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ABSTRACT

The architecture of the mammalian brain has been characterized through decades of innovation in the
field of network neuroscience. However, the assembly of the brain from progenitor cells is an immensely
complex process, and a quantitative understanding of how neural progenitor cells (NPCs) form neural
networks has proven elusive. Here, we introduce a method that integrates graph-theory with long-term
imaging of differentiating human NPCs to characterize the evolution of spatial and functional network
features in NPCs during the formation of neural networks in vitro. We find that the rise and fall in spatial
network efficiency is a characteristic feature of the transition from immature NPC networks to mature
neural networks. Furthermore, networks at intermediate stages of differentiation that display high spatial
network efficiency also show high levels of network-wide spontaneous electrical activity. These results
support the view that network-wide signaling in immature progenitor cells gives way to a hierarchical

form of communication in mature neural networks. We also leverage graph theory to study the spatial
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features of individual cell types in developing cultures, uncovering spatial features of polarized
neuroepithelium. Finally, we employ our method to uncover aberrant network features in a
neurodevelopmental disorder using induced pluripotent stem cell (iPSC) models. The “Living Neural
Networks” method bridges the gap between developmental neurobiology and network neuroscience, and

offers insight into the relationship between developing and mature neural networks.

INTRODUCTION

The study of complex, multiscale brain networks using concepts from graph theory and network science
— an approach collectively termed network neuroscience — has enabled significant insight into the
structural and functional organization of the brain’?. Micro-connectomics — the study of organizational
principles of neuronal networks at the cellular scale®?, is an important subset of complex brain networks
that has yielded insight into architectural features of the nervous system at the level of their basic building
blocks. A number of studies have applied graph-theoretic approaches to study the functional and
anatomical connectivity of in vitro neuronal cultures formed from dissociated cells*”. These studies have
shown, for instance, that in vitro neuronal networks self-assemble in a small-world topology with high
clustering and low path length. Micro-connectomic analyses of slice cultures®®, and more recently, large-
scale network reconstructions®, have revealed fundamental properties of mammalian cortical networks,
such as long-tailed synaptic connectivity, the presence of preferentially connected subgroups of neurons
and overrepresentation of certain network motifs. However, despite the progress made in understanding
the fundamental architectural features of neural networks, no models have been available to study the
development of human neural networks from progenitor cells in a quantitative manner, nor have there

been tools to characterize the spatial and functional dynamics of network formation at the cellular level.
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Cell-cell communication among neural progenitor cells (NPCs) is an essential aspect of human nervous
system development. Neural progenitor cells cluster together in specialized microenvironments or niches
where communication with neighboring cells plays an important role in determining cell behavior'!. Prior
to the formation of functional synapses, NPCs display structured intercellular communication that plays a
critical role in the spatiotemporal control of self-renewal and differentiation, and shapes developing
neural circuits. Examples of structured cell-cell communication include patterned, spontaneous electrical

activity mediated partly through gap junctional coupling?*™4

, maintenance of intercellular configurations
through tight junction proteins®® and control of cell differentiation through Notch signaling'®'’. Notably,
the predominant forms of communication employed by NPCs can be described as juxtacrine signaling, i.e.,
requiring direct cell-cell contact. This is in contrast to communication in mature neuronal networks, where
the physical wiring among neurons is important and network-wide information is conveyed primarily

through synaptic contacts. Given the dominance of juxtacrine modes of signaling among progenitor cells,

graph-theoretic approaches need to be modified to study developing neural networks.

To enable the bridge between development and network neuroscience, we harness another emerging
technology: directed differentiation of human stem cells. In recent years, significant advances in stem cell
differentiation protocols have made it possible to produce a multitude of neuronal types and have
provided a standardized workflow for generating functional human neurons in vitro®. Monolayer cultures
of human stem cells capture many aspects of in vivo neural development, such as spatial and temporal

1920 |In addition, iPSC models have been used to study aberrant

features of cortical neurogenesis
development in several neurodevelopmental disorders??2, The ubiquity of stem cell differentiation

protocols provides a unique opportunity to study the self-assembly of neural networks in a dish.
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Figure 1. Schematic of the Living Neural Networks paradigm. (a) Global network analysis to uncover broad
trends in NPC spatial arrangement, with parallel functional assays. (b) Local network analysis to reveal
spatial coordinates of individual cells in culture.

In this report, we introduce a method to study network features of developing human neural networks at
the global and single-cell levels. We use long-term imaging coupled with automated image analysis to
develop network representations of cell spatial topology and assign spatial coordinates to individual cells
(Figure 1). We use our method to demonstrate that two independent human NPC cell lines exhibit a
similar rise and fall in spatial network efficiency that characterizes the maturation of in vitro neural
networks. We demonstrate that high spatial network efficiencies at intermediate stages of neural
differentiation are linked with high levels of spontaneous electrical activity. We also use the graph method
to uncover the spatial coordinates of specific cell types in developing cultures and aberrant spatial
phenotypes in a neurodevelopmental disease model. The paradigm presented here can be used to
uncover fundamental features of neural network formation from progenitor cells and link cellular spatial

organization to function.
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RESULTS

