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Abstract

Microbial growth curves are used to study differential effects of media, genetics, and stress on micro-

bial population growth. Consequently, many modeling frameworks exist to capture microbial population

growth measurements. However, current models are designed to quantify growth under conditions that

produce a specific functional form. Extensions to these models are required to quantify the effects of per-

turbations, which often exhibit non-standard growth curves. Rather than fix expected functional forms

of different experimental perturbations, we developed a general and robust model of microbial population

growth curves using Gaussian process (GP) regression. GP regression modeling of high resolution time-

series growth data enables accurate quantification of population growth, and can be extended to identify

differential growth phenotypes due to genetic background or stress. Additionally, confounding effects

due to experimental variation can be controlled explicitly. Our framework substantially outperforms

commonly used microbial population growth models, particularly when modeling growth data from envi-

ronmentally stressed populations. We apply the GP growth model to a collection of growth measurements

for seven transcription factor knockout strains of a model archaeal organism, Halobacterium salinarum.

Using these models fitted to growth data, two statistical tests were developed to quantify the differential

effects of genetic and environmental perturbations on microbial growth. These statistical tests accurately

identify known regulators and implicate novel regulators of growth under standard and stress conditions.

Furthermore, the fitted GP regression models are interpretable, recapitulating biological knowledge of

growth response while providing new insights into the relevant parameters affecting microbial population

growth.

Introduction 1

Quantification and prediction of microbial growth is a central challenge relevant to industrial production 2

of value-added chemicals (Lewis et al. 2012), food safety (McKellar and Lu 2003; Ross and Dalgaard 3

2003), and microbe-environment interactions (Nichols et al. 2011). Parametric models of microbial pop- 4

ulation growth assume a sigmoid growth function with three characteristic growth phases, captured by 5

three parameters: lag phase time (lag phase; λ), during which no growth occurs; maximum growth rate 6

during logarithmic growth (log phase; µmax), a phase of rapid growth; and asymptotic carrying capacity 7

(stationary phase; A), reached when nutrients are exhausted in stationary phase (Baranyi and Roberts 8
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1995; Egli 2009; Monod 1949; Zwietering et al. 1990). Another useful quantification of growth is the area 9

under the growth curve (AUC), also known as growth potential (Todor et al. 2014). 10

Microbial populations frequently encounter shifts away from optimum growth conditions in their 11

environment that require adaptation in order to survive. These shifts, generally referred to as stress 12

conditions, include reactive oxygen species (ROS) accumulation, temperature variation, and osmotic 13

fluctuation. These conditions chemically damage or denature macromolecules such as proteins, nucleic 14

acids, and lipids, compromising cellular viability (Imlay 2003; Kühn and Klipp 2012; Verghese et al. 2012). 15

During stress response, the cell state changes from a growth-centric to a survival-centric configuration in 16

which the transcriptional and translational programs are redirected to regulate alternative pathways that 17

repair damage and restore homeostasis (Lu et al. 2009). When stress is severe, or the regulatory program 18

is impaired by mutation, the repair program becomes overwhelmed. In this case, the population growth 19

rate observed by optical density decreases, plateaus, and may even become negative upon cell lysis. 20

Existing computational methods used to model and predict microbial population growth from time 21

series measurements are parametric functions known as primary or secondary models (McKellar and Lu 22

2003; Peleg and Corradini 2011; Ross and Dalgaard 2003). Primary models, used to fit data from a 23

population growing on a single main nutrient source (e.g., sugar carbon source), assume the sigmoid 24

growth function. These modeling assumptions lead to inaccurate fits for growth data from cultures 25

exposed to stress conditions that do not have a characteristic sigmoid growth function (Palacios et al. 26

2014; Sekse et al. 2012). Secondary models were developed to incorporate additional parameters affecting 27

growth, allowing the model to capture stress effects (Peleg and Corradini 2011). The significance of the 28

differences across stress effects under varying growth conditions can be quantified through statistical 29

hypothesis testing (Gommers et al. 1988). However, incorporating these parameters appropriately into 30

these parametric models requires a priori knowledge and additional data for how stress perturbations 31

affect growth. For example, a common assumption is that population growth rate follows an Arrhenius 32

equation in response to temperature changes (Barsa et al. 2012). As an alternative to parameteric models 33

of population growth, non-parametric models have been developed to address microbial growth modeling 34

(Cao et al. 2010; di Sciascio and Amicarelli 2008; Palacios et al. 2014); however, many of these models still 35

depend upon parametric primary models in the first stage, an array of parameters based on knowledge 36

of the underlying biological response to growth perturbations, or complicated fitting procedures of the 37

non-parametric model (e.g., optimization of neural net weights). Current models of microbial growth are 38
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therefore limited in their general application to novel microbial growth phenotypes. 39

Across all three domains of life, general stress response mechanisms functioning at the level of gene 40

transcription have been identified that regulate cellular protection and repair (Bonneau et al. 2007; Fiebig 41

et al. 2015; Gasch et al. 2000). These global regulatory programs are induced in response to multiple 42

conditions, and protect cells exposed to one type of stress against others (Jenkins et al. 1988; Lu et al. 43

2009). Conversely, cells also induce stress-specific responses to aid survival under a particular condition 44

(Stephen et al. 1995; Zuber 2009). The hypersaline-adapted, or halophilic, archaeon Halobacterium 45

salinarum is a model organism uniquely suited to study microbial stress response because it survives 46

extremely high levels of UV, ROS, heat shock, and other stressors in its desert salt lake niche (Ng et al. 47

2000; Oren 2008). As such, H. salinarum has been extensively studied as a model system for transcription 48

regulatory network architecture and function in response to stress (Schmid et al. 2011, 2009; Todor et al. 49

2013; Tonner et al. 2015; Todor et al. 2014). A global gene regulatory network computationally inferred 50

from transcriptomic data predicts that over 70 transcription factors (TFs) may control genes whose 51

products adjust physiology and repair damage incurred by stress (Bonneau et al. 2004; Brooks et al. 52

2014). Follow-up studies that empirically test network predictions have characterized the full set of TF 53

target genes (the “regulon”) and physiological roles of transcription factors that control the response to 54

conditions including oxidative stress through RosR and AsnC (Plaisier et al. 2014; Sharma et al. 2012; 55

