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Abstract 

Genetic surfing describes the spatial spread and increase in frequency of variants that are 

not lost by genetic drift and serial migrant sampling during a range expansion. Genetic 

surfing does not modify the total number of derived alleles in a population or in an individual 

genome, but it leads to a loss of heterozygosity along the expansion axis, implying that 

derived alleles are more often in homozygous state. Genetic surfing also affects selected 

variants on the wave front, making them behave almost like neutral variants during the 

expansion. In agreement with theoretical predictions, human genomic data reveals an 

increase in recessive mutation load with distance from Africa, an expansion load likely to 

have developed during the expansion of human populations out of Africa. 
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Main text 

Since human populations have spread over the planet by a series of spatial range 

expansions, it is important to understand the consequences of these expansions on our 

genomic diversity. In a seminal paper, Cavalli-Sforza and colleagues [1] have shown that new 

mutations occurring on the edge of spatial expansion can increase in frequency and spread 

over a large portion of the newly colonized territories, far from their place of origin where 

they can even disappear. This increase in frequency of rare variants was later coined allele 

surfing [2], but we shall use here the more generic term of genetic surfing. It applies not only 

to new mutations, but to any standing variants happening to be on or close to the wave 

front of a range expansion [3-5], or to alleles introgressing from other species [6,7]. The 

genetic consequences of range expansions for single neutral loci are fairly well understood, 

and they have been described in several reviews [see e.g. 3,8-11]. In the present review, we 

will thus focus more on the causes and effects of surfing at the genomic level rather than at 

the single locus level, and contrast the surfing of neutral and selected variants, as range 

expansions can also affect the latter [12-15]. 

Mechanism and consequences of genetic surfing 

Genetic surfing results from the stochastic evolution of allele frequencies on expanding wave 

fronts where population densities are low and genetic drift is strong. It has been described in 

models of continuous habitat where population densities are monotonously declining 

towards the front of the expansion [4,5,14,16,17] (Fig. 1A), and in models with discrete 

habitats where the expansion proceeds by series of serial founder effects [18-23] (Fig. 1B). 

Note that from a modelling perspective, genetic surfing is conceptually similar to the 

hitchhiking of neutral (or deleterious) alleles with beneficial variants that sweep through a 

spatially structured population [24,25]. Due to the sampling of individuals colonizing new 

territories and high rates of genetic drift on the front, some derived alleles are lost at some 

loci, and some alleles are increasing in frequencies at others. It is this increase in frequency 

over time and space at those loci where derived alleles are not lost that has been called 

genetic surfing. It is difficult to define genetic surfing more precisely than this propagation of 

alleles conditional on non-loss [19], as some alleles can spread over areas of variable size 

and reach variable frequencies [2]. In extreme cases, derived alleles can fix on the wave 

front and surf over very large distances, leading to sectors of no or very low diversity in two 
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dimensional expansions [4,5] (Fig. 1C). Range expansions thus globally lead to a decrease of 

genetic diversity along the expansion axis [26] due to the stochastic loss of variants. Genetic 

surfing is favored by low effective sizes on the front, low migration rate from the back of the 

wave, and high levels of growth on the wave front [2,19,27], but Allee effects and long 

distance dispersal can limit or prevent surfing and preserve diversity [28-34].  
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Figure 1. Allele frequency changes due to genetic surfing. A: During a range expansion in a 
continuous one dimensional habitat, a new mutation appearing on the wave front (orange) 
can increase in frequency and surf on the wave of advance, reaching high frequencies in 
newly occupied territories. B: Discrete serial founder model of range expansion. A given 
number of founders are sampled from the leading deme to colonize an empty deme on the 
right. These founders then reproduce, and a new set of founders is selected to colonize the 
next deme. Note that in both models A and B, a new mutation appearing in the core of the 
range (black) has a much lower probability to increase in frequency than a new mutation in 
the front (orange), because individuals in the core have less descendants than those on the 
front. C: Two-dimensional expansions from top to bottom, starting from a well-mixed 
population. Without migration between colonized areas (left pane), the expansion leads to 
the (local) fixation of a random neutral allele by surfing and thus to the creation of sectors of 
low diversity. The sectors are delineated by a dashed line whose shade of grey indicates the 
intensity of the differentiation between sectors. With lateral migrations between colonized 
areas, the sectors do not emerge as clearly, and a transitory gradient of diversity 
perpendicular to the expansion axis can establish (bottom row).  

