�; phosphate, –9.1�.

KO number Description CCA1 CCA2 Direction (�) Magnitude

Oxidative phosphorylation (2nd tier)
K00239 succinate dehydrogenase flavoprotein subunit 0.205 0.789 75.4 0.815
K00240 succinate dehydrogenase iron-sulfur protein 0.092 0.763 83.1 0.768
K00330 NADH dehydrogenase I subunit A 0.360 0.342 43.5 0.496
K00331 NADH dehydrogenase I subunit B 0.400 0.593 56.0 0.715
K00333 NADH dehydrogenase I subunit D 0.398 0.589 55.9 0.711
K00335 NADH dehydrogenase I subunit F –0.069 1.182 93.3 1.184
K00338 NADH dehydrogenase I subunit I 0.371 0.549 56.0 0.662
K00340 NADH dehydrogenase I subunit K 0.518 0.293 29.5 0.595
K00341 NADH dehydrogenase I subunit L 0.479 0.413 40.7 0.633
K00342 NADH dehydrogenase I subunit M 0.492 0.462 43.2 0.675
K00356 NADH dehydrogenase –0.991 0.583 149.5 1.150
K00411 ubiquinol-cytochrome c reductase iron-sulfur subunit 0.356 0.184 27.3 0.400
K00412 ubiquinol-cytochrome c reductase cytochrome b subunit –0.526 0.702 126.9 0.877
K02108 F-type H+-transporting ATPase subunit a –0.573 0.277 154.2 0.636
K02109 F-type H+-transporting ATPase subunit b –1.208 –0.926 –142.5 1.522
K02111 F-type H+-transporting ATPase subunit alpha –0.390 0.582 123.9 0.701
K02112 F-type H+-transporting ATPase subunit beta –0.325 0.614 117.9 0.695
K02117 V-type H+-transporting ATPase subunit A 2.886 –0.036 –0.7 2.886
K02118 V-type H+-transporting ATPase subunit B 2.902 –0.242 –4.8 2.912
K02258 cytochrome c oxidase subunit XI assembly protein –1.499 –0.941 –147.9 1.770
K02276 cytochrome c oxidase subunit III –0.538 0.098 169.7 0.547
K02301 protoheme IX farnesyltransferase 0.373 –0.578 –57.2 0.688
K05575 NADH dehydrogenase I subunit 4 –2.203 –3.947 –119.2 4.520

ABC transporters (2nd tier)
K01997 branched-chain amino acid transport system permease protein –0.134 0.556 103.6 0.571
K02000 glycine betaine/proline transport system ATP-binding protein 0.381 1.484 75.6 1.533
K02001 glycine betaine/proline transport system permease protein 0.290 1.557 79.4 1.584
K02002 glycine betaine/proline transport system substrate-binding protein 0.311 1.409 77.5 1.443
K02006 cobalt/nickel transport system ATP-binding protein –1.884 –3.807 –116.3 4.248
K02031 peptide/nickel transport system ATP-binding protein 0.432 –0.276 –32.6 0.512
K02032 peptide/nickel transport system ATP-binding protein 0.462 –0.170 –20.2 0.492
K02033 peptide/nickel transport system permease protein 0.368 –0.290 –38.2 0.468
K02036 phosphate transport system ATP-binding protein –1.317 –0.051 –177.8 1.318
K02037 phosphate transport system permease protein –1.382 –0.692 –153.4 1.545
K02038 phosphate transport system permease protein –1.409 –0.807 –150.2 1.624
K02040 phosphate transport system substrate-binding protein –1.382 –0.708 –152.9 1.553
K02049 sulfonate/nitrate/taurine transport system ATP-binding protein 0.504 0.155 17.1 0.528
K02050 sulfonate/nitrate/taurine transport system permease protein 0.550 –0.165 –16.7 0.574
K09686 antibiotic transport system permease protein 0.703 –1.528 –65.3 1.682

