
 

Title: The Social Networks of Neural Progenitor Cells 1 

 2 

Authors: Arun Mahadevana, Jacob T. Robinsona,b, Amina Ann Qutuba* 3 

 4 

Author Affiliations: 5 

aDepartment of Bioengineering, Rice University, Houston, TX 77030 6 

bDepartment of Electrical and Computer Engineering, Rice University, Houston, TX 77030 7 

 8 

*Corresponding Author 9 

 10 

Amina A. Qutub 11 

Assistant Professor, Department of Bioengineering 12 

Rice University 13 

BioScience Research Collaborative 14 

6500 Main St., Rm 613 15 

Houston, TX 77030 16 

Office: (713) 348-8089 / Cell: (510) 541-3497 17 

Email: aminaq@rice.edu 18 

 19 

 20 

 21 

 22 

 23 

 24 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 26, 2016. ; https://doi.org/10.1101/055533doi: bioRxiv preprint 

https://doi.org/10.1101/055533


 

Abstract 25 

 26 

Quantitative understanding of how neural progenitor cells (NPCs) collectively self-organize into neural 27 

networks can provide critical insight into how to optimize neural regenerative strategies. To that end, we 28 

characterized the topology of human embryonic NPCs during differentiation by designing and employing 29 

a spatial graph-theoretic analysis. Statistical measures of information flow in NPC spatial graphs revealed 30 

a shift from topologies with high global efficiency to high local efficiency, around the time mature 31 

neuronal phenotypes appeared in culture. These results support the view that network-wide signaling in 32 

immature progenitor cells gives way to a more structured, hierarchical form of communication in mature 33 

neural networks. We also demonstrate that the evaluation of recurring motif patterns in NPC graphs 34 

reveals unique geometric arrangements of cells in neural rosette-like structures at early stages of 35 

differentiation. Our approach provides insight into the design of developing neural networks, opening the 36 

door for new approaches that modulate neural cell self-organization for therapeutic applications. 37 

  38 
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Human embryonic stem cells (hESCs) and other sources of pluripotent stem cells have provided much 39 

hope for regenerative medicine, especially in the nervous system (Fred H. Gage and Temple 2013). 40 

Recently, stem cell therapies have been reported to treat neurological disorders, including stroke and 41 

neurodegenerative diseases like Parkinson’s disease (Hallett et al. 2014; Rosado-de-Castro et al. 2013). In 42 

addition, neural progenitor cells derived from embryonic stem cells (hNPCs) and dissociated cultures 43 

have helped elucidate intrinsic transcriptional control of self-renewal and multipotency (Guillemot 2007; 44 

Imayoshi and Kageyama 2014; Shen et al. 2006; Kageyama et al. 2009). The influence of external cues 45 

such as morphogen gradients in guiding nervous system development is also well documented (Mason 46 

2007; Bertrand and Dahmane 2006). Aside from intrinsic genetic programs and extrinsic cues, a third 47 

aspect of stem cell differentiation that merits further study is the collective self-organization of progenitor 48 

cells into functional neural networks. Quantitative insight into neural cell self-organization, in addition to 49 

knowledge of external and intrinsic cues that guide tissue development, will ultimately be necessary to 50 

design effective and targeted stem cell therapies.   51 

 52 

Cell-cell communication among progenitor cells is an essential aspect of nervous system development. 53 

Neural progenitor cells cluster together in specialized microenvironments or niches where communication 54 

with neighboring cells plays an important role in determining cell behavior (ffrench-Constant 2008). Prior 55 

to the formation of functional synapses, NPCs display structured intercellular communication that plays a 56 

critical role in the spatiotemporal control of self-renewal and differentiation, and also shapes developing 57 

neural circuits. Examples of structured cell-cell communication include patterned, spontaneous electrical 58 

activity mediated partly through gap junctional coupling (Malmersjö et al. 2013; Spitzer 2006; 59 

Blankenship and Feller 2010), maintenance of intercellular configurations through tight junction proteins 60 

(Watters et al. 2015) and control of cell differentiation through Notch signaling (Edri et al. 2015; 61 

Shimojo, Ohtsuka, and Kageyama 2008). Notably, the predominant forms of communication employed 62 

by NPCs can be described as juxtacrine signaling, i.e., requiring direct cell-cell contact. Thus, the 63 
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immediate cellular neighborhood of a progenitor cell provides an important context in which to place its 64 

dynamic behavior. 65 

 66 

Live-cell imaging approaches have yielded significant insight into the dynamics of multipotent progenitor 67 

cells, particularly when coupled with automated image analysis (Imayoshi et al. 2013; Schroeder 2011; 68 