Tonner et al. 2015), nutrient availability through TrmB (Schmid et al. 2009; Todor et al. 2014, 2013), 56

metals through SirR (Kaur et al. 2006), iron homeostasis through Idr1 and Idr2 (Schmid et al. 2011), 57

and copper response through VNG1179C (Plaisier et al. 2014). Despite this knowledge, the cellular 58

regulators of growth that respond to environmental perturbation remain understudied in H. salinarum 59

and other Archaea. For example, the phenotypic impact of mutations to known transcription factors under 60

alternate stress conditions—and the downstream effect of those mutations on the function of the global 61

regulatory network—remain unclear for H. salinarum (Brooks et al. 2014) and many other understudied 62

microorganisms (Yoon et al. 2011; Yoon et al. 2013). 63

Here, we develop a general Gaussian process (GP) regression model of microbial growth to overcome 64

the limitations of parametric growth modeling and to test for differential growth phenotypes of TF 65

mutants under standard and stress conditions. Gaussian processes (GPs) are distributions on arbitrary 66

functions, where any finite number of observations of the function are distributed as a multivariate 67

normal (MVN) in a computationally tractable framework (Rasmussen and Williams 2006). Because GP 68
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regression fits an arbitrary functional form, it is able to model growth curves that deviate from the 69

primary sigmoid form. We establish the ability of GP regression to accurately model growth curves 70

from H. salinarum under standard and stress treatments across genetic backgrounds. We compare our 71

model with several primary parametric models such as Gompertz, Schnute, and Richards, among others 72

(Zwietering et al. 1990), for growth curve fitting. Subsequent analysis of the GP model output recovers 73

biologically interpretable metrics of microbial growth, including growth rate and carrying capacity. We 74

developed a statistical test of differential growth response between two experiments via data likelihoods 75

computed from the fitted GP regression model. We call this model and associated testing framework 76

Bayesian Growth Rate Effect Analysis and Test (B-GREAT). B-GREAT recapitulates known phenotypes 77

of knockout mutants in H. salinarum and identifies novel phenotypes, including implicating a metal- 78

responsive transcription factor in oxidative stress resistance. 79

Results 80

We developed a Gaussian process (GP) regression model to capture population growth data from seven 81

H. salinarum transcription factor (TF) mutants (Table 1). The growth of these strains was compared 82

to the ∆ura3 parent strain (from which these mutants were derived) under optimum nutrient conditions 83

(referred to as “standard conditions”) and chronic oxidative stress (see Materials and Methods). Optical 84

density (OD), which quantifies cell density, was measured using a high throughput plate reader (Fig. 1, 85

Supplemental Fig. S1). Population growth phenotypes were measured in a minimum of twelve samples 86

per mutant per condition, sampled every thirty minutes over forty-eight hours for a total of 12,720 data 87

points (Supplemental Table S1). Chronic oxidative stress was induced by the addition of 0.333 mM 88

paraquat (PQ) when the culture was inoculated. The growth rate of these TF strains under standard 89

conditions during log phase has been tested previously (Kaur et al. 2006; Plaisier et al. 2014; Schmid 90

et al. 2009; Schmid et al. 2011; Sharma et al. 2012), but only the growth rates of TF knockout mutants 91

∆asnC, ∆trmB, and ∆rosR have been tested under PQ conditions (Plaisier et al. 2014; Sharma et al. 92

2012; Table 1). These strains were chosen because the prior studies allow us to validate our results on 93

these previously characterized strains and to discover novel phenotypes. 94
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Strain name Genotype Phenotype, condition Pathways regulated Reference

∆ura3 Parent strain Control Control (Peck et al. 2000)

∆trmB ∆ura3 ∆trmB Slow growth, standard
Same as control, PQ

Metabolism (Schmid et al. 2009;
Todor et al. 2014;
Todor et al. 2013)

∆rosR ∆ura3 ∆rosR Slow growth, standard
Slow growth, PQ

Oxidative stress repair (Sharma et al. 2012;
Tonner et al. 2015)

∆idr1 ∆ura3 ∆idr1 Same as control, standard Iron homeostasis (Schmid et al. 2011)

∆idr2 ∆ura3 ∆idr2 Same as control, standard Iron homeostasis (Schmid et al. 2011)

∆sirR ∆ura3 ∆sirR Same as control, standard Manganese uptake (Kaur et al. 2006)

∆V NG1179C ∆ura3 ∆V NG1179C Same as control, standard Copper uptake (Kaur et al. 2006)

∆asnC ∆ura3 ∆asnC Slow growth, standard
Slow growth, PQ

Oxidative stress repair (Plaisier et al. 2014)

Table 1. Strains used in this study and their previously known phenotypes and functions.
All phenotypes were previously quantified only in log phase.

Gaussian process regression model of microbial population growth 95

In order to model the diverse phenotypes observed under both standard and oxidative stress conditions, 96

a probabilistic model of population growth was constructed using Gaussian process (GP) regression 97

(Fig. 1, Supplemental Fig. S1). GP regression is a Bayesian non-parametric model that describes the 98

distribution over an infinite dimensional function f(x), of which any finite number of observations have 99

a MVN distribution (see Materials and Methods) (Rasmussen and Williams 2006). The GP model is 100

described by its prior mean and covariance functions (µ(x) and κ(x, x′), respectively). In this study, µ(x) 101

was set to 0, as is standard (Rasmussen and Williams 2006). The radial basis function (RBF), κ(x, x′), 102

defining the covariance matrix of this MVN distribution, was used as the kernel function. The length scale 103

parameter, `, of the RBF kernel specifies the rate of the exponential decay on the covariance between 104

two points x and x′ (see Materials and Methods). Through the covariance function, GP regression places 105

a prior on all arbitrary functions mapping time to optical density, with functions that have a covariance 106

reflecting the kernel parameters having a high posterior probability. In addition to the covariance defined 107

by the kernel function, independent and identically distributed (IID) Gaussian noise with mean 0 and 108

variance σ2 is added to each observation y = f(x) +N (0, σ2). Estimating parameters of a GP regression 109

model on microbial growth data was performed by maximizing the data likelihood with respect to the 110

kernel function parameters (Rasmussen and Williams 2006). We refer to our model (and associated tests, 111
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described below) as Bayesian Growth Rate Effect Analysis and Test (B-GREAT). 112

GP regression outperforms primary growth models 113

B-GREAT was used to fit time series growth data from H. salinarum ∆ura3 parent strain popula- 114

tions under both standard and oxidative stress conditions. In order to benchmark GP regression as a 115

model of microbial population growth, GP prediction error was compared to those from four primary 116

growth models: Gompertz (Zwietering et al. 1990), population logistic regression (Zwietering et al. 1990), 117

Schnute (Schnute 1981), and Richards (Richards 1959) (see Materials and Methods). All of the primary 118

growth models depend on the parameters λ and µmax, corresponding to lag time and maximum growth 119

rate, respectively (Baranyi and Roberts 1995; Zwietering et al. 1990), of a sigmoidal growth curve. Gom- 120

pertz, logistic regression, and Richards models also include a parameter for carrying capacity (A). Both 121

the Richards and Schnute models include other parameters that modify the sigmoidal shape of the growth 122

curve but do not have direct biological interpretations — v for the Richards model, a and b for the Schnute 123

model (Zwietering et al. 1990). 124

In order to test model accuracy of GP regression against primary growth models, data were split 125

into training and testing sets comprising 80% and 20% of the data, respectively. Cross validation error, 126

calculated using mean squared error (MSE) between testing data and model prediction based on training 127

data, was calculated for each model under both standard conditions and oxidative stress. As expected, 128

the fit to the data from all models was qualitatively (Fig. 1A) and quantitatively (according to MSE, 129