 

Surfing of standing vs. new mutations 

At neutral loci, the overall frequency of derived alleles in the genome that are already 

present at the onset of a range expansion (standing variants) should not change under the 

sole effect of drift, founder effects, or bottlenecks because the loss of derived alleles at 

some loci is compensated by the increase in frequency of derived alleles at other loci. 

Individuals on the front of an expansion should therefore have a smaller number of 

polymorphic sites than individuals from the core, but they should be more often 

homozygote for derived alleles. Overall, they should thus have similar numbers of derived 

alleles in their genome than individuals in the core (Fig. 2). Front individuals should also have 

higher frequencies of derived alleles at sites shared with core individuals, a property that has 

been exploited to polarize the direction of range expansions and to locate their geographic 

origin [35]. Individuals have a higher chance to transmit their genes to later generations if 

they are present on a wave front, because they have a higher reproductive success than 

individuals from the core [36]. It may therefore appear as if genetic surfing is a non-neutral 

process because any given allele that finds itself on the wave front experiences an 

immediate increase in absolute frequency, due to the higher growth rate on the expansion 

front than in the core. However, this apparent increase in absolute fitness is only visible if we 

condition mutations to occur in founding individuals, and vanishes if we take into account 
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that many mutations at the wave front are not sampled during later founder events (Figs. 1A 

and B, see also s = 0 in Fig. 3).  

 

Figure 2. Illustration of the type of genomic diversity expected in core and front individuals 
after surfing under scenarios represented in Fig. 1C. Vertical arrows represent the direction 
of the expansion, whereas dashed horizontal arrows in the right pane represent lateral gene 
flow between neighboring demes. We show here the putative genomic diversity of diploid 
individuals genotyped at 30 loci either sampled from the core (top green circle) or from the 
front (bottom green circles). Derived alleles are denoted as orange squares. The expected 
total number of derived alleles is the same in all individuals, but due to surfing, front 
individuals have less sites with derived alleles, and thus more loci with homozygous derived 
alleles than typical core individuals. Derived allele frequencies at sites shared between front 
and core populations are therefore larger in front than in core populations [19]. In presence 
of migrations between sectors (right pane), the number of polymorphic sites on the front is 
higher than without lateral gene flow, and heterozygosity is restored more rapidly. 

 

Gradients of diversity due to surfing 

The fact that genetic diversity should decrease by allele loss almost linearly with distance 

from the origin of an expansion [18,20] has been used to identify the origin of human 

expansions out of Africa. Early studies of microsatellite diversity have revealed an almost 

perfect linear decrease of heterozygosity with distance from Ethiopia [21,37], which has 

been confirmed with genomic data [e.g.38]. Interestingly, human range expansions are also 
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associated with gradients of linkage disequilibrium [39,40], recombinational diversity [41], 

length of runs of homozygosity (ROHs) [42], allele frequencies [35,43], as well as a right shift 

or a flattening of the site frequency spectrum [38,44]. Given these multiple evidence for the 

creation of gradients of diversity along expansion axes, one would expect that the largest 

extent of differentiation should be between the source and the edge of an expansion. 

However, PCA analyses of simulated data reveal that the main axis of differentiation after an 

expansion runs perpendicular to the expansion axis [45], which is explained by the 

differentiation existing between surfing sectors along the expansion axis (see Fig. 1C). 

Consequently, the classical PC analyses of human European diversity showing gradients of 

differentiation from the Near-East to North Western Europe [46] are unlikely to be the 

signature of a Neolithic demic diffusion [45], but could rather reflect re-expansions (e.g. 

post-LGM) from different refuge areas in Southern Europe [47]. 

Surfing or adaptive evolution? 

A striking feature of genome scans for positive selection in humans is that they reveal many 

candidate SNPs that have very similar geographic distributions, with high contrasts observed 

between continental groups [48,49], and where Africa and America show the largest number 

of loci with extreme frequency differences [50]. Simulations have shown that such large 

continental differences could simply arise from surfing of neutral variants during the out of 

Africa expansion [51]. Therefore, previous claims of signals of adaptation based mainly on 

the spatial distribution of allele frequencies [e.g. 52,53] should probably be taken with great 

caution or revised [54], and could partly explain some lack of consistency between the 

outcome of various genome scans [55]. It has also been recently recognized that there was 

an overall lack of evidence for strong signals of selective sweeps in the human genome [56-