Cohen et al. 2010). However, most of these studies focus on cell-autonomous mechanisms that guide self-69 

renewal and differentiation of progenitor cells. Graph theory and network analysis methods are well 70 

suited to uncover the role of structured communication among progenitor cells in guiding their behavior. 71 

Graph-theoretic methods have been used to study functional and anatomical connectivity in the adult 72 

brain, leading to significant insight into brain organization (Bullmore et al. 2009). A number of studies 73 

have also applied graph-theoretic approaches to study the functional and anatomical connectivity of 74 

cultured neuronal circuits (Feldt, Bonifazi, and Cossart 2011; Shefi, Ben-Jacob, and Ayali 2002; de 75 

Santos-Sierra, Sendiña-Nadal, Leyva, Almendral, Anava, et al. 2014; Downes et al. 2012). However, 76 

these studies are often conducted in dissociated cultures of post-mitotic neurons, where the physical 77 

wiring among neurons is important and network-wide information is conveyed primarily through synaptic 78 

contacts. Given the dominance of juxtacrine modes of signaling among progenitor cells, we reasoned that 79 

adapting graph-theoretic approaches to study the spatial organization of neural progenitors during 80 

differentiation would yield insight into the spatial evolution of progenitor cell communities and their 81 

relationship with functional differentiation state. 82 

 83 

Here we present a detailed characterization of spatial organization of H9-derived human neural progenitor 84 

cells during neural differentiation over the course of 14 days. To achieve this characterization, we 85 

introduce a new approach that integrates weeks-long live imaging assays, automated image analysis and a 86 

graph-theoretic approach based on cell body proximity to quantify the spatial organization of progenitor 87 

cells. A schematic representation of our experimental paradigm is shown in Figure 1. We use our method 88 

to demonstrate that NPCs transition from topologies with high global efficiency to those with high local 89 
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efficiency for information flow around the time mature neuronal phenotypes appear in culture. We also 90 

show that our graph-based metrics capture the characteristic geometric arrangement of cells in neural 91 

rosette-like structures seen at early time points of differentiation.  92 

Figure 1. Schematic illustrating the design of the experiments. 
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Results 93 

 94 

Functional characterization of differentiating hNPC cultures. The model cell culture system used in 95 

this study is neural progenitor cells derived from H9 human embryonic stem cells. These cells were 96 

Figure 2. Functional characterization of differentiating hNPCs. (A) hNPCs at day 0 stain

positively for Nestin. Nuclei are labeled by Hoescht. (B) Cells at day 14 stain positive for MAP2.

Nuclei are labeled by Hoescht (scale bar = 100μm). (C) Peak inward and outward currents

determined through whole-cell patch clamp electrophysiology. Number of cells recorded (N) is

shown above the bar for each time period. Error bars represent S.E.M. Student t-test was

performed for each pair of samples; * P<0.05. (D) Weak action potentials evoked from a cell at

day 14 through current injection. Magnitudes of current injected are -30pA, +20pA and +120pA

from holding. (E) Voltage-gated inward and outward currents seen in the same cell. Voltage

steps applied were from -60mV to +90mV in 10mV increments. 
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maintained as undifferentiated, mitotic progenitor cells in the presence of the mitogen basic fibroblast 97 

growth factor (bFGF). Withdrawal of bFGF from culture medium was used to induce spontaneous 98 

differentiation of hNPCs (F. H. Gage 2000).  99 

 100 

We performed immunocytochemistry and whole-cell patch clamp electrophysiology experiments to 101 

uncover the time course of functional development in differentiating hNPCs. Cells at day 0 stained 102 

positively for Nestin, a Type VI intermediate filament expressed by dividing neural progenitor cells 103 