Fig. 1B) accurate under standard conditions. However, chronic oxidative stress modified the growth 130

trajectory of H. salinarum populations such that model predictions deviated from the data (Fig. 1C) and 131

MSE increased by a factor of ten (Fig. 1D) across related models. GP regression outperformed primary 132

models in terms of model fit under both standard and stress conditions (Fig. 1 B and D). GP regression 133

Model Standard growth Oxidative stress
Gompertz 2.33× 10−7 4.51× 10−77

Logistic 3.73× 10−30 2.53× 10−7

Richards 1.10× 10−8 1.12× 10−67

Schnute 2.22× 10−5 5.98× 10−81

Table 2. Comparison of GP regression mean squared error (MSE) under standard growth (center
column) and oxidative stress (right column) to four primary growth models. Values indicate p-value
score of a one-sided t-test between MSE of GP regression and each model for each condition.
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MSE under both conditions was significantly lower than MSE for each of the primary models considered, 134

as determined by a one-sided t-test (Table 2). Unlike primary models, GP regression maintained a similar 135

MSE across standard and stress conditions. Primary models performed poorly under stress conditions, as 136

they are built under the assumption of sinusoidal growth curves. Because GP regression does not assume 137

any specific functional form, our GP models growth data from populations grown under standard and 138

stress conditions with equal accuracy. 139

GP regression recovers parameters of primary growth models. 140

To enable a biological interpretation of GP growth curves and a quantitative comparison with primary 141

parametric model output, growth parameters of primary models, A, µmax, and AUC, were extracted 142

from our fitted GP models (see Materials and Methods). GP estimates of these parameters under stan- 143

dard growth conditions for the ∆ura3 parent strain were strongly correlated with those from Gompertz 144

regression (0.903 for µmax and 0.947 for A, p ≤ 10−5 in both cases as determined by Pearson correlation; 145

Fig. 2A and B, respectively). Estimates of A from Gompertz regression were slightly higher than those 146

from GP regression for a subset of samples (Fig. 2B, Supplemental Fig. S2). 147

GP regression was then used to estimate A, µmax and AUC for the ∆ura3 parent strain, and these 148

estimates were compared with parameter estimates for seven TF deletion strains under both standard 149

and oxidative stress conditions. For each strain, we estimated these three growth parameters from the 150

posterior probability of the fitted GP model (Fig. 2B). This analysis was not performed with primary 151

growth models because GP provides more accurate fits under stress conditions (Fig. 1). According to 152

these parameters, some mutant strains differed from the ∆ura3 parent under standard conditions, while 153

others differed under oxidative stress. For example, µmax for the ∆trmB strain, a known nutrient 154

responsive regulator, was lower than µmax for the ∆ura3 strain under standard conditions as expected 155

from previous studies (Schmid et al. 2009; Todor et al. 2013; Todor et al. 2014). Estimates of A and 156

AUC for the ∆rosR strain were lower than A and AUC for the other strains. These results demonstrate 157

that growth parameters estimated from GP models are biologically relevant and comparable to those 158

estimated using primary models under standard conditions. GP has the added benefit of estimating 159

these parameters accurately for stress conditions, although the biological interpretation may differ from 160

parameters estimated for standard conditions. 161
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Oxidative stress

Standard growth

C

A

D

BA

C

Figure 1. GP regression outperforms primary growth models and recovers parameters of
interest. (A) Comparison of GP regression and primary growth models (Gompertz, population
logistic, Schnute, Richards) on microbial growth data under standard conditions. (B) Logarithm of
mean squared error (MSE) for primary growth models compared to GP regression on microbial
population growth under standard conditions. Bars with an asterisk indicate a significant difference
between GP MSE and primary growth model MSE as determined by a one-sided t-test. (C)
Comparison of GP regression and primary growth models on microbial growth data under oxidative
stress. (D) Logarithm of MSE for primary growth models compared to GP regression on microbial
population growth under oxidative stress. Bars with asterisks as in (B).
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A B

C

Figure 2. Parameters determined by GP regression. (A) Correlation of parameter estimates of
µmax and (B) carrying capacity (parameter A) between Gompertz and GP regression. Dotted line
represents the line y = x. (C) Posterior distributions of growth parameters µmax, carrying capacity, and
AUC are shown for each strain under standard conditions (blue) and oxidative stress (green). Points
represent posterior mean function, and error bars indicate 95% credible regions.
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B-GREAT identifies known and novel differential growth phenotypes under 162

standard conditions 163

Given the superior performance of GP regression to model growth curves, we next sought to identify 164

significant differential growth phenotypes of TF mutants versus the ∆ura3 parent strain under standard 165

conditions. We developed a statistical test using approximate Bayes factors (BFs) based on our GP re- 166

gression model. This test was motivated by the observation that, although the growth parameters (µmax, 167

A, AUC) estimated from GP regression are useful in qualitative comparisons of strain growth behavior, 168

the different parameters provide conflicting information in some cases. For example, consider the pa- 169

rameter estimates of ∆rosR, where µmax estimates were higher than those of the ∆ura3 parent, while 170

estimates of A show growth impairment compared to the ∆ura3 parent (Fig. 2C). As such, determining 171

whether differential growth is statistically significant can depend on which parameters are examined. 172

In contrast, our approximate BF test was designed to compare growth curves across specific covariates 173

in the GP regression modeling framework, to capture differences across the entire time series. Specifically, 174

the BF compares the data likelihood under two models, the null and alternative models. We compute 175

approximate BFs by considering point estimates of the GP regression parameters instead of integrating 176

over their uncertainty for computational efficiency. For a null model, we used f(time). For an alternative 177

model, we used OD(time, strain) = f(time, strain), which represents the function of the optical density 178

at a given time and for a specific strain, where a strain value of 0 or 1 indicates parent strain or mutant 179

strain, respectively. The covariate strain was added to the model by extending the RBF kernel of the 180

GP to an additional input dimension (Rasmussen and Williams 2006). In this experiment, the null 181

model assumes that the population growth under the condition of interest is the same between parent 182

and mutant strain, while the alternative model assumes that a given mutant population has a different 183

growth response phenotype than the parent strain. Typically, a BF greater than one indicates evidence 184

for the alternative hypothesis, indicating differential growth across the covariate (Kass and Raftery 1995). 185

