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Abstract 21 
 22 
Genome scan approaches promise to map genomic regions involved in adaptation of 23 

individuals to their environment. Outcomes of genome scans have been shown to 24 

depend on several factors including the underlying demography, the adaptive 25 

scenario, and the software or method used. We took advantage of a pedagogical 26 

experiment carried out during a summer school to explore the effect of an unexplored 27 

source of variability, which is the degree of user expertise. Participants were asked to 28 

analyze three simulated data challenges with methods presented during the summer 29 

school. In addition to submitting lists, participants evaluated a priori their level of 30 

expertise. We measured the quality of each genome scan analysis by computing a 31 

score that depends on false discovery rate and statistical power. In an easy and a 32 

difficult challenge, less advanced participants obtained similar scores compared to 33 

advanced ones, demonstrating that participants with little background in genome 34 

scan methods were able to learn how to use complex software after short 35 

introductory tutorials. However, in a challenge of intermediate difficulty, advanced 36 

participants obtained better scores. To explain the difference, we introduce a 37 

probabilistic model that shows that a larger variation in scores is expected for SNPs 38 

of intermediate difficulty of detection. We conclude that practitioners should develop 39 

their statistical and computational expertise to follow the development of complex 40 

methods. To encourage training, we release the website of the summer school where 41 

users can submit lists of candidate loci, which will be scored and compared to the 42 

scores obtained by previous users.  43 

  44 
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 45 
Introduction 46 
 47 

The possibility to obtain dense genomic markers at reasonable cost has served the 48 

ambition to map genomic regions involved in biological adaptation (Schoville et al. 49 

2012, Savolainen et al. 2013, Haasl and Payseur 2016). Various statistical methods 50 

and software have been developed to fulfill this ambition (Rellstab et al. 2015, 51 

François et al. 2016). The performances of these methods have been evaluated and 52 

compared under various evolutionary scenarios (Narum and Hess 2011, De Mita et 53 

al. 2013, De Villemereuil et al. 2014, Lotterhos and Whitlock 2014, Lotterhos and 54 

Whitlock 2015). Results obtained with genome scan approaches have been found to 55 

depend on the demographic history, on the genetic architecture of adaptation, on 56 

sampling design, on statistical software, with interactions between these factors. 57 

However, an unexplored source of variability in the application of genome-scan 58 

methods is the extent to which different users can achieve different outcomes. In this 59 

study, we report the results of a pedagogical experiment carried out at the “Software 60 

and Statistical Methods in Population Genomics“ 2015 summer school (SSMPG 61 

2015) to measure how the outcomes of genome scan methods vary among users 62 

having different prior levels of expertise.  63 

 64 

Material and Methods 65 

The objective of the summer school held in September 2015 was to teach a set of 66 

recently developed genome scan methods for the detection of genomic regions 67 

involved in local adaptation. The teaching process was based on active learning in 68 

which participants were asked to perform data analyses of simulated data using the 69 

methods presented (Freeman et al. 2013). Three distinct challenges were proposed 70 
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to the participants who had no a priori knowledge of the loci simulated under 71 

selection in each challenge. For each challenge, the participants could download 72 

simulated genomic data (SNPs) from a dedicated website. They were asked to 73 

submit lists of candidate SNPs using the methods presented during the teaching 74 

sessions. Lists built from combinations of methods were accepted.  75 

 76 

The data for the challenges were simulated before the summer school by one 77 

instructor, who was the only person who knew how the data were simulated. A total 78 

of 48 attendees and the 5 other instructors participated in analyzing the challenges.   79 

The datasets contained simulated genotypes for a fictive species. A vast majority of 80 

the simulated loci corresponded to selectively neutral alleles while a small fraction of 81 

them corresponded to adaptive alleles. The data were simulated by using the 82 

computer program NEMO (Guillaume and Rougement 2006). 83 

 84 

The demographic history of the fictive species corresponded to a two-refugia model 85 

in a mountain range with three peaks. The species was initially limited to two nunatak 86 

(mountain top refuges) during a glaciation period of 3000 generations (Supp Fig 1).  87 