(Figure 2A). Cells at day 14 were positive for microtubule-associated protein-2 (MAP2), a protein 104 

associated with dendrite formation in maturing neuronal cells (Figure 2B). Analysis of peak inward and 105 

outward currents from voltage-clamp experiments showed that cells at all time points exhibited the same 106 

levels of outward currents, but showed increasing magnitudes of inward currents (Figure 2C). Inward 107 

currents are typically driven by voltage-gated sodium channels, and their presence indicates a more 108 

mature neuronal phenotype. Furthermore, weak action potentials could be elicited from cells showing 109 

inward currents at later time points (3/11 cells at day 14) through current injection. Sample current-clamp 110 

and voltage-clamp traces are shown for a cell recorded at day 14 in Figure 2D and 2E. These experiments 111 

showed that Nestin-positive hNPCs matured over 14 days to MAP2-positive neurons, with neuronal fate 112 

commitment occurring between days 4-8 (indicated by the appearance of neuronal phenotypes in that time 113 

period). 114 

 115 

Representation of cell community structure using a graph-based approach. In order to uncover 116 

topological changes in differentiating hNPCs, we combined long-term time-lapse microscopy of 117 

differentiating cultures with a graph-based approach for quantifying cell community structure. We 118 

conducted two biologically independent experiments where cultures were imaged at days 0, 3, 6, 9, 12 119 

and 14 after withdrawal of bFGF. An additional dataset was obtained by imaging differentiating cultures 120 

at 1-hour intervals for a total duration of 8 days (Supplemental Video 1). Selected image sequences were 121 
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analyzed using custom image-processing algorithms, resulting in the extraction of soma and neurites for 122 

each phase-contrast image (Figure 3A-D) (see Methods section for details).  123 

 124 
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Juxtacrine signaling – signaling through direct cell-cell contact – plays an important role in immature 125 

neural circuits. In order to build quantitative representations of hNPC communities that reflect the modes 126 

of communication employed by hNPCs, we developed a graph-based approach, where soma are denoted 127 

as nodes and spatial proximity of cells is used to assign edges. In this manner, we constructed non-128 

weighted, undirected graphs representing hNPC communities from time-lapse microscope images 129 

(Supplemental Video 2). 130 

 131 

In order to describe the structure and topology of NPC community graphs, we evaluated a number of 132 

metrics derived from graph theory. Table 1 lists 16 metrics that were computed, normalized appropriately 133 

to account for network size (Bounova and De Weck 2012). The network metrics provide information on 134 

various aspects of the graph structure such as information flow, connectivity and abundance of motifs. 135 

Figure 3H shows the covariance matrix of all 16 metrics as a hierarchically clustered heatmap. The 136 

heatmap shows several strong positive correlations among degree-related metrics like average degree, 137 

average neighbor degree and their variances. Interesting negative correlations include that between 138 

Figure 3. Image processing and graph representation of time-lapse microscopy images.

(A) Representative grayscale image of human NPCs, shown at Day 3 (scale bar = 50 μm). (B)

First derivative of the pixel intensity histogram, with a linear fit to the ascending portion shown

as a red line. (C) Binary image obtained after thresholding is applied. (D) Separation of linear

features through morphological opening of binary image yields cell bodies (blue) and neurites

(red). (E) Phase contrast image with soma boundaries overlaid in red, and proximity edges

shown in yellow. (F) Inset from panel A showing six soma, of which two pairs (1, 2) and (4, 5)

are connected by proximity edges; the intercellular distance for these two pairs are smaller than

their average diameter multiplied by a scaling factor S = 2; Soma 3 and 6 are isolated nodes

since they are not sufficiently close to any other soma. (G) Degree distribution of the graph in

panel E; number of nodes = 317, number of edges = 152, average degree, <k> = 0.96 (H)

Correlation heatmap of all metrics obtained by hierarchical clustering of the covariance matrix. 
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network efficiency and number of connected components, and those between clustering coefficient and all 139 

degree-related metrics. In the following sections, we focus on metrics that have intuitive biological 140 

interpretations, their trends across time of differentiation, and relationships observed with other metrics 141 

that explain these trends. Trends in metrics not discussed in the main text are shown in Supplemental 142 

Figure 4.  143 

 144 

Table 1. Metrics computed, their descriptions, and mode of normalization to account for 145 

the network size. n = number of nodes, m = number of edges. 146 

Graph Metrics Symbol Definition Normalization 

Network Density  Average degree of graph, normalized by 

total maximum possible degree 

 

Maximum possible degree, 

 

Variance in Degree  Variance of normalized node degree 

sequence 

Node degree sequence 

normalized by maximum 

possible degree, (n-1) 

Average Neighbor 

Degree 

 Average degree of node neighborhood, 

across all nodes 

Maximum possible degree, 

(n-1) 

Variance in 

Neighbor Degree 

 Variance of the normalized average 

neighbor degree sequence 

- 

Network Efficiency  The average reciprocal of shortest path 

length across all pairs of nodes,  

Average network efficiency 

of 100 random graphs 

generated through degree-

preserving rewiring, . 