58], with only a handful of regions with fixed differences between continents [59]. It is 

difficult to understand why positive selection, if active, has not led to more fixations of 

beneficial mutations in human populations even under polygenic selection models [60]. A 

low number of fixed difference due to genetic surfing between the source of human 

expansions (Africa) and the edges of expansions is equally puzzling, as one would expect that 

surfing mutations should quickly fix on wave fronts (Fig. 3) [1,2,19]. However, mutations can 

surf in large populations without necessarily being fixed on the front [2], and even if 

different mutations fix in different sectors, migration between parallel sectors can lead to 
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intermediate final frequencies in newly colonized areas (Fig. 1C). In addition, some long 

distance dispersal events between demes in the wake of the expansion might have 

reshuffled diversity and limited the fixation of derived alleles in non-African populations 

[61]. 

 

 

Figure 3. Probability of fixation on the wave front for a new mutation occurring at the wave 
front during a one dimensional range expansion (serial founder model) for deleterious, 
neutral and advantageous variants (figure based on equation (1) in ref [15]). Mutations are 
assumed to occur in a fully colonized deme just before the sampling of founders such that 
they have an initial frequency of 1/2N (Fig 1B). The dashed line represents the probability of 
fixation in a single stationary deme, which is smaller for deleterious mutations and larger for 
beneficial ones.  

 

Surfing of deleterious mutations leads to an expansion load 

Genetic surfing is not restricted to neutral variants. The probability that a mutation 

establishes itself on the expansion front and spreads with the expanding wave is largely 

driven by genetic drift, which makes the rate at which beneficial, neutral or deleterious 

mutations are established at the expansion front more similar to each other relative to what 

is expected in the core [15] (Fig. 3). Mildly positively or negatively selected variants 

therefore mostly behave like neutral variants on the front of the expansion. Deleterious 

variants can therefore temporarily surf on the expansion wave due to the high growth rate 
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prevailing in front populations [12]. In asexual (non-recombining) organisms with high 

mutation rates, genetic surfing can even lead to an accumulation of deleterious mutations at 

the expansion front [14]. Interestingly, and perhaps somewhat conter-intuitively, beneficial 

mutations that occur on the front of an expansion have a higher probability to become 

permanently established in the whole population (even if they fail to surf) as compared to 

mutations that occur in the core [13]. Indeed, beneficial mutations occuring on the wave 

front quickly increase in absolute frequency due to high growth rates in these marginal 

populations (Fig. 1A, 1B), which lowers the probaility that they are initially lost. This effect is 

similar to what has been observed in demographically growing well-mixed populations [62]. 

The spread of beneficial mutations in the core has, however, little impact on the evolution at 

the expansion front because beneficial mutations sweep through the core at a speed [25] 

that is much lower than that of the expanding wave [14,63,64]. Since beneficial mutations 

that establish on the front spread much faster than beneficial mutations in the core [14,65], 

they provide opportunity for rapid adaptation during early stages of an expansion [66]. In 

the long run, however, genetic drift at the expansion front dominates and, since beneficial 

mutations occur at a lower rate than deleterious ones [67], the overall fitness of the 

populations should decrease along the expansion axis under a broad range of conditions 

[15]. The resulting elevated mutational burden of expanding species has been coined 

expansion load [15]. Expansion load generally builds up fastest under conditions that favor 

genetic surfing, such as small local carrying capacities, high growth rates, and low migration 

rates [2], which contributes to making the probabilities with which deleterious and beneficial 

alleles fix on the wave front relatively similar to that of neutral alleles (Fig. 3). 

In the absence of epistasis or dominance, only new mutations contribute to expansion load 

[63], and the resulting decrease in fitness is relatively slow. If some deleterious mutations 

are (partially) recessive [63], the increase in homozygosity of standing deleterious variants 

along the expansion axis leads to a very rapid increase of the (recessive) mutation load [63]. 

Another interesting consequence of recessivity is the establishment of heterozygosity-fitness 

correlations during 2D expansions: migration between sectors in which different mutations 

have established (see Fig. 1C and Fig 2) creates a ridge of high fitness “hybrids” in which the 

effects of deleterious mutations are partially masked [63]. Whereas this effect has been 

oberved in plants after a range expansion [68], it remains to be shown in humans.  
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Even though expansion load is a transient pheomenon, simulations show that the increased 

mutation load can persist for hundreds to thousands of generations after the expansion has 

ended [15]. The rate of purging of deleterious mutations depends on factors such as 

selection coefficients, the degree of dominance and the amount of gene flow between 

populations [15,63,69-71].  