Functional characterization and spatial network representation of differentiating NPC cultures.
In the first part of this study, we used primary hNP1 neural progenitor cells derived from H9 human

embryonic stem cells. These cells were maintained as undifferentiated, mitotic progenitor cells in the
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Figure 2. Functional characterization and spatial network representation of differentiating NPCs. (a)
hNP1 cells at day O stain positively for Nestin. (b) Cells at day 14 stain positive for MAP2. In (a-b) nuclei
are labeled by Hoescht; scale bar = 100um. (c) Peak inward and outward currents determined through
whole-cell patch clamp electrophysiology. Sample sizes: n=17, n=25, n=33 cells recorded for day 0-2, day
4-8 and day 10-14 respectively. Error bars represent SEM; *p < 0.05 from two-sample t-test. (d) Voltage-
gated inward and outward currents seen in a cell at day 14. Voltage steps applied were from -60mV to
+90mV in 10mV increments. (e) Weak action potentials evoked from the same cell through current
injection. Magnitudes of current injected are -30pA, +20pA and +120pA from holding. (f) Representative
phase contrast image of hNP1 cells, shown at day 3; scale bar = 50 um. (g) First derivative of the pixel
intensity histogram, with a linear fit to the ascending portion shown as a red line. The point where this
line met the x-axis was used as a threshold for segmentation. (h) Binary image obtained upon thresholding
the grayscale image. (i) Separation of linear features through morphological opening of the binary image
yields cell bodies (blue) and neurites (red). (j) Phase contrast image from (f) with soma boundaries overlaid
in red, and proximity edges shown in yellow. Inset shows six soma, of which two pairs (1, 2) and (4, 5) are
connected by proximity edges; the intercellular distance for these two pairs are smaller than their average
diameter multiplied by a scaling factor S =2; Soma 3 and 6 are isolated nodes since they are not sufficiently
close to any other soma. All microscope images are displayed with enhanced contrast for easy
visualization.
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86  presence of basic fibroblast growth factor (bFGF). Withdrawal of growth factors from culture medium was
87  used to induce spontaneous differentiation of hNPCs%.
88
89 First, we performed immunocytochemistry and whole-cell patch clamp electrophysiology experiments to
90  uncover the time course of functional development in differentiating hNP1 cells. Multipotent NPCs prior
91 to beginning neural induction were uniformly positive for Nestin, a Type VI intermediate filament protein
92 expressed by dividing neural progenitor cells (Figure 2a). Cells at day 14 of neural induction were positive
93  for microtubule-associated protein-2 (MAP2), a protein associated with dendrite formation in maturing
94  neurons (Figure 2b). Analysis of peak inward and outward currents from voltage-clamp experiments
95 showed that cells at all developmental stages exhibited equivalent levels of outward currents, but showed
96 increasing magnitudes of inward currents (Figure 2c, d). Inward currents are typically driven by voltage-
97  gated sodium channels and their presence indicates a more mature neuronal phenotype. Furthermore,
98  weak action potentials could be elicited from cells showing inward currents at later time points (3/11 cells
99  at day 14) through current injection (Figure 2e). These experiments demonstrated that Nestin-positive
100  hNP1 cells matured over 14 days to MAP2-positive neurons, with neuronal fate commitment likely
101 occurring between days 4-8, as indicated by the appearance of functional neuronal phenotypes in that
102  time period.
103
104  In order to uncover topological changes in differentiating hNP1 cells, we combined long-term imaging of
105  differentiating cultures with a graph-based approach for quantifying cell community structure.
106 Differentiating cultures were imaged at days 0, 3, 6, 9, 12 and 14 after withdrawal of bFGF. An additional
107  dataset was obtained by imaging differentiating cultures at 1-hour intervals for a total duration of 8 days

108 (Supplementary Video 1). Selected image sequences were analyzed using custom image-processing
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109  algorithms, resulting in the extraction of soma and neurites for each phase-contrast image (Figure 2f-i)
110  (see Methods for details).

111

112  We built network representations of spatial topology by denoting cell soma as nodes and using spatial
113 proximity between soma to assign edges (Figure 2j, k). The resulting adjacency matrix, 4, represented the
114 spatial topology of cells, where 4; ; = 1 if an edge existed between cells i and j, and 0 otherwise. In this
115 manner, we constructed non-weighted, undirected graphs representing hNP1 communities from
116  microscope images (Supplementary Video 2).

117

118  Structure and information flow in NPC spatial graphs

119 In order to describe the structure and topology of hNP1 spatial graphs, we evaluated 17 metrics derived
120  from graph theory that were computed and normalized appropriately to account for network size (Table
121 1)?*. The network metrics provide information on various aspects of the graph structure such as
122 information flow, connectivity and abundance of motifs (repeating patterns of cell arrangements).
123  Through analyses of the covariance matrix of 17 metrics via hierarchical clustering, we were able to
124  identify several strong positive correlations among degree-related metrics including average degree,
125  average neighbor degree and degree variances (Figure 3a). We also identified negative metric correlations
126  including those between network efficiency and number of connected components, as well as between
127  clustering coefficient and all degree-related metrics. In the following section, we focus on metrics that
128 have intuitive biological interpretations, their trends across time of differentiation, and their observed
129  relationships with other metrics. Additional trends in metrics are presented in Supplementary Figure 4.

130

131 Network efficiency and clustering coefficient are commonly used measures of efficiency in global and local

132  information flow?® (Table 1). When applied to hNP1 networks, these metrics describe the efficiency of
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133 information exchange at the network-wide and local neighborhood levels through cell soma proximity
134  (compared to random graphs obtained through degree-preserving rewiring) (Supplementary Figure 3). In
135 this context, information exchange could include the flow of ions through gap junctions or the diffusion
136  of chemical signals from cell to cell. Evaluation of these metrics in hNP1 networks sampled across 30
137 different spatial locations from two biologically independent experiments showed that network efficiency
138 increased from day O to day 6 and then decreased from day 6 to 14, while clustering coefficient rose
139  constantly from day O to 14 (Figure 3b,c). Thus, there appears to be a transition from topologies favoring
140  global information flow to those favoring a hierarchical form of communication, occurring between day 6

141 and 14 of differentiation.

142
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Table 1. Global metrics computed, their descriptions, and mode of normalization to account for the network size. n = number of nodes, m =

number of edges.