Random graph generation is 

illustrated in Fig. S3. 

Average Clustering  Fraction of total possible links among the Average clustering 
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147 

Coefficient neighbors of a node that are actually 

present, averaged across all nodes, 

   

 

coefficient of 100 random 

graphs generated through 

degree-preserving rewiring, 

 

Number of 

connected 

components 

 Number of disconnected sub-graphs in 

main graph 

- 

Average Size of 

Connected 

Components 

 Average number of nodes in each 

connected component 

Total nodes, n 

Variance in size of 

connected 

components 

 - - 

Network Diameter  Longest shortest path length of network Longest possible path, (n-1) 

Triangular loop 

count 

 Number of loops of 3 nodes Total possible number of 

triplets, nC3 

4-star motif Count  Number of star motifs with one hub and 

three spokes 

Total possible number of 4-

tuples,  nC4 

5-star motif count  Number of star motifs with one hub and four 

spokes 

Total possible number of 5-

tuples, nC5 

6-star motif count  Number of star motifs with one hub and five 

spokes 

Total possible number of 6-

tuples, nC6 

Rich-Club Metric 

Average 

 Measure of the tendency of hub nodes 

(nodes with high number of links) to be well 

connected among each other (Colizza et al. 

2006); Computed for threshold degrees 

between 1 and (n-1) 

Average Rich-Club Metric of 

100 random graphs 

generated through degree-

preserving rewiring,  

Assortativity  Pearson correlation coefficient of degrees 

between pairs of linked nodes (Newman 

2002).  

- 
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Structure and information flow in NPC community graphs. Network efficiency and clustering 148 

coefficient are commonly used measures of efficiency in global and local information flow (see 149 

Figure 4. Metrics describing graph connectivity and information flow. (A) Network

Efficiency ( ) and Clustering Coefficient ( ) across time. Note that the values reported are

normalized by corresponding random graph values (see Table 1). (B) Number of connected

components ( ) and network density ( ) across time. (C) Graph representations of

images taken at day 0, day 6 and day 14. Soma are outlined in red and edges are shown in

yellow. (D) Cell bodies from the images in panel D, with each connected component labeled

with distinct colors. Values are reported as the mean across N = 30 networks  S.E.M 
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Table 1). When applied to the NPC networks, these metrics describe the efficiency of information 150 

exchange at the network-wide and local neighborhood levels through cell body proximity 151 

(compared to random graphs obtained through degree-preserving rewiring (Supplemental Figure 152 

3)). In this context, information exchange could include flow of ions or growth factors between 153 

cells through cell-adjacent means like gap junctions. Evaluation of these metrics in NPC networks 154 

sampled across 30 different locations from two biologically independent experiments showed that 155 

network efficiency increased from day 0 to day 6, and then decreased from days 6 to 14, while 156 

clustering coefficient rose constantly from day 0 to 14 (Figure 4B). Thus, there appears to be a 157 

transition from topologies favoring global information flow to those favoring a more structured, 158 

hierarchical form of communication, occurring from day 6 – 14 of differentiation. 159 

 160 

The correlation heatmap in Figure 3H shows a strong negative correlation between network 161 

efficiency and number of connected components in the graph. The number of connected 162 

components is a count of the number of disconnected sub-graphs in the main network and is a 163 

measure of the connectivity of the graph – a graph with a high number of connected components 164 

has a low connectivity. NPC networks at day 0, 6, and 14 are shown in Figure 4D and the 165 

corresponding connected components are shown in Figure 4E. The formation of a giant connected 166 

component due to cell proliferation up to day 6 leads to an increase in the connectivity of the 167 

network, which in turn causes an increase in network efficiency. The subsequent disaggregation 168 

of the large component into smaller modules from days 6 to 14 contributes to the decrease in 169 

efficiency seen in that time period.  170 
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Motif counts indicative of rosette-like topologies. We observed relatively high motif counts 171 

(star-patterns and loops) at early time points of culture (Supplemental Figure 4). Neuroepithelial 172 

cells are known to self-organize in vitro into rosette structures reminiscent of cross-sections of the 173 

Figure 5. Motif counts indicate the presence of rosette-like structures. (A) Graph

representations of NPC networks at day 1, 4 and 7; soma outlines are shown in red, proximity

edges in yellow and edges part of a 4-star motif are highlighted in cyan. (B) Insets from

corresponding images in panel A. (C) 4-star motif counts, normalized by the total possible 4-

tuples. Note that 5-star and 6-star motif counts displayed similar trends (data not shown). (D)