Pyrimidine metabolism (2nd tier)
K00384 thioredoxin reductase (NADPH) –0.263 0.292 132.0 0.393
K00525 ribonucleoside-diphosphate reductase alpha chain 0.105 0.841 82.9 0.848
K00526 ribonucleoside-diphosphate reductase beta chain –0.341 1.203 105.8 1.250
K00962 polyribonucleotide nucleotidyltransferase –0.501 0.447 138.3 0.672
K01464 dihydropyrimidinase 2.122 –1.029 –25.9 2.359
K01465 dihydroorotase –0.551 0.510 137.2 0.751
K01485 cytosine deaminase –1.261 –3.239 –111.3 3.476
K01493 dCMP deaminase 2.173 0.206 5.4 2.182
K02338 DNA polymerase III subunit beta –1.004 –0.198 –168.9 1.023
K03040 DNA-directed RNA polymerase subunit alpha –0.513 0.398 142.2 0.649
K03043 DNA-directed RNA polymerase subunit beta –0.412 0.588 125.0 0.718
K03046 DNA-directed RNA polymerase subunit beta’ –0.536 0.338 147.8 0.634
K03465 thymidylate synthase (FAD) –0.610 0.845 125.8 1.042
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Table S9. (continued)

KO number Description CCA1 CCA2 Direction (�) Magnitude

Carbon fixation pathways in prokaryotes (2nd tier)
K00174 2-oxoglutarate ferredoxin oxidoreductase subunit alpha 1.521 0.848 29.2 1.741
K00175 2-oxoglutarate ferredoxin oxidoreductase subunit beta 1.795 0.497 15.5 1.863
K00626 acetyl-CoA C-acetyltransferase 0.714 0.261 20.0 0.760
K01681 aconitate hydratase 1 0.455 0.733 58.2 0.863
K01848 methylmalonyl-CoA mutase, N-terminal domain 2.450 0.061 1.4 2.451
K01849 methylmalonyl-CoA mutase, C-terminal domain 2.754 –0.562 –11.5 2.811
K01902 succinyl-CoA synthetase alpha subunit 0.290 0.718 68.0 0.774
K01903 succinyl-CoA synthetase beta subunit 0.299 0.750 68.3 0.807
K01963 acetyl-CoA carboxylase carboxyl transferase subunit beta –0.774 –0.025 –178.2 0.774
K01966 propionyl-CoA carboxylase beta chain 1.321 0.351 14.9 1.367

Glycine, serine and threonine metabolism (2nd tier)
K00302 sarcosine oxidase, subunit alpha –0.279 1.160 103.5 1.193
K00303 sarcosine oxidase, subunit beta –0.186 1.070 99.8 1.086
K00304 sarcosine oxidase, subunit delta –0.364 1.131 107.9 1.188
K00315 dimethylglycine dehydrogenase 0.124 1.044 83.2 1.051
K00544 betaine-homocysteine S-methyltransferase 1.849 1.960 46.7 2.695
K00600 glycine hydroxymethyltransferase 0.237 –0.011 –2.6 0.237
K00605 aminomethyltransferase –0.174 0.681 104.3 0.703
K00613 glycine amidinotransferase –0.638 2.037 107.4 2.135
K01079 phosphoserine phosphatase 2.331 –0.773 –18.3 2.456
K01733 threonine synthase 0.928 –0.708 –37.3 1.168

Ribosome (2nd tier)
K02867 large subunit ribosomal protein L11 0.243 0.217 41.7 0.326
K02877 large subunit ribosomal protein L15e 3.098 –1.077 –19.2 3.280
K02884 large subunit ribosomal protein L19 –0.394 0.571 124.6 0.694
K02899 large subunit ribosomal protein L27 –0.353 0.593 120.8 0.690
K02929 large subunit ribosomal protein L44e 3.112 –1.281 –22.4 3.365
K02945 small subunit ribosomal protein S1 –0.859 –0.516 –149.0 1.002
K02946 small subunit ribosomal protein S10 0.068 0.483 82.0 0.488
K02950 small subunit ribosomal protein S12 0.132 0.384 71.0 0.406
K02959 small subunit ribosomal protein S16 –0.620 0.343 151.1 0.708

Porphyrin and chlorophyll metabolism (2nd tier)
K00218 protochlorophyllide reductase –2.262 –4.865 –114.9 5.365
K00228 coproporphyrinogen III oxidase –0.788 –0.250 –162.4 0.826
K00798 cob(I)alamin adenosyltransferase –0.489 –2.775 –100.0 2.818
K01772 ferrochelatase –0.745 –0.419 –150.7 0.855
K01845 glutamate-1-semialdehyde 2,1-aminomutase 1.173 –0.982 –39.9 1.530
K03394 cobalt-factor-2 C20-methyltransferase 1.405 –2.693 –62.4 3.038
K05934 precorrin-3B C17-methyltransferase 3.089 –1.324 –23.2 3.361
K09882 cobaltochelatase CobS –0.571 0.732 128.0 0.929
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Table S9. (continued)