In order to compute the statistical significance for our test for differential growth, we used permuta- 186

tions to calibrate the false discovery rate (FDR) of our BFs. To do this, we developed a permutation 187

framework to quantify the distribution of the test statistic under a null hypothesis. We performed cali- 188

bration via permutation in lieu of using a test statistic that has an approximate χ2 distribution for more 189

precise calibration at the cost of additional computation (Fusi and Listgarten 2016). Using an estimate 190
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A B

C

D

Figure 3. H. salinarum mutants with significant growth phenotypes under standard
conditions. (A) Population growth data and GP model fit of H. salinarum parent strain ∆ura3 (top)
and ∆trmB (bottom) under standard growth. Light grey curves represent growth samples of each
strain in different wells. Solid black lines and shaded grey region indicate mean and 95% credible region
of the GP model fit to the growth data, respectively. A single GP model was fit (Eq. 2) and separate
growth predictions made for ∆ura3 and ∆trmB (see Materials and Methods). (B) Bayes factors for
each mutant strain are shown as blue bars. Permuted BF scores are shown as black whisker plots;
whiskers represent 1st and 3rd quartiles. Strains with a BF score with FDR ≤ 0.2 are in red italics. (C)
The difference in growth level between ∆trmB and ∆ura3 using the prediction of growth from the GP
model. Solid line indicates mean difference and shaded region is the 95% credible region. Regions where
the 95% credible region does not include 0 indicate high probability that the growth between the two
strains is different at that time point. (D) Predicted difference between mutant and parent strain
population growth using posterior function distributions as in (C). Red and blue regions indicate a
> 95% probability that the mutant population growth is either higher or lower than the parent strain,
respectively. Strains with OD∆ 95% credible region not including 0 at any time point are in red italics.
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of the distribution of the test statistic under the null hypothesis, we quantified the FDR for a given test 191

statistic threshold (Mangravite* et al. 2013). Specifically, across growth data for both parent and mutant 192

strains, the label of strain background was randomly permuted for each time point. Values were permuted 193

so as to maintain the underlying distribution of strain labels present in the original data. 100 permu- 194

tations were computed for each BF test, and BF scores corresponding to FDR ≤ 20% were considered 195

significant. 196

BF scores calculated from GP model fits on growth curves for each mutant strain represent the overall 197

effect of the strain background on population growth (Fig. 3A, B). B-GREAT revealed that five of the 198

seven TF mutants had significant BFs under standard growth conditions, meaning that the mutant strain 199

showed differential growth compared with the parent strain (FDR ≤ 20%), including ∆asnC, ∆trmB, 200

∆rosR, ∆idr2, and ∆idr1 (Fig. 3B). 201

To gain further biological insight into the phenotypes of the five strains with differential growth, we 202

developed a second metric, OD∆, that quantifies the difference in parent and mutant strain population 203

growth at each time point of the time course (see Materials and Methods, Eq. 5; Benavoli and Mangili 204

2015). This difference is computed using the posterior estimates of parent and mutant strain growth of 205

the fitted GP. As we are interested in differences in the actual growth of strain populations, and not 206

differences arising from noise in growth measurements, OD∆ is computed using posterior estimates of the 207

underlying growth function without Gaussian noise. The posterior function estimates, and the difference 208

between these estimates, have a MVN distribution. Specifically, we computed the probability of the 209

mutant strain growth conditioning on the parent strain growth at each observation time point according 210

to the MVN distribution. We thresholded this probability at 95% to capture a growth difference between 211

parent and mutant strain at each time point. 212

As expected from previous work (Schmid et al. 2009), OD∆ indicated that ∆trmB grows more slowly 213

than the ∆ura3 parent strain throughout the time course (Fig. 3C). In contrast, ∆idr1 and ∆idr2 grow 214

more slowly than the parent strain during exponential phase, but reach higher cell densities during the 215

latter portion of the growth curve (Fig. 3D). ∆rosR exhibits the opposite growth pattern. The fifth 216

strain with a novel differential growth phenotype, ∆asnC, is impaired for growth throughout the time 217

course. Although the growth of ∆idr1, ∆idr2, ∆rosR, and ∆asnC strains has been studied during log 218

phase under standard growth conditions previously (Plaisier et al. 2014; Schmid et al. 2011; Sharma 219

et al. 2012), these represent novel stationary phase and stress phenotypes. Taken together, these results 220
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demonstrate that B-GREAT and the OD∆ metric provide a simple, biologically interpretable test of 221

significance of differential growth that captures the complexity of differential growth phenotypes. 222

Identification of differential growth phenotypes in response to oxidative stress 223

Given that several TF mutants of interest are known to regulate genes in response to stress, such as ∆rosR 224

(Sharma et al. 2012; Tonner et al. 2015), we next used B-GREAT to quantify the change in population 225

growth of the TF mutants and ∆ura3 under chronic oxidative stress. This stressor was introduced to 226

cultures of each strain by adding 0.333 mM paraquat (PQ), a redox cycling drug that permeates the 227

cell membrane. The previous model of growth, f(time, strain), was extended to include an effect of 228

PQ and an interaction term between strain and PQ stress: f(time, strain, mM PQ, (mM PQ× strain)) 229

(Eq. 3). Here, mM PQ ∈ {0, 1} represents the presence or absence of oxidative stress in the culture 230

(Fig. 4A, green curves). Interaction term mM PQ × strain ∈ {0, 1} is equal to 1 only for the mutant 231

strain under oxidative stress, and 0 otherwise, and was included to test for differential growth of each 232

mutant strain specific to oxidative stress (Fig. 4A, right blue curve). A BF for this condition was 233

constructed by calculating the relative likelihood of the data with or without the interaction term mM 234

PQ × strain (alternative and null models, respectively). This test statistic quantifies differential strain 235

growth under oxidative stress while controlling for differences in growth between parent and mutant strain 236

under standard conditions. The second test, OD∆, was computed as the difference between mutant strain 237

growth with or without the interaction term mM PQ × strain (Fig. 4B). 238

Using this extended B-GREAT framework, each strain was tested for significant growth phenotypes 239

under PQ stress (Fig. 4C, D). Under this test, ∆sirR was the only strain to exhibit a significant difference 240

in growth phenotype under oxidative stress according to OD∆ or BF (Fig. 4C, D). According to OD∆, 241

∆sirR is impaired for growth relative to the parent strain during the late stages of the growth time 242

series (Fig. 4B). ∆sirR was previously implicated in regulating genes involved in metal ion uptake (Kaur 243

et al. 2006), but not in oxidative stress. All other strains were determined to have no significant growth 244

impairment or improvement under PQ stress when differences in strain growth under standard conditions 245

were controlled for in the model (Supplemental Fig. S4). These results indicate that B-GREAT can 246

trivially be extended to include additional covariates, such as strain and interaction term, to enable the 247

discovery of novel growth phenotypes for previously characterized TF mutant strains. 248
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A B