Schematic representation of rosette-like structures as a source of 4-star motifs. Values are

reported as the mean across N = 10 networks  S.E.M. 
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embryonic neural tube (Wilson and Stice 2006). We hypothesized that the high number of loops 174 

and star-motifs at early time points was caused by rosette-like formations in culture. In order to 175 

investigate this more closely, we collected an additional dataset where differentiating cultures 176 

were continuously monitoring for 8 days at 1-hour intervals (Supplemental Video 1 and 2). We 177 

observed radial arrangements of columnar cells 1-2 days after removal of bFGF followed by 178 

disaggregation of these structures after day 4 (Figure 5A, 5B). 4-star motifs – topological patterns 179 

with 1 central hub cell and 4 spoke cells – are highlighted in Figure 5B and the normalized counts 180 

are shown in Figure 5C. 5- and 6-star motif counts showed similar trends (data not shown). Thus, 181 

the relative abundance of high-degree motifs at early time points can be attributed to the unique 182 

spatial arrangement of cells in a rosette-like structure (Figure 5D) and the low count at later time 183 

points corresponds to the disaggregation of these structures and more regular arrangements of 184 

cells.  185 

 186 

Discussion 187 

Because chemical and electrical signaling between neural progenitor cells often involves direct 188 

contact between adjacent cells, we expect spatial cell organization to be an important aspect of 189 

neural development. Two examples where spatial organization would play a role include the 190 

Notch/Delta signaling and gap junctional communication between cells. The Notch/Delta 191 

signaling pathway, which influences the proliferation and neuronal fate commitment of 192 

progenitor cells (Zhou et al. 2010; Androutsellis-Theotokis et al. 2006), is an example of 193 

juxtacrine chemical signaling. The canonical Notch signaling pathway functions through the 194 

binding of a transmembrane ligand on one cell with the transmembrane receptor on a contacting 195 

cell, resulting in the release of the notch intracellular domain (NICD) to initiate downstream 196 

signaling cascades in the contacting cell (Andersson, Sandberg, and Lendahl 2011). In addition, 197 

immature neural circuits are known to display spontaneous electrical activity, which is an 198 
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important aspect of their proper development (Spitzer 2006; Blankenship and Feller 2010). Gap 199 

junctions or electrical synapses allow direct access between cells and result in exchange of ions 200 

and growth factors, and these are known to be important in the propagation of spontaneous 201 

electrical activity. Indeed, neural progenitor cells have been shown to display structured and 202 

synchronous calcium activity, dependent on gap junctions and which promotes cell proliferation 203 

(Malmersjö et al. 2013). More broadly, structured cell-cell communication has been implicated in 204 

coordinated chemosensing (Sun et al. 2012) and migration during development (Friedl and 205 

Gilmour 2009). Thus, the methods of cell-cell communication employed by immature neural cells 206 

indicate the significance of spatially organized electrical and chemical signaling.  207 

 208 

Our study provides quantification of the spatial organization of immature neural cells during 209 

differentiation, using a unique application of graph theory. The experimental paradigm presented 210 

here enabled us to uncover relationships between spatial topology of NPC communities and 211 

functional maturation of developing neural circuits, and allowed us to develop hypotheses about 212 

the role of certain topologies on NPC function. It is to be noted that not all metrics derived from 213 

graph theory have a ready biological interpretation, especially in the context of spatial graphs. For 214 

example, interpretation of metrics like degree-degree correlations and rich-club metric 215 

(Supplemental Figure 4) are limited, due to the implicit limit in the type of connections that are 216 

possible in spatial graphs. Keeping this in mind, we analyzed metrics with an intuitive biological 217 

interpretation, i.e., information flow and connectivity. 218 

 219 

We use our graph-based approach to analyze trends in information flow in NPC networks. Global 220 

network efficiency rises from day 0 – 6, and then falls from day 6 – 14. The trend in network 221 

efficiency is intuitively explained by its negative correlation with the number of connected 222 

components, a measure of graph connectivity. Cell proliferation from day 0 – 6 leads to the 223 

merging of many disconnected clusters of cells into a giant connected component, leading to a 224 
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rise in the overall connectivity and reduction in the average path length. The reorganization of the 225 

giant component into smaller modules from day 6 – 14 leads to a reduction in network efficiency. 226 