KO number Description CCA1 CCA2 Direction (�) Magnitude

Amino acid metabolism
K00249 acyl-CoA dehydrogenase 0.144 1.025 82.0 1.035
K00797 spermidine synthase –0.963 –0.588 –148.6 1.128
K00826 branched-chain amino acid aminotransferase 0.397 –0.269 –34.2 0.480
K00930 acetylglutamate kinase 0.795 –0.966 –50.6 1.251
K01251 adenosylhomocysteinase 0.118 0.290 67.8 0.313
K01480 agmatinase 0.005 0.160 88.1 0.161
K01649 2-isopropylmalate synthase 0.154 0.252 58.5 0.295
K01652 acetolactate synthase I/II/III large subunit 0.263 0.232 41.5 0.350
K01692 enoyl-CoA hydratase 0.411 0.752 61.4 0.857
K01714 dihydrodipicolinate synthase –0.464 0.227 153.9 0.517
K01739 cystathionine gamma-synthase –1.380 –2.856 –115.8 3.172
K01740 O-acetylhomoserine (thiol)-lyase –0.305 0.605 116.8 0.677
K01814 phosphoribosylformimino-5-aminoimidazole carboxamide ribotide –0.768 0.073 174.6 0.771
K01915 glutamine synthetase 0.242 0.670 70.2 0.712
K02502 ATP phosphoribosyltransferase regulatory subunit –1.307 –1.461 –131.8 1.961
K05710 ferredoxin subunit of phenylpropionate dioxygenase 2.715 –1.362 –26.6 3.038
K08963 methylthioribose-1-phosphate isomerase 1.133 0.028 1.4 1.133

Carbohydrate metabolism
K00074 3-hydroxybutyryl-CoA dehydrogenase 1.347 0.592 23.7 1.471
K00101 L-lactate dehydrogenase (cytochrome) –0.890 1.500 120.7 1.744
K00615 transketolase 0.326 –0.113 –19.1 0.345
K00965 UDPglucose–hexose-1-phosphate uridylyltransferase 2.973 –1.502 –26.8 3.330
K01006 pyruvate,orthophosphate dikinase 0.402 0.452 48.4 0.605
K01610 phosphoenolpyruvate carboxykinase (ATP) 1.593 –0.193 –6.9 1.605
K01644 citrate lyase subunit beta 1.984 –0.538 –15.2 2.056
K01708 galactarate dehydratase –1.036 1.426 126.0 1.763
K01711 GDPmannose 4,6-dehydratase 0.164 0.510 72.2 0.536
K01858 myo-inositol-1-phosphate synthase 2.431 –1.072 –23.8 2.657
K03821 polyhydroxyalkanoate synthase 2.471 –2.366 –43.8 3.421

Energy metabolism (1st tier)
K00381 sulfite reductase (NADPH) hemoprotein beta-component 2.424 –0.970 –21.8 2.611
K00958 sulfate adenylyltransferase 1.306 –1.626 –51.2 2.085
K02639 ferredoxin –2.082 –2.329 –131.8 3.124
K02703 photosystem II PsbA protein –1.499 3.524 113.0 3.830
K03518 carbon-monoxide dehydrogenase small subunit 1.250 0.716 29.8 1.440
K04748 nitric-oxide reductase NorQ protein 3.052 –1.345 –23.8 3.336
K11212 LPPG:FO 2-phospho-L-lactate transferase 2.966 –1.351 –24.5 3.259

Metabolism of cofactors and vitamins (1st tier)
K00324 NAD(P) transhydrogenase subunit alpha –0.537 0.187 160.8 0.568
K01633 dihydroneopterin aldolase –1.114 –0.261 –166.8 1.144
K01737 6-pyruvoyl tetrahydrobiopterin synthase –1.159 –2.190 –117.9 2.478
K03147 thiamine biosynthesis protein ThiC 1.168 –1.640 –54.6 2.013
K03182 3-octaprenyl-4-hydroxybenzoate carboxy-lyase UbiD 2.841 –0.816 –16.0 2.956
K03186 3-octaprenyl-4-hydroxybenzoate carboxy-lyase UbiX 2.708 –0.400 –8.4 2.737
K03644 lipoic acid synthetase –0.657 –0.228 –160.9 0.696
K06215 pyridoxine biosynthesis protein 2.013 0.032 0.9 2.013