Graph Metrics Shorthand Definition Normalization
Average degree of graph, normalized by total maximum Maximum possible degree, (n — 1)
ible d
Network Density = NetworkDensity possible degree m
NetworkDensity = ————
v nn—1)
Variance in vark Variance of normalized node degree sequence Node degree sequence normalized
Degree by maximum possible degree, (n-1)
Network Standard deviation of normalized node degree -

Heterogeneity

NetworkHeterogeneity

sequence divided by mean of degree sequence

Average Neighbor

avgeK_neighbor

Average degree of node neighborhood, across all nodes

Maximum possible degree, (n-1)

Degree
Variance in . Variance of the normalized average neighbor degree -
. varK_neighbor
Neighbor Degree sequence
The average reciprocal of shortest path length across all Average network efficiency of 100
pairs of nodes, E random graphs generated through
Ne-tv.vork NetworkEfficiency degree-preserving rewiring,. Emm?.
Efficiency Random graph generation is
illustrated in  Supplementary
Figure 3.
Average Fraction of total possible links among the neighbors of a Average clustering coefficient of
g. . - node that are actually present, averaged across all 100 random graphs generated
Clustering ClusteringCoefficient .
- nodes, C through degree-preserving
Coefficient .
rewiring, Crand
Number of Number of disconnected sub-graphs in main graph -
connected nConnectedComponents
components
Average Size of Average number of nodes in each connected Total nodes,n
Connected AvgeComponentSize component
Components
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Variance in size of

connected VarComponentSize
components
N_etwork NetworkDiameter Longest shortest path length of network Longest possible path, (n-1)
Diameter
Triangular loop Number of loops of 3 nodes Total possible number of triplets,
nLoops3 "
count Cs
4-star motif Number of star motifs with one hub and three spokes Total possible number of 4-tuples,
nStar4 "
Count Cs
. Number of star motifs with one hub and four spokes Total possible number of 5-tuples,
5-star motif count nStar5 nC
5
. Number of star motifs with one hub and five spokes Total possible number of 6-tuples,
6-star motif count nStar6

"Ce

Rich-Club Metric
Average

Measure of the tendency of nodes with high number of
links to be well connected among each other?;

AvgeRichClubMetri
vBeRIchtlubivietnc Computed for threshold degrees between 1 and (n-1)

Average Rich-Club Metric of 100
random graphs generated through
degree-preserving rewiring,
RCM,gng

Assortativity

Pearson correlation coefficient of degrees between

Assortativi
ssortativity pairs of linked nodes?’.

"8sUd0I| [eUONBUIBIU| O'Y AG-DDR
Japun a|qejrene apew si 1| ‘Ainadiad ul uudaid ayy Aejdsip 01 asuadl| B AixHolq pajuelb sey oym ‘1spunyioyine ayl si (mainai 1aad Aq palined
Jou sem yaiym) uudaud siyy 1oy Japjoy buAdod ayL '8T0Z ‘0E AInC paisod uolsian SIUl ‘EESSS0/T0TT 0T/BI0 1op/:sdny :1op uudaid Aixygolq


https://doi.org/10.1101/055533
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/055533; this version posted July 30, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

147

nConnectedComponents
Assortativity
NetworkHeterogeneity
nLoops3
NetworkDensity
avgeK_neighbor

varK

varK_neighbor

nStar4

nstar6

nStar5
NetworkDiameter
avgeRichClubMetric
ClusteringCoefficient
varComponentSize
NetworkEfficiency
avgeComponentSize

05

-05

J

Su
Su
Su
en

en

b

JoquBiau”yebae
gsdoou

sziguaUCdWOnatAE
fouspiyIHiomsN
azIGJuBUOdWODIEA
Jualiysopbuusisn)
OLIBIGNID YOIy abAe
JajoWeIgOMBN
JoqyBiauy.
AusuagyiomaN
fisusBoselepHOMBN
Aianenossy

s)usuOdWoDPajRBULODU

(o
O
o

05

Network

Efficiency

- —H

—H

— [+
X+

Coefflme_r]t
—H
i
Hi-+
HH
=H(H
nConnected
Components
I
-

Clustering

D
1) (=
ol - -
offH- -
W

o

0

Figure 3. Spatial network efficiency is highest at intermediate stages of differentiation. (a) Correlation
heatmap of all metrics obtained by hierarchical clustering of the covariance matrix. Clustering was
performed using average linkage and Pearson correlation as the distance metric (shown in legend). Rows
and columns are labeled with shorthand for metrics (Table 1). (b) Box plot of network efficiency across
time. (c) Box plot of clustering coefficient across time. (d) Box plot of number of connected components
across time. (e) Spatial graph representations of images taken at day 0, day 6 and day 14. Cell soma are
outlined in red and edges are shown in yellow; scale bar = 50um. (f) Cell soma from the images in (e), with
each connected component labeled with distinct colors. For box plots in (b-d), red notches represent
median (Q2), length of boxes represent interquartile range (IQR), length of notches represent Q2 +
(1.57 X IQR/\/E), whiskers represent Q1 — (1.5 X IQR) and Q3 + (1.5 X IQR) and red circles
represent outliers. Q1 = 25" percentile, Q2 = median, Q3 = 75" percentile, n = 30 data points for each
box plot. * p < 0.00029 from Wilcoxon signed rank test (significance threshold adjusted using Bonferroni
correction for 17 statistical tests to 0.005/17 = 0.00029)
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148  The metric correlation heatmap showed a strong negative correlation between network efficiency and
149  number of connected components in the graph (Figure 3a). The number of connected components is a
150  count of the number of disconnected sub-graphs in the main network and is a measure of the connectivity
151  of the graph — a graph with a high number of connected components has a low connectivity (Figure 3d).
152 NPC networks at day 0, 6, and 14 are shown in Figure 3e and the corresponding connected components
153 are shown in Figure 3f. Analysis of NPC networks at day 0, 6, and 14 identified the formation of a giant
154  connected component likely due to continued cell proliferation through day 6 of differentiation (Figure
155  3e,f). Thisincrease in the connectivity of the network resulted in an increase in network efficiency (Figure
156  3b). The subsequent disaggregation of the large component into smaller modules between days 6 to 14
157  contributes to the decrease in network efficiency seen at later developmental stages (Figure 3b).