Overall, our data indicates that the topologies observed at intermediate stages of differentiation 227 

would facilitate cellular behavior requiring network-wide coordination, like chemosensing, 228 

migration and proliferation (Figure 6).  229 

 230 

We observed a constant rise in clustering coefficient, a measure of efficiency in local information 231 

flow. Previous studies on dissociated cultures have shown the prevalence of clustering of neuron 232 

cell bodies during maturation in culture (Shefi et al. 2002; de Santos-Sierra, Sendiña-Nadal, 233 

Leyva, Almendral, Ayali, et al. 2014), indicating a common pattern in neuron self-organization 234 

and wiring. High clustering facilitating local computations, accompanied by long-range neurite 235 

connections to connect different clusters has been hypothesized to facilitate increased wiring 236 

efficiency in mature neural circuits. The characteristic “small-world” network topology is also 237 

hypothesized to be the organizing principle in the human brain (Bullmore et al. 2009). Thus, the 238 

reorganization of cell bodies into highly clustered units in our study supports this view of 239 

maturing neural circuits. 240 

 241 

The fall of network efficiency and rise of clustering coefficient (compared to random networks) 242 

from day 6 -14 indicates a shift from topologies favoring global information flow to those 243 

favoring information flow in more restricted neighborhoods. It is interesting to note that this shift 244 

occurs around the time mature neuronal phenotypes appear in culture. We believe this indicates a 245 

shift in the mode of communication from network-wide signaling to a more structured, 246 

hierarchical form of communication in mature neuronal networks. As discussed previously, 247 

network-wide communication is implicated in facilitating behaviors like cell proliferation, 248 

migration and coordinated chemosensing, while the reorganization of more mature neuronal 249 
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cultures into highly clustered cell bodies likely serves the purpose of increasing the wiring 250 

efficiency. Conceptually, these ideas are represented in the schematic in Figure 6.  251 

 252 

Our method also detected the formation of neural rosette-like structures. Neural rosettes are 253 

known to harbor specific phenotypes such as apico-basal polarity, active Notch signaling and 254 

interkinetic nuclear migration, all of which are involved in the proper sequential production of 255 

neurons and glia (Abranches et al. 2009; Wilson and Stice 2006). We found that high-degree star-256 

motifs (comprising of a hub cell with 4-6 spoke cells) were present in high numbers at early time 257 

Figure 6. Schematic illustrating the observed changes in neural cell information
flow during differentiation. 
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points (within 1-2 days of the differentiation stimulus) due to the unique geometric arrangement 258 

of cells forming rosette-like structures. We also observed a decrease in star-motif counts 259 

corresponding with the disaggregation of these structures after day 4. These results further 260 

highlight the useful biological information that can be obtained through topological analysis of 261 

differentiating hNPCs. 262 

 263 

In this study, we show that network analysis provides unique information about the structure of 264 

neural progenitor cell communities at the local and global levels. It remains to be seen whether 265 

spatial topology of developing cultures is predictive of synaptic connectivity in mature neuronal 266 

networks. Several in vivo studies have provided evidence for a structure-functional relationship 267 

between adult neuronal wiring and the spatiotemporal origin of the constituent neurons. For 268 

example, sister excitatory neurons in the neocortex are more likely to develop synapses with each 269 

other rather than with other cells (Yu et al. 2009), and the electrophysiological phenotypes of 270 

GABAergic interneurons have been shown to be dependent on the time and place of their birth 271 

(Butt et al. 2005). Thus, the analysis of spatial topology in developing neuronal circuits in a 272 

controlled setting has the potential to uncover structure-function relationships in the resulting 273 

mature neural circuits. 274 

 275 

The present study also lays the foundation for analysis of the role of cellular neighborhood on cell 276 

fate determination of individual progenitor cells. The expression of cell-fate determination factors 277 

such as bHLH transcription factors like Hes1 and Ngn2, and proteins involved in cell-cell 278 

communication pathways such as Notch/Delta proteins, have been shown to be tightly coupled 279 

with each other (Shimojo, Ohtsuka, and Kageyama 2008; Kageyama et al. 2009). Computational 280 

modeling studies have predicted that Notch-Hes1 intercellular signaling affects differentiation 281 

and cell cycle progression of individual cells and this signaling is important for the maintenance 282 

of an optimal balance between differentiating cells and self-renewing progenitor cells (Pfeuty 283 
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2015). The spatial dynamics of cell-cell signaling and its impact on single-cell differentiation 284 

status is an intriguing subject for future study.  285 

 286 

In conclusion, we present a multiplexed approach integrating long-term live imaging, automated 287 