At generation 3000, a third nunatak was colonized because of climate warming.  At 88 

generation 4000, all populations were colonized. For all three challenges, populations 89 

had the same demographic history of carrying capacity. However, migration rates or 90 

genetic architecture were different between challenges to create increasing difficulty 91 

for detecting selection (Supp Fig 2).  For all simulations, neutral loci and Quantitative 92 

Trait Loci (QTL) were simulated on a genetic map of 6 linkage groups, each 100 cM 93 

long, with a resolution of 1 cM. Simulations of the first challenge assume 12 unlinked 94 

QTLs of equal effects on the trait and an island model of migration. Simulations of the 95 
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second challenge had the same 12 QTLs of equal effects but migration declined with 96 

distance and there was less time until sampling. Simulations of the second and third 97 

challenge used the same values of migration rates. In the third challenge, there were 98 

36 QTLs with effects on the trait as well as some linkage among QTLs. The 99 

parameter files used to create the simulations are included as supplementary 100 

material (SI Files 1-3). 101 

 102 

Six statistical methods were presented to the participants during 45-minute teaching 103 

sessions. The statistical methods were divided into two categories: population 104 

differentiation (PD) methods and ecological association (EA) methods. PD methods 105 

use allele frequencies to compare single-locus estimates of a population 106 

differentiation statistic with their expectation from a null model. EA methods seek for 107 

genetic markers significantly correlated with one or several ecological or 108 

environmental variables (Rellstab et al. 2015). Methods based on PD methods 109 

included HapFlk (Bonhomme et al. 2010, Fariello et al. 2013), OutFLANK (Whitlock 110 

and Lotterhos 2015), pcadapt (Duforet-Frebourg et al. 2016), and SelEstim (Vitalis et 111 

al. 2014). EA methods included BayPass (Gautier 2015) and LFMM as implemented 112 

in the R package LEA (Frichot et al. 2013, Frichot and François 2015).   113 

 114 

For each challenge, participants submitted lists of candidate loci and each list was 115 

evaluated by a score.  We used an F-score that accounts for sensitivity (or power, 116 

POW) and false discovery rate (FDR) as follows (Fawcett 2004): 117 

� � 2
����1 	 �
��

��� 
 �1 	 �
��
. 

FDR was defined as the proportion of neutral loci in the list and power was defined 118 

as the proportion of adaptive loci contained in the list. F-scores range between 0 and 119 
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1. The F-score was equal to 0 for lists that contained no adaptive loci, and it was 120 

equal to 1 if and only if a list matched the list of truly adaptive loci perfectly. Using F-121 

scores, we were able to evaluate the performances of the participants when using a 122 

particular method, as well as the variability of their performances in each challenge. 123 

At SSMPG 2015, most participants evaluated the number of loci under selection in 124 

the simulated datasets quite accurately, although their candidate lists may not have 125 

contained true positives only. Under this condition, the F-score was mainly an 126 

evaluation of the power (POW) of the participant’s approach to detect truly adaptive 127 

loci. In this study, our intention is to understand the variability in F-scores of 128 

candidate lists submitted by users, rather than variability in the F-scores among the 129 

programs employed to detect adaptation. 130 

 131 

For all challenges, participants were able to share expertise and collaborate with 132 

each other by building teams. When submitting lists of candidate loci to the website, 133 

users (a team or a single individual) had to declare their level of expertise. Two levels 134 

of expertise were predefined as “advanced user” or “less-advanced user”. For each 135 

challenge, a different number of users submitted lists and declared themselves as 136 

“advanced users” or “less-advanced users”, respectively. In the first challenge, there 137 

were 7 advanced and 67 less-advanced submissions, in the second challenge, there 138 

were 10 advanced and 56 less-advanced submissions, and in the third challenge, 139 

there were 10 advanced and 36 less-advanced submissions.  140 

 141 

Results 142 

Difficulty levels of challenges 143 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 24, 2016. ; https://doi.org/10.1101/055046doi: bioRxiv preprint 

https://doi.org/10.1101/055046
http://creativecommons.org/licenses/by-nc-nd/4.0/


To provide evidence that the difficulty of correctly identifying adaptive loci increased 144 

for each challenge, we evaluated the distribution of scores for each challenge (Figure 145 