158

159 Development of functional and spatial networks.

160  We next probed the relationship between functional and spatial networks in developing NPCs using
161 ReNcell VM immortalized human neural progenitor cells. Differentiation induced by growth factor
162 withdrawal led to the formation of dense networks within 5 days, rapid exit from the cell cycle (as seen
163 by reduced expression of Ki67) and formation of B(lll)-tubulin-positive neurons. (Supplementary Figure
164  6a).

165

166  We performed calcium imaging using the fluorescent calcium indicator Fluo-4 to record spontaneous
167  activity in differentiating ReNcell VM cultures at days 1, 3 and 5, and employed cross-correlation analysis
168 toinfer functional connectivity in the networks (Figure 4a, Supplementary Figure 7). Analysis of functional
169  networks revealed that cultures at day 3 had significantly more activity than those at days 1 and 5, as
170  measured by the fraction of active cells (Figure 4b, Supplementary Videos 3-6). Interestingly, the

171 functional network was not restricted to cells with short intercellular distances, with cells in the whole
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field of view (832um x 702um) having highly correlated calcium activity (Figure 4c). Further, cultures at

day 3 displayed waves of calcium activity propagating through many neighboring cells, that were not seen

at later time points (Supplementary Video 5). When maintained in proliferation medium, ReNcell VM

cultures continued to divide and did not differentiate into neurons (Supplementary Figure 6b). Further,

the level of spontaneous activity in proliferation medium remained constant through day 5 of

measurement, indicating that the trends in functional network activity seen in differentiating cultures was

unique to the formation of neural networks (Supplementary Figure 6c).
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Figure 4. Functional and spatial networks in
ReNcell VM NPCs. (a) Functional networks
obtained through calcium imaging with Fluo-
4 in developing NPC networks at days 1, 3 and
5. Correlations between cells are shown as a
network plot overlaid on the maximum
intensity image from calcium image
sequences; scale bar = 50um. (b) Fraction of
active cells in the network. Active cells are
defined as cells whose normalized
fluorescence traces have three or more
calcium transients; *p < 0.005 from two-
sample t-test. (c) Plot of correlation versus
intercellular distance for day 3 network
shown in (a). Correlation threshold generated
from shuffled dataset is shown as a red line.
(d) Spatial networks  overlaid on
immunofluorescence images of nuclei
stained with Hoescht dye; scaling factor = 3.
The nucleus images correspond to the images
shown in (a). (e) Network efficiency of spatial
networks peaks at day 3. Number of
connected components shows the inverse
trend. Sample sizes: Day 1 (n=5); Day 3 (n=8);
Day 5 (n=5) for all plots. Red notches show
mean and standard deviation; *p < 0.00029
from two-sample t-test (significance
threshold adjusted using  Bonferroni
correction for 17 statistical tests to 0.005/17
= 0.00029). All microscope images are
displayed with enhanced contrast for easy
visualization.
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179  We next built spatial graphs using nucleus images from the same cultures in which calcium imaging was
180 performed (Figure 4d). Spatial networks were most efficient at day 3 with the fewest number of
181  connected components (Figure 4e). The rise and fall of network efficiency in ReNcell VM networks
182 mirrored the trends seen in hNP1 networks, with the time course of the trends indicative of network
183 maturation (Supplementary Video 7). Further, the peak in spatial network efficiency coincided with the
184  most active functional networks. This leads us to conclude that the high spatial efficiency of NPC networks
185 at intermediate time points of differentiation facilitates high levels of network-wide spontaneous activity.
186

187 Table 2. Metrics describing local network features, calculated at the level of individual cells.

Graph Metrics Symbol Definition

Degree k Number of neighbors (one link away)

Average Neighbor Degree k, Average degree of all neighboring cells

Fraction of total possible links among the neighbors of

Clustering Coefficient a node that are actually present, averaged across all
neighbors

Local Efficiency E, Average shortest path length in local neighborhood

Node Closeness Centrality Cn Sum of reciprocal distances to all other nodes

Node Betweenness Wp, Number of shortest paths that pass through the node

Centrality

188
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189  Single-cell analysis of developing neural networks

190 Toidentify the spatial and functional roles of different cell types in developing neural networks, we used
191 neural stem cells derived from the NCRM-5 human iPSC line?®. NCRM-5 NSC cultures differentiated into