C D

Figure 4. H. salinarum mutants with significant growth phenotypes under oxidative
stress. (A) Example of population growth data from H. salinarum for mutant strain ∆ura3 (left) and
∆sirR (right) under standard conditions (black) and chronic oxidative stress (green). Each curve
represents a different sample of an experimental condition. Gaussian process predictions for these
conditions are shown as a solid line (mean) and shaded region (variance). The blue line represents the
growth prediction when the Strain×mM PQ interaction term is 0. (B) Difference computed between
the mutant growth level with interaction term (Strain×mM PQ = 1) and mutant growth without
interaction (Strain×mM PQ = 0), solid lines represent mean and shaded regions indicate 95% credible
regions. (C) Functional difference and permuted BF scores for mutant strains in response to oxidative
stress. Functional difference is computed between mutant strain with and without an interaction term
between mutant and stress condition. (D) BF score and permuted BFs for each strain are shown, where
bars, boxes, and whiskers are as in Fig. 3C.
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Meta-analysis improves differential growth phenotype detection 249

Surprisingly, the strain ∆rosR, a known oxidative stress regulator that has previously been shown to 250

regulate oxidative stress under both paraquat and hydrogen peroxide exposure (Sharma et al. 2012; 251

Tonner et al. 2015), did not exhibit a significantly differential growth phenotype versus the parent strain 252

under oxidative stress (Fig. 4C, D). In order to determine the source of this discrepancy, we compared the 253

growth data for ∆rosR generated for this study to that from a previously published study (Supplemental 254

Fig. S5). We observed that ∆ura3 reached a higher cell density in stationary phase than ∆rosR under 255

standard conditions, yielding a significant BF score in our study (Fig. 3B). Thus, controlling for the 256

differential growth under standard conditions removed the differential stress condition phenotype. This 257

difference during stationary phase under standard conditions was observed but not quantified in the 258

previous study because only log phase was considered there (Sharma et al. 2012). 259

In order to combine the data from this study and from the previous study, we built a hierarchical GP 260

model of growth that corrects for differences arising between batches of experiments (see Materials and 261

Methods) (Hensman et al. 2013). Under this hierarchical model, an underlying growth function g(·) is 262

estimated using a GP whose covariates match those in Eq. 3. Then systematic variation between the two 263

studies was modeled as two GPs f1 and f2, whose means are given by the shared growth function g(·). 264

Under this design, g represents the true growth phenotype of ∆rosR when corrected for study effects 265

and f1 and f2 represent the growth phenotype with study-specific effects included (Fig. 5A). From this 266

model, we calculated the difference in ∆rosR growth with and without the (mM PQ × strain) interaction 267

term. Once the variation between studies was corrected for, both OD∆ and BF scores (FDR ≤ 0.2) for 268

this model indicate that ∆rosR has a significant growth defect under oxidative stress (Fig. 5B, C). 269

This differential phenotype is consistent with the established function of the RosR TF as a genome-wide 270

regulator of gene expression in response to oxidative stress (Tonner et al. 2015). These results demonstrate 271

that this hierarchical model effectively combines cross-study data and corrects for study-specific effects, 272

recapitulating the known phenotype of ∆rosR under PQ stress (Fig. 5C). 273

Discussion 274

In this study, we developed a general model of microbial population growth using Gaussian process regres- 275

sion to overcome the limitations of commonly used primary parametric models and to enable discovery 276
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A

B C

Figure 5. GP model of ∆rosR growth in response to oxidative stress across multiple
studies. (A) ∆ura3 (top) and ∆rosR (bottom) growth data under standard conditions (black) and
oxidative stress (green). Individual samples from this study (left) and previously published data
(center, Sharma et al. (2012)) are shown as shaded lines. GP model prediction for each condition is
shown as solid line and shaded region for mean and 95% credible region, respectively. The growth
prediction for the underlying growth function estimated across studies is shown in the right column.
(B) The difference between ∆rosR and ∆ura3 growth for the underlying growth function corrected for
batch effects, which shows an increased susceptibility of ∆rosR to oxidative stress relative to the parent
strain. (C) Bayes factor score compared to permuted scores from the null distribution. Bars, box, and
whisker plots as in Fig. 3.
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of novel growth phenotypes for genetically and environmentally perturbed microbial populations. Al- 277

though primary models provide accurate estimates of growth under optimum culturing conditions where 278

the 3-phase sinusoidal assumption (lag, log, stationary) holds true (Fig. 1A, B), GP accuracy is sig- 279

nificantly higher than that of primary models (Fig. 1B). GP regression can recover growth statistics 280

of log phase (µmax) and stationary phase (carrying capacity, A), enabling direct comparison of these 281

variables to results from primary growth models (Fig. 2). Such comparisons revealed that Gompertz 282

regression overestimates A for a subset of growth curves, which may contribute to the observed difference 283

in error (Fig. 2B, Supplemental Fig. S2). Rather than extrapolating to unseen data, GP regression 284

advantageously estimates the maximum growth data from the sample provided. In cases where stress 285

conditions change the form of the growth curve and violate the sigmoidal assumption (Fig. 1C), primary 286

models provide a substantially less accurate estimate than that of GP. Taken together, these comparisons 287

demonstrate that GP regression outperforms primary parametric growth models, both under standard 288

conditions and under non-standard stress conditions (Fig. 1). 289

Recovery of growth parameters from GP models is useful for qualitative assessment of growth dif- 290

ferences; however, we observed that the magnitude and direction of growth differences can vary across 291

the duration of the time series (e.g., faster or slower growth than wild type; Fig. 2), yielding conflicting 292

results for some parameters. More recently, there has been some attempt to model growth more generally, 293

for example through the use of linear spline regression over portions of the growth curve in the context 294

of a generalized additive model (GAM) (Sekse et al. 2012). Although these models accurately fit growth 295

curves with unexpected functional forms, they are often sensitive to deviations in the growth curve such 296

as those arising from technical variability. Thus, GAM models cannot easily be adapted to testing of 297

differential growth phenotypes. 298

To overcome these limitations, we developed two metrics for comparing population growth phenotypes, 299