1). The median of the scores decreased with the challenge number. The median 146 

score (± standard deviation) was equal to 0.96 (± 0.16) for the first challenge, 0.40 (± 147 

0.24) for the second challenge, and 0.31 (± 0.24) for the third challenge. The first 148 

case was an easy challenge proposed to all attendees to test software installation 149 

and the online submission process. Participants focused their efforts on the 150 

challenges 2 and 3. In the following paragraphs, we report results obtained for the 151 

second and third challenges. 152 

 153 

Software usage 154 

For the second and third challenges, 124 candidate lists were submitted to the 155 

website and 111 submissions were retained after filtering for obvious errors or 156 

handling mistakes. The distribution of software usage was almost balanced (Figure 157 

2). Three programs (LEA, OutFLANK, pcadapt) represented 60 percent of all 158 

submissions. The small bias toward the use of those programs could be explained by 159 

the ease to install them as R packages. The balanced software usage distribution 160 

indicated that the users were able to run the 6 programs presented during the tutorial 161 

sessions. 162 

 163 

Variability of scores  164 

Candidate lists that used EA methods obtained higher scores than lists that used PD 165 

methods (Figure 3). For both PD and EA approaches and for challenges 2 and 3, the 166 

scores were highly variable (standard deviations were in the range 0.18-0.22). We 167 

also found high variability of scores when considering the distribution of scores 168 
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obtained with each program separately. For the second challenge, standard 169 

deviations ranged between 0.01 and 0.34 for the six methods. For 3 programs, the 170 

scores had standard deviations around 0.20 (+/- 0.02). For the third challenge, 171 

standard deviations were between 0 and 0.22 depending on the software used, and 3 172 

programs had a standard deviation in score around 0.20 (+/- 0.02). 173 

 174 

Next we analyzed the scores obtained by each category of users: advanced and 175 

less-advanced users. In challenge 2 (intermediate level difficulty), the average score 176 

of advanced users was significantly greater than less-advanced users (advanced 177 

mean 0.6, less-advanced mean 0.39, t-test P = 0.05). In challenge 3 (high level of 178 

difficulty), the average score of advanced users was not significantly different than 179 

less advanced users (advanced mean 0.35, less-advanced mean 0.30, t-test P = 180 

0.45). Similar results were obtained when we considered PD and EA methods 181 

separately, but none indicated significant differences between the two groups of 182 

users in challenge 3. 183 

 184 

Discussion 185 

The experiment led during the summer school SSMPG 2015 showed that 186 

participants were able to learn how to use complex software for genome scans after 187 

short introductory tutorials. In challenge 1 and 3, less advanced users obtained 188 

scores comparable to those of advanced users confirming that a rapid appropriation 189 

of software based on complex statistical methods was possible. To encourage 190 

submissions, organizers delivered (symbolic) prizes to the two top-ranked user teams 191 

for the second and third challenge. Users who won the challenge prizes did not focus 192 
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on a particular method, but used combinations of several methods, which is a 193 

promising direction to increase statistical power of existing methods. 194 

 195 

Why are the scores variable? 196 

In this discussion, we introduce a simple probabilistic model for interpreting the 197 

variability of F-scores. For each adaptive locus s, we assume that a user discovers 198 

locus s, i.e., includes locus s in her/his list of candidate loci, with probability ps. We 199 

call these quantities the detection probabilities, and we assume that the detection 200 

probabilities depend on the level of self-declared expertise of each user. In all 201 

challenges, we observed that the users generally evaluated the number of loci under 202 

selection rather accurately. Under this condition, the expected value and the variance 203 

of the F-scores can be investigated theoretically (results in BOX 1).   204 

 205 
From the theoretical results, we obtain that the variability of scores is directly related 206 

to the probabilities of correctly identifying each loci as truly adaptive. We find that the 207 

variability of F-scores is low when the challenges are either difficult or easy (ps are 208 

close to 0 or 1), and it is maximized for intermediate values of ps. For example, let us 209 

consider the results of challenge 2 for which the expected score was around .40 and 210 

the standard deviation around 0.17 (standard deviations averaged over the different 211 

software). We computed the proportion of times each adaptive locus was contained 212 