image analysis, and a unique graph-based analysis to quantify the spatial organization of neural 288 

progenitors during neuronal differentiation. Our method introduces a tangible means to test 289 

theories about spatially-dependent forms of neural cell communication. Insights from this study 290 

help further our understanding of the design principles involved in the development of functional 291 

neural networks. Applications of this work can help pave the way for systematic modulation of 292 

neural cell self-organization for therapeutic purposes.   293 

 294 

Methods 295 

 296 

hNPC culture. Human neural progenitor cells (hNP1TM) derived from H9 human embryonic 297 

stem cells were obtained from ArunA Biomedicals (Athens, GA). Cells were expanded on tissue 298 

culture flasks pre-coated with either fibronectin (Sigma-Aldrich) or Matrigel (BD Biosciences), in 299 

proliferation medium consisting of AB2TM basal neural medium, ANSTM neural supplement (both 300 

supplied by manufacturer), 10 ng/ml leukemia inhibitory factor (LIF; EMD Millipore), 20 ng/ml 301 

basic fibroblast growth factor (bFGF; R&D Systems) and 2 mM GlutaMAXTM supplement (Life 302 

Technologies). For neuronal differentiation experiments, cells were plated on different substrates 303 

pre-coated with Matrigel and cultured in differentiation medium (proliferation medium lacking 304 

bFGF). 305 

 306 

Electrophysiology. For whole-cell patch clamp experiments, cultures were maintained in 307 

extracellular recording solution containing 119 mM NaCl, 5 mM KCl, 10 mM HEPES, 2 mM 308 

CaCl2 and 1mM MgCl2, titrated to a pH of 7.3. Pipettes (5-10 MΩ) were pulled from standard 309 
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borosilicate glass capillaries and back filled with intracellular recording solution containing 8 mM 310 

NaCl, 10mM KCl, 5 mM HEPES, 0.06 mM CaCl2, 5 mM MgCl2, 130 mM potassium gluconate 311 

and 0.6mM EGTA, titrated to a pH of 7.4. Recordings were performed using a MultiClamp 700A 312 

amplifier and a Digidata 1550 Data Acquisition System coupled with Clampex 10.4 software 313 

(Molecular Devices). Traces were analyzed in MATLAB.  314 

 315 

In voltage-clamp experiments, cells were held at a holding potential of -50mV and given a series 316 

of voltage steps from -90 to +100 mV. In current-clamp experiments, cells were held at 317 

approximately -70 mV through minimal current injection before application of a series of current 318 

steps ranging from -40 to +120 pA. Magnitudes of the current steps were modified according to 319 

the input resistance. Peak outward current amplitude was measured 40ms after the initiation of 320 

the voltage sweep. Peak inward current was defined as the maximum transient negative current at 321 

any command voltage. 322 

 323 

Immunocytochemistry. For immunostaining experiments, hNPCs were plated on Matrigel-324 

coated 12 mm glass coverslips and differentiated as described above. Cultures were fixed with 325 

4% paraformaldehyde for 20 min, permeabilized with 0.2% Triton-X for 5 min and blocked with 326 

6% goat serum for 45 min. Primary antibodies used were mouse Nestin (1:200) and rabbit MAP2 327 

(1:500). Secondary antibodies were Alexa Fluor 488 goat anti-mouse (1:1000), Alexa Fluor 594 328 

goat anti-rabbit (1:1000) and cell nuclei were stained using Hoescht dye. 329 

 330 

Time-lapse Microscopy. For all time-lapse imaging experiments, hNPCs were plated at 331 

approximately 50% confluence on 12-well plates pre-coated with Matrigel and switched to 332 

differentiation medium 24 hours post-plating. Two datasets (biological replicates) were obtained 333 

by imaging the well plates at days 0, 3, 6, 9, 12 and 14 after withdrawal of bFGF from culture 334 

medium, using an automated stage Nikon Eclipse Ti-E Microscope. At the start of the 335 
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experiment, 5 locations were chosen arbitrarily for each well, and the same locations were imaged 336 

at each time point. Imaging sessions lasted about 10 minutes and the plates were returned to the 337 

incubator after imaging. A third dataset was obtained through continuous imaging, for which the 338 

well plate was mounted on the stage of the microscope in a bold line cage incubator (Okolabs) 339 

equipped with temperature control and gas flow rate control enabling a 370C 5% CO2 340 

environment. For this dataset, images were acquired at 1-hour intervals for 8 days (Supplemental 341 