192  dense networks of neurons over a period of 28 days (Supplementary Figure 8).
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Figure 5. Multiparametric single-cell analysis of day 3 NCRM-5 NSC cultures. (a) Boxplot of degree versus
Ki67 status. Ki67+ cells have higher degree than Ki67- cells. (b) Boxplot of clustering coefficient versus Tujl
status. Tujl1+ cells have higher clustering coefficient than Tuj1- cells. (c) Immunofluorescence image of day
3 NCRM-5 NSC culture with Tuj1 and Ki67 stains; scale bar - 50um. Inset is shown in yellow box with arrows
pointing to Tuj1+ neurons at the network periphery. (d) Clustering coefficient of individual cells shown as
a heatmap with spatial network overlaid; scaling factor = 3. Nucleus (DAPI) images corresponding to (c)
were used to create the spatial graph. Inset shows the same cells as inset in (c). Arrows point to Tujl+
neurons at the network periphery with high clustering coefficient. (e) Proportions of cell types comprising
high-spiking versus low-spiking calcium imaging. (f) Boxplot of degree versus spiking characteristics. High-
spiking cells have lower degree than low-spiking cells. (g) Frame from calcium imaging sequence for day
3 NCRM-5 NSC culture; scale bar - 25um. Arrows point to high-spiking, morphologically distinct cells with
few neighbors. (h) Immunofluorescence image corresponding to (g) identifying Tuj1+ and Ki67+ cell types.
(i) Heatmap of number of spikes of spontaneous calcium activity within a representative 15 min imaging
window with spatial network overlaid. (j) Calcium traces from two high-spiking cells. *p < 0.0071 from
two-sample t-test (significance threshold adjusted using Bonferroni correction for 7 statistical tests to
0.05/7 = 0. 0071).
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193  We next performed immunostaining for proliferating cells (Ki67) and new neurons (B(l1l)-tubulin/Tuj1) at
194  day 3 of differentiation and leveraged the graph theoretic approach to evaluate spatial features of
195 individual cells (Table 2). This analysis revealed that Ki67+ proliferating cells had a high degree or number
196  of neighbors compared to Ki67- non-proliferating cells in NCRM-5 cultures (Figure 5a). Further, Tujl+
197 neurons had a high clustering coefficient compared to Tujl- cells in differentiating NCRM-5 NSCs (Figure
198 5b-d). Cells with high clustering coefficient are likely to be part of cliques, a common feature of cells at
199 the edge of clusters due to geometric constraints (Figure 5d). Thus, our results suggest that proliferating
200 cells tend to be close to the center of clusters where they are surrounded by many neighbors, while newly

201 born neurons are found mostly at the edge of clusters.

202 In order to investigate the functional role of individual cells, we performed calcium imaging using Fluo-4
203 on day 3 cultures, followed by immunostaining and co-registration of the immunostain image with the
204  calcium video (Figure 1b, Supplementary Video 8-10). This analysis revealed that high-spiking cells had a
205  greater proportion of Tujl1-/Ki67- cells and a lower degree than low-spiking cells (Figure 5e,f). Through
206  visual inspection, this high-spiking population of cells exhibited qualitatively larger morphologies (Figure

207  5g-j).

208

209  Analysis of a neurodevelopmental disease model reveals aberrant network features.

210 To validate our network model for applications to study diseases, we performed spatial network analyses
211 using an iPSC disease model of Smith-Lemli-Opitz syndrome (SLOS), an autosomal recessive
212 developmental disorder resulting from mutations in DHCR7 which produces pronounced neurological
213 deficits?®. Previous studies have shown accelerated differentiation of neural progenitors derived from
214  patients with SLOS??, likely caused by decreased activity of the canonical Wnt/B-catenin signaling pathway

215 in these cells.
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216 Here, we compared the global and individual cell spatial features of day 3 differentiating cultures of
217 control (NCRM-5) and SLOS iPSC-derived NSCs (CWI 4F2). At the global level, CWI 4F2 cultures were more
218 homogeneous than NCRM-5 cultures, as indicated by the presence of fewer connected components and
219  lower network heterogeneity (Figure 6a-d, Table 1).
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Figure 6. Spatial network analysis of iPSC-derived NSCs reveals deficits in network connectivity in a
neurodevelopmental disorder model. (a) Immunostained images from day 3 cultures of CWI 4F2 SLOS
NSCs and control NCRM-5 NSCs; scale bar = 50 um. (b) Nuclei stained by DAPI corresponding to images
in (a), with spatial graph overlay; scaling factor = 3. (c) Number of connected components in NCRM-5
cultures is higher than CWI 4F2. (d) Network heterogeneity of NCRM -5 cultures is higher than CWI 4F2;
*p < 0.0029 from two-sample t-test (significance threshold adjusted using Bonferroni correction for 17
statistical tests to 0.05/17 = 0. 0029). (e) CWI 4F2 NSCs exhibit accelerated differentiation into Tujl+
neurons compared to NCRM-5 NSCs. (f) Clustering coefficient of Tuj1+ cells shows no difference to that
of Tuj1- cells in day 3 CWI 4F2 cultures. (g) Portion of differentiating CWI 4F2 NSCs immunostained
image in (a), with arrows pointing to disconnected Tujl+ neurons contributing to low clustering
coefficient in CWI 4F2 cultures.
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220  Our analyses both confirmed accelerated neural specification in CWI 4F2 cultures through day 3 and
221 revealed that Tujl+ neurons in day 3 CWI 4F2 cultures did not have a high clustering coefficient compared
222 to Tujl-cells, as was the case in NCRM-5 cultures (Figure 6e, f). This was due to the presence of many
223 more ‘lone’ neurons with higher neurite extensions in the CWI 4F2 cultures (Figure 6g). Thus, network
224  analysis revealed the presence of global and local features of spatial organization in neural cell types in a
225 neurodevelopmental disorder, validating the utility of the Living Neural Network model for the study of

226 neurological diseases.

227

228  DISCUSSION

229  Topological and functional analysis of in vitro neural networks has the potential to uncover basic
230  organizational principles of their in vivo counterparts. Our study provides a new approach which leverages
231  the directed differentiation of human stem cells to study the self-assembly of in vitro neural networks
232 from neural progenitor cells. We quantified the spatial organization of immature neural cells during
233 differentiation, using a unique application of graph theory. The experimental paradigm presented here
234  enabled us to uncover relationships between spatial topology of NPC communities and functional
235 maturation of developing neural circuits, and allowed us to develop hypotheses about the role of certain
236  topologies on NPC function.