Bayes factors (BFs) and OD∆. BFs are a metric in Bayesian analysis for determining the likelihood of 300

two models given data (Kass and Raftery 1995). The OD∆ metric provides additional information on the 301

timing and magnitude of growth differences between two conditions. Our use of OD∆ is similar to the 302

methods presented in a previous study, in which a hypothesis test was constructed for the equality of two 303

observed functions based on the posterior estimated difference in two GP models fit to each functional 304

observation (Benavoli and Mangili 2015). The previous work concluded that the two functions are the 305

same if the posterior credible region contains the zero vector. 306

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 24, 2016. ; https://doi.org/10.1101/055186doi: bioRxiv preprint 

https://doi.org/10.1101/055186


19

Here, we extended these types of tests, using the posterior difference estimate to quantify the differ- 307

ence between parent and mutant strain growth across the time course, while conducting the hypothesis 308

test for differential growth using approximate BFs. In general, we find that the use of BFs is a conser- 309

vative method of finding significantly different growth phenotypes relative to OD∆, as there are cases in 310

which the posterior difference credible region does not contain zero but the BF is not significant (e.g., 311

∆V NG1179C, Fig. 3). As such, OD∆ and BF tests provide two tiers of statistical confidence that an 312

experimental researcher can use to prioritize strains or conditions to pursue for further study. These two 313

metrics are complimentary, since OD∆ quantifies differenes at each time point, whereas BFs provide a 314

single summary statistic for significant differences across time. Together they capture the complexity of 315

the differential growth phenotype. 316

With the addition of covariates to our GP model, we tested and accurately identified differential 317

growth across genetic backgrounds (Fig. 3), environmental stress (Fig. 4), and different experimental 318

studies (Fig. 5). With these covariates (Rasmussen and Williams 2006), the GP model learns the inde- 319

pendent effects of each perturbation on growth rather than requiring a specification of the parametric 320

effect of perturbations on growth. By adding an interaction term (e.g., strain × stress), the GP model 321

also captures any synergistic effects of genetic background and stress. This interaction is an important 322

consideration given that the number of strains with differential effects increases from one to five out of 323

seven if we remove the mM PQ × strain interaction term (Fig. 4C, Supplemental Fig. S6). Thus, the 324

interaction term is a conservative measure of stress response because it quantifies the impact of strain and 325

stress independently in order to detect significant phenotypes specific to stress while controlling for known 326

differential growth between strains under standard conditions. Given the large proportion of cellular ma- 327

chinery whose production correlates linearly with growth rate (Pedersen et al. 1978; You et al. 2013), 328

differentiating general growth impairments from specific, stress-related impairments is important for bio- 329

logical interpretation of model fits. In terms of correcting for study-specific effects, adding a covariate was 330

not necessary in most cases analyzed here given that other TF mutant strains were collected from a single 331

experimental batch. In contrast, the ∆rosR mutant has been analyzed previously (Sharma et al. 2012; 332

Supplemental Fig. S5), and we observed data heterogeneity arising from experimental variation between 333

studies (Fig. 5). To correct for this, we extended the BF using hierarchical GP regression (Hensman 334

et al. 2013), which explicitly controlled for study effects. In the future, GP regression may be extended 335

by adding new covariates to model other growth conditions, such as gradients of chemical stresses (Sekse 336
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et al. 2012). 337

GP regression recapitulates known biology and discovers previously uncharacterized phenotypes. We 338

confirmed the known growth defect for ∆trmB under standard conditions (Fig. 3B-D), which results 339

from its function as a master regulator of metabolic pathways (Schmid et al. 2009; Todor et al. 2013; 340

Todor et al. 2014; Todor et al. 2015). We combined data from this study with data from a previous study 341

(Sharma et al. 2012) to confirm the susceptibility of the ∆rosR mutant to oxidative damage (Fig. 5). This 342

phenotype is consistent with the ability of RosR to regulate approximately twenty other genes encoding 343

TFs and oxidative repair genes, enabling cellular viability during oxidative stress (Tonner et al. 2015). 344

In contrast to these results with ∆trmB and ∆rosR, the ∆asnC oxidative stress phenotype observed 345

by Plaiser and colleagues (Plaisier et al. 2014) was not recapitulated here, likely because the growth 346

defect of this mutant under standard conditions explains the difference in growth during stress (Fig. 3C, 347

Supplemental Fig. S3). We note that, while the standard condition differential phenotype of ∆asnC was 348

observed previously, it was not corrected for in the earlier work, which likely explains the discrepancy 349

(Plaisier et al. 2014). Finally, we identified a previously undiscovered relationship between ∆sirR and 350

oxidative damage (Fig. 4). SirR regulates metal uptake transporters at the level of transcription (Kaur 351

et al. 2006), repressing manganese uptake transporters under replete conditions. As a result, expression of 352

genes encoding metal uptake transporters is constitutively high in a ∆sirR mutant. Because metal excess 353

leads to oxidative stress through the Fenton reaction (Imlay 2003), this regulatory link between metal 354

homeostasis and oxidative stress is well-established in bacterial and eukaryotic organisms. However, this 355

connection in Archaea is only beginning to be appreciated (Zhu et al. 2013). 356

Materials and Methods 357

H. salinarum growth data 358

Growth of seven transcription factor (TF) mutant strains for H. salinarum, each deleted in-frame for 359

a TF-encoding gene, and the isogenic ∆ura3 parent strain was measured (Table 1). Details regarding 360

construction of these mutants were described in prior work (Kaur et al. 2006; Plaisier et al. 2014; Schmid 361

et al. 2011, 2009; Sharma et al. 2012). Cultures were inoculated into complete medium (CM; 250 NaCl, 362

20 g/l MgSO4 7H2O, 3 g/l sodium citrate, 2 g/l KCl, 10 g/l peptone), grown to stationary phase, 363

then diluted to OD ∼ 0.05 for growth analysis. Optical density (OD) at 600 nm of 200 independent 364
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cultures was measured every thirty minutes for 48 hours using a Bioscreen C (Growth Curves USA, 365

Piscataway, NJ). Growth of each strain under each experimental condition was measured in at least 366

biological quadruplicate (from independent colonies) and technical triplicate (independent cultures from 367

the same colony), for a total of twelve replicates. Standard and chronic oxidative stress conditions were 368

tested for all mutants. Standard conditions were defined as 42◦C with 225 r.p.m. shaking under ambient 369

light in rich CM medium (Yao and Facciotti 2011). Chronic oxidative stress was induced with 0.333 mM 370

paraquat (PQ) added at the inoculation of the Bioscreen experiment. 371

Prior to statistical analysis, OD data were log2 transformed and scaled by the estimate of starting 372

OD as follows. Data from growth experiments were grouped by their strain and media composition (e.g., 373

∆ura3, standard growth). This corresponds to the twelve replicates comprising four biological replicates 374

and three technical replicates. Then OD measurements from the first ten time points within each group 375

were fit with a polynomial regression of degree five. The OD value at time = 0, as estimated by the 376

polynomial regression, was then subtracted from all data points in the group in order to normalize the 377

starting growth levels at zero for all conditions. 378

H. salinarum data as input to B-GREAT 379

Input to the GP model corresponds to measurements Yt,c,r for a given time (1 ≤ t ≤ T ), condition (1 ≤ 380

c ≤ C), and replicate (1 ≤ r ≤ R). For standard conditions, time points were taken at 4 hour increments 381

across a 48 hour experiment. This resulted in 12 observations from each replicate. Additionally, growth 382

measurements from both parent strain and each mutant strain were included (C = 2). A total of 383