Metabolism of terpenoids and polyketides (1st tier)
K00973 glucose-1-phosphate thymidylyltransferase 0.851 0.114 7.7 0.859
K01662 1-deoxy-D-xylulose-5-phosphate synthase –0.630 0.003 179.7 0.630
K01710 dTDP-glucose 4,6-dehydratase 0.609 0.060 5.6 0.612
K06443 lycopene beta cyclase –1.837 –0.982 –151.9 2.083
K10027 phytoene dehydrogenase –1.585 1.257 141.6 2.023

Folding, sorting and degradation (1st tier)
K00970 poly(A) polymerase –1.192 –2.531 –115.2 2.797
K03100 signal peptidase I –0.821 –0.851 –134.0 1.182
K03432 proteasome alpha subunit 3.028 –1.127 –20.4 3.231
K03433 proteasome beta subunit 3.191 –1.299 –22.2 3.446
K03628 transcription termination factor Rho –0.172 0.972 100.0 0.987
K04077 chaperonin GroEL –0.389 0.302 142.2 0.493

Translation (1st tier)
K01876 aspartyl-tRNA synthetase 0.301 –0.142 –25.2 0.333
K01880 glycyl-tRNA synthetase 1.380 0.230 9.4 1.399
K03231 elongation factor EF-1 alpha subunit 3.121 –1.299 –22.6 3.381
K03242 translation initiation factor eIF-2 gamma subunit 3.160 –1.168 –20.3 3.369
K03243 translation initiation factor IF-2 unclassified subunit 3.306 –1.719 –27.5 3.726
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Table S9. (continued)