237

238 Because chemical and electrical signaling between neural progenitor cells often involves direct contact
239  between adjacent cells, we expect spatial cell organization to be an important aspect of neural
240  development. Two examples where spatial organization would play a role include Notch/Delta signaling
241  and gap junctional communication between cells. The Notch/Delta signaling pathway, which influences

30,31

242 the proliferation and neuronal fate commitment of progenitor cells*®?*, is an example of juxtacrine
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243  chemical signaling. The canonical Notch signaling pathway functions through the binding of a
244  transmembrane ligand on one cell with the transmembrane receptor on a contacting cell, resulting in the
245 release of the notch intracellular domain (NICD) to initiate downstream signaling cascades in the
246  contacting cell®’. In addition, immature neural circuits are known to display spontaneous electrical
247  activity, which is an important aspect of their proper development!*!4 Gap junctions or electrical
248  synapses allow direct access between cells and result in exchange of ions and growth factors, and these
249 are known to be important in the propagation of spontaneous electrical activity. Indeed, neural progenitor
250 cells have been shown to display structured and synchronous calcium activity, which depends on gap
251  junctions and which promotes cell proliferation!?. More broadly, structured cell-cell communication has
252 been implicated in coordinated chemosensing®® and migration during development34. Thus, the methods
253  of cell-cell communication employed by immature neural cells indicate the significance of spatially
254  organized electrical and chemical signaling.

255

256  We found that the rise and fall in spatial network efficiency was a reproducible feature in NPC networks,
257  and believe this is a characteristic feature of the transition from immature NPC networks to mature
258  neuronal networks. Global network efficiency is low in proliferating NPC topologies, rises to a peak in
259 intermediate cultures, and then drops off as cells mature into neuronal networks. The trend in network
260 efficiency is intuitively explained by its negative correlation with the number of connected components,
261  a measure of cell connectivity. Cell proliferation in the early stages of differentiation causes the merging
262  of many disconnected clusters of cells into a giant connected component, which leads to a rise in the
263  overall spatial connectivity and reduction in the average path length. The reorganization of the giant
264  component into smaller modules at later stages leads to a reduction in network efficiency.

265
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266  Of particular developmental importance, we determined the peak of spatial network efficiency coincides
267  with the appearance of electrophysiologically mature neurons in culture and high levels of spontaneous
268  network-wide calcium activity, respectively, in the cell lines we studied (hNP1 and ReNcell VM cells).
269  Additionally, levels of spontaneous activity drop off in more mature cultures which have significant neurite
270  outgrowth and more clustered cell bodies. The spatial and functional architecture of mature cultures is
271 consistent with previous evidence of highly clustered units developing in neuronal cultures®’. The
272 reduction in network-wide spontaneous activity in more mature cultures is consistent with a transition
273  from a global to a hierarchical structure of communication.

274

275 By adapting the graph-based approach at the single-cell level, we also found that specific cell types have
276  unique spatial coordinates in developing NSC cultures derived from human iPSCs. We found that Ki67+
277  proliferating cells had a higher average number of neighbors than non-proliferating cells and newly born
278  Tujl+ neurons had high clustering coefficients indicative of their locations at the culture periphery. These
279  results correspond to previously observed features of polarized neuroepithelium — prevalence of mitosis
280 near the lumen and migration of differentiated cells to the periphery®®. Further, by coupling calcium
281 imaging experiments with spatial analysis of specific cell types, we found that high-spiking cells tend to
282  have reduced numbers of neighbors and have a higher proportion of Tuj1-/Ki67- cells. Through visual
283 inspection, we observed these cells had large morphologies. Based on their morphological and spatial
284 properties, we hypothesize this cell population may represent a basal progenitor cell population
285  previously observed in differentiating NSC cultures®>®,

286

287  We then leveraged spatial network analysis to uncover features of aberrant neural networks in an iPSC
288 model of a neurodevelopmental disorder, Smith-Lemli-Opitz syndrome. Global network analysis

289 demonstrated that developing SLOS cultures were more homogeneous than control NCRM-5 cultures at
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290 the same stage of differentiation. We believe this indicates that normal differentiation is characterized by
291 the presence of NSC clusters of a wide size distribution, a feature that is disrupted in SLOS. Further, the
292 higher number of neurons in SLOS cultures comprised a large number of ‘lone’ cells with high neurite
293  extension. While the mechanisms underlying altered neural networks in SLOS are unclear, published
294  findings related to cytoskeletal remodeling or diminished B-catenin signaling affecting cadherin function
295  are possibilities?>3°.

296

297 In this study, we show that network analysis provides unique information about the structure of neural
298  progenitor cell communities at the local and global levels. It remains to be seen whether spatial topology
299  of developing cultures is predictive of synaptic connectivity in mature neuronal networks. Several in vivo
300 studies have provided evidence for a structure-functional relationship between adult neuronal wiring and
301 the spatiotemporal origin of the constituent neurons. For example, sister excitatory neurons in the
302 neocortex are more likely to develop synapses with each other rather than with other cells¥’, and the
303 electrophysiological phenotypes of GABAergic interneurons have been shown to depend on the time and
304 place of their birth®. Thus, the analysis of spatial topology in developing neuronal circuits in a controlled
305 setting has the potential to uncover structure-function relationships in the resulting mature neural
306  circuits.