 

 

Figure 4. Recessive mutation load as a function of the least-cost distance from Addis-Ababa 
(Ethiopia). Negative distances denote sub-Saharan-African populations. Recessive mutation 
load is measured as the number of sites homozygote for derived mutation at sites that have 
a GERP rejected substitution score [72] larger than 4, indicative of relatively strong 
evolutionary constraints. Reported populations are from [44], complemented by samples 
from [73,74], all individuals examined for the same 44Mb of exomic sequences without 
missing data (see [44] for details).  

 

Evidence for expansion load in human populations 

Evidence for expansion load is generally difficult to get as fitness is difficult to measure 

directly. Ideally, one would need to evidence the spread over a wide area of attested 

deleterious mutations in populations with a history of range expansions. In Europe, a couple 
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of disease mutations are increasing in frequencies along a South-East to North-West 

gradient (e.g. HFE-C282Y associated to hematochromatosis [75] or F508 associated to 

cystic fibrosis [76]), and a CPT1A mutation associated with hypoglycemia and high infant 

mortality has been shown recently to have greatly increased in frequency in arctic 

populations [77]. Interestingly, in the three cases mentioned above, the spread of these 

deleterious variants over long distances has been explained by past episodes of positive 

selection, but genetic surfing of only deleterious variants seems an equally reasonable and 

more parsimious hypothesis. 

Another way to approximate mutation load from sequence data is to estimate the degree of 

evolutionary conservation of mutations at particular positions in the genome (see e.g., ref 

[78]). Using such an approach, a clear gradient of homozygosity at predicted deleterious 

sites has been observed along the human expansion axis out of Africa [44] (Fig. 4), in keeping 

with predictions [63]. Furthermore, this cline becomes weaker with increasing 

deleteriousness of mutations [44], suggesting that the evolution of mildly and moderatly 

deleterious mutations are dominated by strong genetic drift during the expansion, whereas 

selection still dominates the evolution of strongly deleterious muations, as predicted by 

theory [15].  

The impact of demographic history on mutation load is still a hotly debated topic [44,71,78-

83]. When focusing on the number of predicted deleterious alleles per individuals, which is 

equivalent to considering that load is due to co-dominant mutations, no differences were 

found between Europeans, Americans of European ancestry or African-Americans 

[80,81,84]. However, the relative proportion of alleles predicted deleterious is significantly 

higher in Europeans as compared to Sub-saharan Africans [15,79]. These apparently 

contradictory results can be understood from Fig. 2, by realizing that while each individual 

carries roughly similar numbers of derived alleles before and after surfing, these alleles are 

distributed over fewer loci in populations having gone through a range expansion (e.g. 

Europeans) as compared to core populations (e.g. Sub-Saharan Africans), and therefore 

reach higher frequencies in front populations [19]. Deleterious alleles that are kept at very 

low frequency in core populations and that have increased in frequency after surfing have a 

higher probability of being detected in a sample of individuals on the front, contributing to 
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the observation of a larger proportion of non-synonymous and potentially deleterious alleles 

in non-African populations [15,38,79].  

The total genetic load of an individual and its fitness will also highly depend on the 

distribution of dominance coefficients in the genome [44,71]. If all mutations were co-

dominant, one would expect no or little differences in genetic load between populations, 

because mildly deleterious mutations have mainly evolved as neutral mutations during 

theand expansion (or during a bottleneck [81]). However, the mutation load should be 

clearly larger in front populations if some of the surfing deleterious mutations are partially 

recessive. The extent of this load excess in front populations is difficult to assess since 

recessivity appears to be correlated with deleteriousness [85]. The most deleterious 

variants, which should be the most recessive ones, should not be influenced much by surfing 

since their frequencies are maintained consistantly low in all populations by selection [44]. 

The total genomic frequency of very midly deleterious variants and their effect on load 

should also not vary due to surfing as they should be almost co-dominant. It thus likely that 

difference in load between populations should be mainly due to partially recessive variants 

of intermediate effects (e.g. [71]). These predictions offer interesting areas of research in 

pheno-genomic diversity, showing the need of better methods to asess the phenotpic effect 

of mutationsmutation in humans, and to distinguish between the effects of somatic and 

germ-line mutations [86]. 
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