in the submitted lists, and found that the 12 truly adaptive loci spanned a range in 213 

their frequency of detection from ~0.1 to 1.0 (Figure 4). A more complex version of 214 

the probabilistic model where probabilities of detection can be different for advanced 215 

and non-advanced users (see BOX 1) reproduces the distribution of F-score for 216 

challenge 2. Assuming that probabilities of detection are reduced by 40% for non-217 

advanced users, that one fourth of the adaptive loci are easily detected by advanced 218 
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users (ps=0.9), one half have intermediate probabilities (ps=0.65), and one fourth are 219 

difficult to detect (ps=0.3), the probabilistic model generates a distribution of F-scores 220 

comparable to the one obtained for challenge 2 (average F-score of 0.41 and 221 

standard deviation of 0.16).  222 

 223 

The mathematical results in BOX 1 suggest that the variability of test performances is 224 

an inherent characteristic of the data. So, how do we interpret this variability? First, 225 

the mathematical results tell us that efforts asked to practitioners in order to reduce 226 

the variability of their scores might decrease the overall performance of tests. For 227 

example, one might recommend filtering out loci estimated to have small or medium 228 

effects on selective traits, and retain only those with strong evidence of selective 229 

signals. Such conservative practices would homogenize differences between 230 

advanced and less-advanced users and indeed decrease the variability of scores. 231 

However this strategy would also result in an increased number of false negative 232 

tests, and reduce the overall value of the expected score.  233 

 234 

The previous example illustrates that the expected F-score could be increased if 235 

users increase their expertise (and therefore the probability to detect loci of medium 236 

effects). Although increasing user expertise is a desirable point, the equations tell us 237 

that the variability of scores would not necessarily be decreased. For example, 238 

assume there are 12 SNPs of medium effect under selection and the probability of 239 

detection of each locus is of 50% for advanced users and of 5% for less advanced 240 

users.  A group with 5% advanced users and 95% less-advanced users would have 241 

an expected F-score of 0.07 and a standard deviation in F-scores of 0.12.  Now, 242 

assume that all users become advanced; although the expected F-score of the 243 
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advanced group is higher (0.5), the standard deviation in F-scores is also increased, 244 

as it is equal to 0.14. This example shows that reducing the variance of F-scores is 245 

not a desirable objective, because in some cases increasing user expertise can 246 

result in an increase in the variance of F-scores.   247 

 248 

The uneven difficulty of detecting adaptive loci, which explains the variability of 249 

scores, arises from methods, but also from the decisions made by users regarding 250 

model parameters, test calibration and the choice of a false discovery rate in 251 

statistical tests.  To illustrate how much user decisions can influence the variability of 252 

scores, we re-ran two programs, pcadapt and LFMM, on challenges 2 and 3 (using K 253 

= 3 in both programs). The runs of each program resulted in well-calibrated p-values 254 

for each data set (François et al. 2016). Then we built lists of candidate loci by using 255 

an FDR control algorithm (Benjamini & Hochberg 1995). The algorithm requires that 256 

an expected level of FDR is specified by the user, and uses the expected level of 257 

FDR to determine a list of candidates. To simulate users’ decisions, we sampled 258 

expected levels of FDR according to a beta distribution of mean 0.05 and standard 259 

deviation 0.047. The distribution of scores from the created lists had standard 260 

deviations of 0.14 and 0.09 for dataset 2 and dataset 3 respectively. These results 261 

provide evidence that decisions about how to use the program outputs can generate 262 

large variability of scores as observed in Figure 3. 263 

 264 

Conclusions 265 

The obvious lesson of the SSMPG15 experiment was to promote the usage of 266 

powerful statistical methods and simultaneously improve the expertise of their users. 267 

The first action is the goal of current methodological developments of genome scans 268 
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for selection, which should always be accompanied by clear and practical user 269 

guides. The second action requires that practitioners develop their own statistical and 270 

computer skills to follow the rapid development of complex methods. To provide a 271 

training opportunity, the website containing the data presented during SSMPG 2015 272 

as well as additional new datasets is now publicly available (https://ssmpg-273 

challenge.imag.fr/). On the website, users can submit lists of candidate loci that will 274 

be scored and compared to the scores obtained by previous users of the website.  275 