307

308 The present study also lays the foundation for analysis of the role of cellular neighborhood on cell fate
309 determination of individual progenitor cells. The expression of cell-fate determination factors such as
310 bHLH transcription factors like Hes1 and Ngn2, and proteins involved in cell-cell communication pathways
311  such as Notch/Delta proteins, have been shown to be tightly coupled with each other'’*°, Computational
312 modeling studies have predicted that Notch-Hesl intercellular signaling affects differentiation and cell

313 cycle progression of individual cells and this signaling is important for the maintenance of an optimal
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314  balance between differentiating cells and self-renewing progenitor cells®. The spatial dynamics of cell-
315 cell signaling and its impact on single-cell differentiation status is an intriguing subject for future study.
316

317 In conclusion, we present a multiplexed approach integrating long-term imaging, automated image
318 analysis, and graph theory to quantify the spatial and functional networks of neural progenitors during
319 neural differentiation. The Living Neural Networks method introduces a tangible means to test theories
320 about different forms of neural cell communication and their role in shaping functional neural networks.
321 Insights from this study help further our understanding of the fundamental design features of the brain.
322

323 METHODS

324  Cell culture. Human neural progenitor cells (nNP1) derived from H9 human embryonic stem cells were
325  obtained from ArunA Biomedicals (Athens, GA). Cells were expanded on tissue culture flasks pre-coated
326  with either fibronectin (Sigma-Aldrich) or Matrigel (BD Biosciences), in proliferation medium consisting of
327  AB2 basal neural medium, ANS neural supplement (both supplied by manufacturer), 10 ng/ml leukemia
328 inhibitory factor (LIF; EMD Millipore), 20 ng/ml basic fibroblast growth factor (bFGF; R&D Systems), 2 mM
329  GlutaMAX supplement (Life Technologies) and penicillin/streptomycin (Life Technologies). For neural
330 differentiation experiments, cells were cultured in medium lacking bFGF.

331

332 ReNcell VM immortalized human neural progenitor cells derived from the ventral mesencephalon of
333 human fetal brain were purchased from EMD Millipore. Cells were expanded on tissue culture flasks
334  coated with laminin (Life Technologies), in media containing DMEM/F12 (Life Technologies),
335  supplemented with B27 (Life Technologies), 2 pug/ml heparin (StemCell Technologies), 20 ng/ml bFGF
336 (EMD Millipore), 20 ng/ml EGF (Sigma) and penicillin/streptomycin (Life Technologies). For differentiation

337  experiments, cells were cultured in medium lacking bFGF and EGF.
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338

339 Neural stem cells were derived from two human iPSC lines, NCRM-5 and CWI 4F2, following published
340  protocols?? (Supplementary Table 3). NSCs were cultured on dishes coated with Poly-L-Ornithine and
341 Laminin, in media containing DMEM/F12 (Life Technologies), B27 without vitamin A (Life Technologies),
342 20 ng/mL EGF (Sigma), 20 ng/mL bFGF (Stemgent) and penicillin/streptomycin (Life Technologies). NSCs
343  were passaged using Accutase (Life Technologies) in medium containing 10 um ROCK inhibitor (Y276332;
344 Reagents Direct). Differentiation experiments were carried out in differentiation medium containing
345 Neurobasal media (Life Technologies), B27 with Vitamin A (Life Technologies), 10 ng/mL BDNF
346  (Peprotech), 10 ng/mL GDNF (Peprotech), GlutaMAX supplement (Life Technologies) and
347  penicillin/streptomycin (Life Technologies). The NCRM-5 and CWI 4F2 iPSC lines were originally derived
348  within the intramural program of the National Heart, Lung, and Blood Institute (NHLBI iPSC Core) and the
349 Eunice Kennedy Shriver National Institute of Children’s Health and Human Development (laboratory of
350 Forbes D. Porter).

351

352 Electrophysiology. For whole-cell patch clamp experiments, cultures were maintained in extracellular
353 recording solution containing 119 mM NaCl, 5 mM KCI, 10 mM HEPES, 2 mM CaCl, and 1 mM MgCl,,
354  titrated to a pH of 7.3. Pipettes (5-10 MQ) were pulled from standard borosilicate glass capillaries and
355 back filled with intracellular recording solution containing 8 mM NaCl, 10mM KCI, 5 mM HEPES, 0.06 mM
356  CaCl, 5 mM MgCl;, 130 mM potassium gluconate and 0.6mM EGTA, titrated to a pH of 7.4. Recordings
357  were performed using a MultiClamp 700A amplifier and a Digidata 1550 Data Acquisition System coupled
358  with Clampex 10.4 software (Molecular Devices). Traces were analyzed in MATLAB.

359

360 In voltage-clamp experiments, cells were held at a holding potential of -50 mV and given a series of voltage

361  steps from -90 to +100 mV. In current-clamp experiments, cells were held at approximately -70 mV
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362  through minimal current injection before application of a series of current steps ranging from -40 to +120
363 pA. Magnitudes of the current steps were modified according to the input resistance. Peak outward
364  current amplitude was measured 40 ms after the initiation of the voltage sweep. Peak inward current was
365  defined as the maximum transient negative current at any command voltage.

366

367 Immunocytochemistry. Cells plated on chambered cover glasses (Fisher Scientific) or glass coverslips were
368 fixed in 4% PFA for 20 min, washed with PBS and incubated with blocking buffer containing 0.2% Triton-X
369  (Sigma), 0.3M glycine and 10% goat serum (Jackson Immunoresearch Labs) for 1 hour. Cells were then
370 incubated overnight in the following primary antibodies diluted in 10% goat serum: Mouse Nestin (1:200,
371 Neuromics), Rabbit MAP2 (1:500, Millipore), Mouse Tujl (1:2000, Millipore), Rabbit Ki67 (1.43uL/mL,
372  Abcam). Cells were rinsed and primary antibodies were detected using appropriate Alexa Fluor secondary
373  antibodies. Nuclei were stained using either Hoescht or DAPI.