Video 1). In all imaging experiments, 8-bit phase contrast images were acquired through a 10X 342 

objective and at a resolution of 1280 x 1080 pixels. Physical pixel size was 0.64μm. 343 

 344 

Image Processing. Image sequences were chosen for analysis based on the ability of a human 345 

observer to distinguish cellular features in the images. Images with large amounts of debris 346 

occluding cells were discarded manually. In this manner, a total of 16, 14 and 10 image 347 

sequences for each of the 3 independent datasets were chosen for analysis. 348 

 349 

The selected time-lapse image sequences were analyzed using custom-written MATLAB code. 350 

Grayscale images were pre-processed by applying a median filter with a neighborhood of 3x3 351 

pixels to remove noise and segmented using an unbiased intensity-gradient thresholding approach 352 

(Curl et al. 2004). Starting from the grayscale image, the first derivative of the pixel intensity 353 

histogram was calculated. Fitting a linear function to the ascending portion of the first derivative 354 

and extrapolating to the x-axis resulted in a grayscale threshold, which was used to generate a 355 

binary image distinguishing cellular features from the background. Morphological operations 356 

performed on the binary image were: 357 

1. Small objects of size lesser than 50 pixels were removed to filter out noise and other 358 

imaging artifacts. 359 
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2. Morphological opening was performed using a disk structuring element of radius 4 360 

pixels. This was done to separate linear features (neurites), and circular features (cell 361 

bodies). 362 

3. Neurites were skeletonized using the bwmorph function in MATLAB to obtain neurite 363 

length statistics. 364 

4. Cell bodies were separated using connected component labeling using the default 8-365 

connected neighborhood. 366 

5. Cell body objects smaller than 150 pixels and those touching the image border were 367 

removed. 368 

All parameters used in image processing are listed in Table S1.  369 

 370 

In order to quantify the accuracy of our image processing algorithms, we compared the results 371 

with manual tracing of soma. These results showed a close agreement between the numbers of 372 

cells detected by our algorithm and by manual tracing at different time points (Supplemental 373 

Figure 1).  374 

 375 

Graph Representation of Microscope Images. For each pair of soma, a threshold distance for 376 

proximity was defined as the average of the two soma diameters, multiplied by a scaling factor 377 

(S). If the Euclidean distance between the soma centroids was lower than the threshold distance 378 

computed, then the pair of soma was connected with a “proximity edge” (Figure 3E-G).  379 

 380 

In order to capture changes in network structure across a 14-day period of differentiation, we 381 

chose to use label-free phase contrast imaging (Weber et al. 2013). Immunostaining or the use of 382 

fluorescent reporters would have resulted in images with better signal-to-noise to aid in image 383 

analysis, but we chose to avoid these methods due to the inability to perform longitudinal imaging 384 

without harming cell health. Due to the limits of our imaging method, automated image 385 
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segmentation often detected a smaller region than the exact cell boundary. In order to compensate 386 

for this, we used a scaling factor to define spatial proximity for graph representations. Small 387 

values of the scaling factor (1<S<2) resulted in sparse graphs, where interpretation of metrics 388 

became difficult. Higher values of the scaling factor (2<S<3) resulted in qualitatively similar 389 

results (Supplemental Figure 2), and we therefore chose S = 2 as the default scaling factor. 390 

 391 

Metric Computation. All the network metrics described in Table 1 were computed using 392 

custom-written code, building upon the routines provided in (Bounova and De Weck 2012). In 393 

addition, some parameters like connected components and path lengths were computed using 394 

built-in MATLAB functions.  395 

 396 

Random graphs were constructed through degree-preserving rewiring, maintaining the degree 397 

distribution of the original graph (Supplemental Figure 3). Each link (edge) belonging to any 398 

given node in the original graph was randomly re-assigned to a node that was chosen from all 399 

possible nodes with uniform probability. Metrics computed for random graphs were averaged 400 

across 100 different realizations of the random graphs. This mode of random graph generation 401 

was chosen to eliminate finite-size effects inherent in other models of random graphs such as 402 

Erdõs-Rényi random graphs. 403 

 404 

To ensure robustness of the network metrics, we tested varying fields of view for the images, and 405 

confirmed the trends remained consistent (Supplemental Figure 5). 406 

Statistical Analyses. Data are presented as means ± S.E.M. of a minimum of 3 experiments, 407 

unless indicated otherwise. Student t-test was performed to analyze peak currents in 408 

electrophysiology experiments, with significance accepted at *P < 0.05. 409 

 410 
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