KO number Description CCA1 CCA2 Direction (�) Magnitude

Other
K00208 enoyl-[acyl-carrier protein] reductase I –0.544 0.448 140.5 0.705
K00528 ferredoxin–NADP+ reductase 1.931 0.470 13.7 1.987
K00574 cyclopropane-fatty-acyl-phospholipid synthase –0.452 0.852 118.0 0.964
K00666 fatty-acyl-CoA synthase 0.107 1.027 84.1 1.033
K00799 glutathione S-transferase –0.683 –1.314 –117.5 1.481
K00809 deoxyhypusine synthase 0.804 0.011 0.8 0.804
K00986 RNA-directed DNA polymerase 3.061 –5.265 –59.8 6.090
K01247 DNA-3-methyladenine glycosylase II –1.242 0.706 150.4 1.429
K01256 aminopeptidase N –1.110 –2.954 –110.6 3.155
K01271 X-Pro dipeptidase 0.563 1.057 62.0 1.198
K01358 ATP-dependent Clp protease, protease subunit –0.723 –0.529 –143.8 0.896
K01488 adenosine deaminase 1.769 1.211 34.4 2.143
K01669 deoxyribodipyrimidine photo-lyase –1.796 –2.189 –129.4 2.831
K01919 glutamate–cysteine ligase –1.189 –1.702 –124.9 2.076
K01920 glutathione synthase –1.207 –1.630 –126.5 2.028
K01971 DNA ligase (ATP) –1.360 –3.437 –111.6 3.696
K01972 DNA ligase (NAD+) –0.884 –1.491 –120.7 1.734
K02005 HlyD family secretion protein –2.047 –4.479 –114.6 4.925
K02014 iron complex outermembrane recepter protein 0.946 –0.275 –16.2 0.986
K02025 multiple sugar transport system permease protein –0.535 0.331 148.2 0.629
K02026 multiple sugar transport system permease protein –0.516 0.184 160.4 0.548
K02027 multiple sugar transport system substrate-binding protein –0.795 –0.078 –174.4 0.798
K02057 simple sugar transport system permease protein –0.537 0.442 140.5 0.695
K02116 ATP synthase protein I –1.334 –1.060 –141.5 1.704
K02221 YggT family protein –0.866 0.045 177.0 0.867
K02313 chromosomal replication initiator protein DnaA –0.665 0.221 161.7 0.701
K02355 elongation factor EF-G –0.242 0.733 108.3 0.772
K02358 elongation factor EF-Tu –0.140 0.556 104.1 0.573
K02469 DNA gyrase subunit A –0.587 –0.158 –164.9 0.608
K02520 translation initiation factor IF-3 –0.516 0.339 146.7 0.617
K03086 RNA polymerase primary sigma factor –0.771 –0.498 –147.1 0.918
K03088 RNA polymerase sigma-70 factor, ECF subfamily 0.683 –0.075 –6.3 0.687
K03124 transcription initiation factor TFIIB 3.227 –1.393 –23.3 3.514
K03166 DNA topoisomerase VI subunit A 3.148 –1.169 –20.4 3.358
K03167 DNA topoisomerase VI subunit B 3.374 –2.041 –31.2 3.943
K03234 elongation factor EF-2 3.102 –0.937 –16.8 3.240
K03320 ammonium transporter, Amt family 1.107 0.068 3.5 1.109
K03406 methyl-accepting chemotaxis protein 1.923 –2.502 –52.4 3.156
K03455 monovalent cation:H+ antiporter-2, CPA2 family 2.557 –1.067 –22.7 2.770
K03495 glucose inhibited division protein A –0.613 –0.109 –169.9 0.623
K03502 DNA polymerase V –1.054 –0.051 –177.2 1.056
K03564 peroxiredoxin Q/BCP –0.394 –1.461 –105.1 1.513
K03568 TldD protein –1.140 –0.975 –139.5 1.500
K03569 rod shape-determining protein MreB and related proteins –0.424 0.442 133.8 0.612
K03592 PmbA protein –1.631 –2.532 –122.8 3.012
K03596 GTP-binding protein LepA –0.393 0.449 131.2 0.596
K03671 thioredoxin 1 0.333 0.195 30.4 0.386
K03684 ribonuclease D –1.182 –0.895 –142.9 1.483
K03702 excinuclease ABC subunit B –0.344 0.730 115.3 0.807
K03704 cold shock protein (beta-ribbon, CspA family) 0.294 0.151 27.2 0.330
K03709 DtxR family transcriptional regulator, Mn-dependent transcriptional 3.055 –1.756 –29.9 3.523
K03711 Fur family transcriptional regulator, ferric uptake regulator –0.755 –0.384 –153.0 0.847
K03718 Lrp/AsnC family transcriptional regulator, regulator for asnA, asnC 2.967 –1.757 –30.6 3.449
K03742 competence/damage-inducible protein CinA –1.036 –0.396 –159.1 1.109
K03768 peptidyl-prolyl cis-trans isomerase B (cyclophilin B) 0.753 –0.391 –27.5 0.849
K03797 carboxyl-terminal processing protease –0.860 –0.759 –138.6 1.147
K03798 cell division protease FtsH –0.769 –0.734 –136.3 1.063
K03924 MoxR-like ATPase 1.119 1.649 55.8 1.993
K04069 pyruvate formate lyase activating enzyme 3.438 –3.072 –41.8 4.611
K04483 DNA repair protein RadA 3.148 –1.359 –23.3 3.429
K04488 nitrogen fixation protein NifU and related proteins 0.474 0.988 64.4 1.096
K06147 ATP-binding cassette, subfamily B, bacterial –0.868 –1.876 –114.8 2.067
K06174 ATP-binding cassette, sub-family E, member 1 3.230 –1.268 –21.4 3.470
K06188 aquaporin Z 2.989 –1.125 –20.6 3.194
K06206 sugar fermentation stimulation protein A –1.300 –1.108 –139.6 1.708
K06207 GTP-binding protein –1.243 –0.953 –142.5 1.566
K06213 magnesium transporter –0.783 –0.076 –174.4 0.787
K06217 phosphate starvation-inducible protein PhoH and related proteins –0.648 0.124 169.2 0.660
K06920 queuosine biosynthesis protein QueC 1.108 –1.680 –56.6 2.012
K07319 putative adenine-specific DNA-methyltransferase 1.545 0.115 4.3 1.550
K07442 tRNA (adenine-N1-)-methyltransferase 3.074 –1.412 –24.7 3.383
K07483 transposase 2.147 –2.464 –48.9 3.268
K07493 putative transposase 1.206 –0.320 –14.9 1.248
K07497 putative transposase 1.306 –0.409 –17.4 1.369
K07657 two-component system, OmpR family, phosphate regulon response –1.322 –0.348 –165.2 1.367
K07738 transcriptional repressor NrdR –0.678 0.115 170.4 0.688
K09014 Fe-S cluster assembly protein SufB 0.385 0.082 12.0 0.393
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