T × R × C = 288 observations were used for training each GP model under standard conditions. For 384

oxidative stress, time points were taken from every 6 hours, for a total of 8 time points for each replicate. 385

The decrease in time samples used in the oxidative stress models was necessary to incorporate the increase 386

in conditions for both standard and oxidative stress growth. Specifically, conditions include growth for 387

both parent and mutant strain under both standard and oxidative stress conditions (C = 4). This 388

corresponds to a total of 384 observations for each GP model under oxidative stress. 389

Gaussian process regression of microbial population growth data 390

Gaussian process (GP) regression is a probability distribution on arbitrary functions mapping x to f(x) 391

(Rasmussen and Williams 2006). When observations of f(x) are distorted with independent and identi- 392
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cally distributed (IID) Gaussian noise, multiple observations of the function are distributed as a multi- 393

variate Gaussian 394

y(x) ∼ N (µ(x),Σ). (1)

In our application, x represents time and y(x) = logOD(x) represents the log-transformed OD mea-

surement at time t. A GP model requires specification of a mean function µ(x) and kernel function

Σi,j = κ(xi, xj), which defines the positive definite covariance matrix Σ. In this work, the mean function

was set to zero across inputs, µ(x) = 0, as is standard (Rasmussen and Williams 2006). For the kernel,

we used a radial basis function (RBF) with time point specific independent Gaussian noise:

κ(xi, xj) = σ2
RBF · exp

(−||xi − xj ||2
`

)
+ σ2

nugget · δxi=xj

Here, xi and xj are two time points, σ2
RBF is the RBF variance parameter, σ2

nugget is the Gaussian 395

variance at a single time point t (called the nugget), δxi=xj
is an indicator function, which is equal to 1 396

when xi = xj and 0 otherwise, and ` is the RBF length scale parameter, which dictates the smoothness 397

of the function f(x) through the GP distribution. Kernel function parameters θ = {σ2
RBF , σ

2
nugget, `} 398

were optimized by maximizing the likelihood of the data marginalized over the latent function f(x) with 399

respect to each parameter (Rasmussen and Williams 2006). All GP regression models were built and 400

optimized using the GPy package (version 0.8.8) for Python (http://github.com/SheffieldML/GPy). 401

GP growth curve metrics 402

The growth curve metrics µmax and carrying capacity A were calculated from the maximum a posteriori

(MAP) estimates of either log(OD) or d
dx log(OD) for carrying capacity and µmax, respectively. MAP

estimates of log(OD) are given by the model in Eq. 1, by taking the MAP growth level using the fitted

model. In order to calculate a MAP estimate of d
dx log(OD), we must estimate d

dx log(OD) using GP

regression. The RBF kernel is infinitely differentiable, so derivative observations of a GP regression model

are also distributed as a GP as follows (Solak et al. 2003):

d

dx
log(OD) ∼ GP

( d
dx
µ,

d

dx
Σ
)
,
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where

d

dx
µ = 0

and

d

dx
κ(xi, xj) =

2 · σ2
RBF

`
×
(

1− 2 · (xi − xj)2

`

)
· exp

(−||xi − xj ||2
`

)
.

The GP model of d
dx log(OD) is used to calculate the MAP estimate of d

dx log(OD) as an estimate of 403

µmax. 404

Primary growth models 405

We compared the predictions from the fitted GP regression model to predictions from four primary 406

growth curve models: Gompertz, population logistic, Schnute, and Richards regression (Zwietering et al. 407

1990). All model parameters were optimized with the curve fit function of the scipy Python package, 408

which estimates function parameters using damped least squares (Millman and Aivazis 2011). Data were 409

randomly divided into training (80%) and testing (20%) sets. The mean squared error (MSE) of each 410

model fit with respect to the 20% held out testing data was calculated as the difference between prediction 411

and test data from models built from the training data: MSE(y,m) = 1
n

∑n
t=1(yi −mi)

2, where yi and 412

mi correspond to raw data and model predictions at the ith time point, respectively. Model prediction 413

from GP was taken as the posterior mean of the fitted GP, and primary growth model predictions were 414

taken from the growth level predicted by the estimated parameters. Using a one-sided sample t-test, MSE 415

for GP regression fit was compared separately to each of Gompertz, population logistic, Schnute, and 416

Richards regression fits. These primary models were selected to compare against the most widely used 417

primary models in modeling microbial population growth. Additionally, the models chosen have been 418

shown to be related to one another through specific constraints on parameters. For example, Gompertz 419

regression can be recovered from the Schnute model with parameters a > 0 and b = 0 (Zwietering et al. 420

1990). Therefore, we can observe the improvement of primary model accuracy as we add additional 421

parameters. 422

Gompertz regression.

y(t) = A · exp
[
−exp

[µmax · e
A

(λ− t) + 1
]]
,
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where A is the carrying capacity, µmax is the maximum growth rate, and λ is lag time (Zwietering et al. 423

1990). 424

Population logistic regression.

y(t) = A ·
[
1 + exp

(4 · µmax

A
(λ− t) + 2

)]−1

,

where A is the carrying capacity, µmax is the maximum growth rate, and λ is lag time. (Zwietering et al. 425

1990). 426

Schnute model.

y(t) = µmax ·
1− b
a
·

[
1− b · exp

(
a · λ+ 1− b− a · t

)
1− b

] 1
b

,

where µmax is the maximum growth rate, λ is lag time, and a, and b are parameters that affect the 427

growth curve shape but do not have direct biological interpretation (Zwietering et al. 1990). 428

Richards model.

y(t) = A ·
[
1 + v · exp(1 + v) · exp

(µmax

A
· (1 + v) · (1 +

1

v
) · (λ− t)

)]−1
v

,

where A is the carrying capacity, µmax is the maximum growth rate, λ is lag time, and v is a parameter 429

that affects the growth curve shape but does not have direct biological interpretation (Zwietering et al. 430

1990). 431

Testing for differential growth using Bayes factors 432

We developed an approximate Bayes factor (BF) test statistic to quantify possible differences between a

pair of growth conditions BFstrain (Kass and Raftery 1995). BFs were calculated as the ratio of data

likelihoods between an alternative model (Ha) and a null model (H0):

BF =
p(Y |Ha)

p(Y |H0)
.
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Larger values of the BF indicate a higher relative likelihood under the alternative model and provide 433

evidence for the alternative model representing the data better than the null model. 434