 276 

Box 1: Explaining the variability of F-scores.  277 

To explain our results and final recommendations, we introduce a simple probabilistic 278 

model for interpreting the variability of F-scores. For a given challenge, we assume 279 

that the unknown list of truly adaptive loci contains m elements. The values of m 280 

were equal to m = 12 in the first and second challenge and m = 36 in the third 281 

challenge. For each adaptive locus, s, we denote by ps the probability (power) that a 282 

user discovers locus s, i.e., includes this locus in her/his own list of candidate loci.  283 

At SSMPG15, the submitted user lists were approximately of length m, meaning that 284 

the users correctly evaluated the number of loci under selection in the simulated 285 

datasets. Under this hypothesis, we can compute the expected value of the F-score, 286 

E[F]. We obtain that E[F] is equal to (p1+…+pm)/m. Assuming that the tests are 287 

independent, the variance of F-scores, Var(F), is equal to (p1(1- p1)+…+pm(1- pm))/m2. 288 

From these results, we obtain that the variability of F-scores is directly related to the 289 

probabilities to correctly identify each loci as truly adaptive. The variability of F-scores 290 

is low when the challenges are difficult or easy (ps close to 0 or 1), and it is 291 

maximized for intermediate values of ps.  292 
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Accounting for the self-reported expertise of each user, we defined two categories of 293 

users: advanced ones, A, and less-advanced ones, A’. In this context, the 294 

statements about the expected value and the variance of F-scores can be refined as 295 

follows. Consider πA the proportion of advanced users, and write 1 − πA for less-296 

advanced users. For a truly adaptive locus s, there is a conditional probability, psA, for 297 

locus s to be correctly identified by an advanced user, and there is a lower probability, 298 

psA’, for s to be correctly identified by a less-advanced user. The expected value of F-299 

scores can be computed as follows 300 

E[F] = E[F|A]πA + E[F|A’ �](1 − πA), 301 

where the conditional expectation E[F|A] is equal to  (p1A+…+pmA)/m, and where the 302 

formula for E[F|A’] is similar. In other words, the conditional expectations are 303 

computed by averaging the conditional probabilities over all adaptive loci. The 304 

variance of F-scores decomposes as follows 305 

Var[F] = Var[F|A] πA + Var[F|A’](1 − πA) + (E[F|A] − E[F|A’])2
πA(1 − πA), 306 

where Var[F|A] is equal to (p1A(1- p1A)+…+pmA(1- pmA))/m2, and the formula for 307 

Var[F|A’] is similar. In the discussion, we use the formulae for the mean E[F] and the 308 

variance Var[F] to measure the effect of filtering strategies and of increasing user 309 

expertise on the distribution of F-scores.  310 

 311 
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Legends of Figures 395 

Figure 1: Distribution of F-scores for the three different data challenges. 396 

Figure 2: Distribution of software usage for the second and third challenges. 397 

Figure 3: Distribution of F-scores for EA and PD methods. The left and right 398 

panel display the results obtained for the second and third dataset, respectively. EA 399 

stands for ecological association and PD stands for population differentiation. 400 

Figure 4: Probabilities of detection of adaptive loci. For each locus, we counted 401 

the proportion of times it was contained in a submitted list. A) Second challenge: 402 

probabilities of detection were larger for advanced users than for less-advanced 403 

users. B) Third challenge: No obvious differences in detection probabilities when 404 

comparing advanced and non-advanced users. 405 

 406 
 407 
 408 
 409 
Legends of Supplementary Figures 410 
 411 
Supplementary Figure 1 412 
Schematic temporal evolution of the species range used to simulate data. 413 
Populations 1-3 and populations 15-17 correspond to the two initial glacial refugees. 414 
Populations 6,9, and 10 correspond to the summit that was possible to colonize after 415 
generation 3,000. The diameters of the circles increase with increasing effective 416 
population size that range from N=500 to N=2500. Colors on the landscape represent 417 
the phenotypic optimum for the trait, ranging from an optimum of -3 (dark green) to 3 418 
(white). 419 
 420 
Supplementary Figure 2 421 
Parameter settings used in the simulations of the three different challenges. 422 
 423 
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