Specifically, we designed three different BF test statistics to measure differences in population growth 435

across covariates. Under standard conditions, we use BFstrain, in which the null model H0 assumes 436

that growth is the same across parent and mutant strain; the alternative model Ha captures growth 437

between parent and mutant strain separately. A high BF then suggests that the growth phenotype is 438

different across strains. We designed a second test for differential growth in the presence of oxidative 439

stress, BFstress, where the alternative model included an interaction term between genetic effect and 440

oxidative stress. High BF scores under this condition indicate that the mutant strain has a differential 441

growth phenotype relative to the parent strain under oxidative stress. We designed a third test for 442

differential growth across two separate studies, BFstudy, which performs the same test as BFstress but 443

shares statistical strength across batches of growth measurements using a hierarchical GP model. 444

A false discovery rate (FDR) for each BF was calculated using an estimate of the null BF distribution, 445

representing BF scores when no significant growth effect between the two conditions is observed. For a 446

single growth experiment, Y = {y1, y2, . . . yT }, and corresponding time, genetic background, and other 447

covariates X = {x1, x2, . . . xT }, each xt = {time, strain,. . . } was randomly assigned a value for strain that 448

preserved the original distribution of strain values in X. 100 permutations of the data indices following 449

this design were constructed, and a BF score was calculated for each permutation. The distribution of 450

permuted BF scores was used as a estimate of the null distribution of the test statistic, and a BF score 451

that exceeded 80% of permuted scores (corresponding to FDR ≤ 0.2) was selected as significant. 452

More generally, FDR is calculated using permutations, for a given BF threshold c, as follows:

FDR(c) =
|BFperm > c|
|BFreal > c|

,

which approximates the FDR, i.e., the number of false positives over the total number of discoveries, for 453

threshold c. In this case, there is a single BFreal for 100 permuted BFs, so we multiplied the BFreal 454

count by 100 for this computation. 455
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Differential mutant growth phenotypes 456

The effects of gene deletion on growth were modeled as experimental effects by extending the input

variable x, originally representing time, to include perturbations as additional covariates in the GP

regression model. The RBF kernel function was extended to handle the additional covariates by using an

automatic relevance determination (ARD) prior to induce sparsity on the weighted contribution of each

of the K covariates (MacKay 1992; Neal 2012; Rasmussen and Williams 2006; Tipping 2001):

K(xi, xj) = σ2 · exp
( K∑

k=1

||xi,k − xj,k||
`k

)
,

where each `k is the length-scale for the kth covariate. These length-scale parameters are then inter-

pretable in terms of quantifying the relative contribution of each of the k covariates. Genetic background

was incorporated into the model covariates as a Boolean variable xstrain ∈ {0, 1}, where a value of 0

indicates parent strain and 1 indicates mutant strain. For standard growth conditions, x has the form:

x = {time, strain}, (2)

whereas the null model contains no strain information: x = {time}. The BF then quantified the im- 457

provement in data likelihood of the GP regression model including the strain information versus omitting 458

strain information; when modeling strains separately improved the data likelihood, this indicated that 459

there was differential growth across strains. 460

Differential response to stress conditions across strains 461

Differential growth in response to paraquat (PQ) exposure was tested by extending the covariates to

include two additional covariates. The first covariate, mM PQ ∈ {0, 1}, represents the presence (1) and

absence (0) of PQ stress. The second covariate, mM PQ× strain ∈ {0, 1} is an interaction term between

mutant strain and stress condition, computed by multiplying the strain covariate with the mM PQ

covariate. mM PQ × strain covariate was 1 only for growth measurements made under oxidative stress

for the mutant strain, and 0 otherwise. The test for significant growth phenotypes was then made using

models including or excluding the mM PQ × strain interaction term. Specifically, the input x for the
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paraquat condition had the form:

x = {time, strain, mM PQ, (mM PQ× strain)}. (3)

The null model, where there is no interaction between strain and stress condition, corresponds to:

x = {time, strain, mM PQ}. (4)

Modeling batch effects and testing for differential effects across studies 462

Growth data for ∆rosR under standard conditions and oxidative stress was collected both in this study 463

and in a previous study (Sharma et al. 2012). We modeled the joint growth data from both studies with 464

a hierarchical GP model (Hensman et al. 2013). Under this model, the underlying growth function is 465

modeled with a GP: g(x) ∼ GP
(
µg,Kg

)
, and different batch observations of this function are drawn 466

from a GP with mean equal to g(x): f(x) ∼ GP
(
g(x),Kf

)
. 467

Growth data for ∆rosR and the parent strain were modeled by replicate functions f1 and f2, repre- 468

senting data from our study and the previous study, respectively. The GP models for f1, f2, and g all 469

follow the design in Eq. 3. BF scores in both cases were calculated as the difference in log likelihood for 470

GP models accounting for strain variation interacting with oxidative stress (HA; Eq. 3) and those that do 471

not interact with oxidative stress (H0; Eq. 4). The BF permutation was performed as described above. 472

Computing differences between population growth across time series (OD∆) 473

The difference between mutant and parent strain functions across time points were defined by the variable 474

OD∆. The variable OD∆ is the difference in mutant strain growth and parent strain growth at each time 475

point x. OD∆ was calculated using the noiseless latent mean function for population growth, rather than 476

the noisy observations. In other words, we use the latent function f , where log(OD) = f(x) + ε where 477

f(x) is the smooth underlying growth function and ε represents random noise. Additionally, OD∆ was 478

corrected by the population growth at the start of the experiment, t0: 479

OD∆(tk) =
(
fm(tk)− fm(t0)

)
−
(
fp(tk)− fp(t0)

)
, (5)
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where t0 denotes the start of the experiment, and fm and fp indicate the mutant and parent strain

posterior mean function predictions, respectively. The four variables needed to calculate OD∆; i.e.,

fk = {fm(tk), fm(t0), fp(tk), and fp(t0)}; are defined by a joint MVN distribution predicted by the fitted

GP:

fk = [fm(tk), fm(t0), fp(tk), fp(t0)]T ∼ N ([µm(tk), µm(t0), µp(tk), µp(t0)]T ,Σk).

OD∆ is then a linear transformation of these variables, OD∆ = a · fk where a is the column vector 480

a =
[
1,−1,−1, 1

]
(a : 1 × 4). Parameter OD∆ is then distributed as a univariate normal distribution, 481

OD∆ ∼ N
(
a ·µk, aΣka

T
)

= N
(
µ(OD∆), σ2(OD∆)

)
. Credible intervals of OD∆ as defined by its normal 482

distribution were calculated to determine whether OD∆ = 0 lies within the 95% credible region. 483

Data Access 484

All code and data associated with this paper are available at https://github.com/ptonner/gp_growth_ 485

phenotype. Raw growth data used in this study is available in Supplemental Table S1. 486
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