374  See Supplementary Table 2 for a list of antibodies and dilutions.

375

376 Image acquisition and segmentation. For live imaging experiments, hNP1 cells were plated at
377  approximately 50% confluence on 12-well plates pre-coated with Matrigel and switched to differentiation
378  medium 24 hours post-plating. Two datasets (biological replicates) were obtained by imaging the well
379 plates at days O, 3, 6, 9, 12 and 14 after withdrawal of bFGF from culture medium, using an automated
380  stage Nikon Eclipse Ti-E Microscope. At the start of the experiment, five locations were chosen arbitrarily
381  foreach well, and the same locations were located and imaged at each time point. Imaging sessions lasted
382  about 10 minutes and the plates were returned to the incubator after imaging. We also performed
383  continuous imaging (Supplementary Video 1), for which the well plate was mounted on the stage of the
384  microscope in a bold line cage incubator (Okolab) equipped with temperature control and gas flow rate

385  control enabling a 37°C 5% CO, environment. Images were acquired at 1-hour intervals for 8 days. In all
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386  time-lapse imaging experiments, 8-bit phase contrast images were acquired through a 10X objective (N.A.
387 =0.3)froma 1280 x 1080 pixel field of view using a Nikon DS-Qil camera. Physical pixel size was 0.64 um.
388

389 Phase contrast image sequences were chosen for analysis based on the ability of a human observer to
390 distinguish cellular features in the images. Images with large amounts of debris occluding cells were
391  discarded manually. In this manner, a total of 16 and 14 image sequences (30 locations) for each of the 2
392 biologically independent datasets were chosen for analysis.

393

394  Selected grayscale images were pre-processed by applying a median filter with a neighborhood of 3x3
395 pixels to remove noise and segmented using an unbiased intensity-gradient thresholding approach®!.
396  Starting from the grayscale image, the first derivative of the pixel intensity histogram was calculated.
397 Fitting a linear function to the ascending portion of the first derivative and extrapolating to the x-axis
398 resulted in a grayscale threshold, which was used to generate a binary image distinguishing cellular

399  features from the background. Morphological operations performed on the binary image were:

400 1. Small objects of size lesser than 50 pixels were removed to filter out noise and other imaging
401 artifacts.

402 2. Morphological opening was performed using a disk structuring element of radius 4 pixels. This
403 was done to separate linear features (neurites), and circular features (cell bodies).

404 3. Cell bodies were separated using connected component labeling using the default 8-connected
405 neighborhood.

406 4. Cell body objects smaller than 150 pixels and those touching the image border were removed.

407  All parameters used in phase contrast image processing are listed in Supplementary Table 1.

408
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409 In order to quantify the accuracy of our image processing algorithms, we compared the results with
410  manual tracing of soma. These results showed a close agreement between the numbers of cells detected
411 by our algorithm and by manual tracing at different time points (Supplementary Figure 1).

412

413  Calcium imaging and analysis. Cells were plated on LabTek chambered cover glasses for calcium imaging
414  experiments. Cells were loaded with culture medium containing 3 uM of the fluorescent calcium indicator
415 Fluo-4/AM (Life Technologies) and Pluronic F-127 (0.2% w/v, Life Technologies) for 30 min at 37°C.
416 Imaging of spontaneous calcium activity was performed at 37°C using a 20X objective lens (N.A. = 0.75),
417  with 488 nm excitation provided through a SOLA SE Light Engine (Lumencor). 16-bit fluorescence images
418  were acquired at a sampling frequency of 1 Hz for a total duration of 15 min, using a Zyla 5.5 sCMOS
419 camera (Andor).

420

421 Following calcium imaging, samples were subjected to immunocytochemistry as described earlier. By
422 navigating to the locations where calcium imaging was performed, manual co-registration was done to
423  obtain immunofluorescence images for the same fields of view.

424

425 Generation of functional networks from calcium imaging. Regions of interest (ROls) were obtained by
426 segmenting nucleus images using a local thresholding approach followed by the watershed algorithm.
427 Undersegmented objects were algorithmically removed by discarding the top two percentile of object
428  sizes obtained after segmentation.

429

430 Next, a time-varying fluorescence trace was calculated for each ROI. For each frame in the calcium
431  fluorescence image stack, background (average pixel intensity of non-ROI regions in the image) was

432  subtracted. Average fluorescence intensity for each ROl (F) was obtained by averaging pixel intensity
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433 values within the ROI for each time point. Baseline fluorescence (F,) for each ROl was calculated as the
434  minimum intensity value in a window 90s before and after each time point. The normalized fluorescence
435  trace for the ROI was then calculated as F — F,,/F,. Cells with low activity were filtered out by discarding
436  traces with less than three peaks and traces whose signal-to-noise ratio was lower than 1. Quality of the
437 remaining traces was confirmed by manual inspection. This was done to avoid false positives in the cross-
438  correlation analysis.

439

[*2, where cross-

440 Functional networks were created following the method described by Smedler et a
441 covariance between signals is used to assign functional connections between pairs of cells. A randomized
442  dataset was generated by shuffling each signal in the original dataset at a random time point. The 99"
443 percentile of cross-covariance values for the randomized dataset was used as a threshold for determining
444  significant correlations.

445

446  Creation of spatial graphs. Spatial graphs were created from microscope images using cytoNet, software
447  developed in-house®. For each pair of objects (soma/nuclei), a threshold distance for proximity was
448  defined as the average of the two object diameters, multiplied by a scaling factor (S). If the Euclidean
449  distance between the object centroids was lower than the threshold distance computed, then the pair of
450  objects was connected with a “proximity edge” (Figure 2j, k). We chose a scaling factor of 2 for phase
451  contrast images and 3 for nucleus immunofluorescence images based on similarity in network density for
452  the resulting networks (Supplementary Figure 2).

453 Due to the high density of NCRM-5 cultures, quantification of global network metrics proved unfeasible

454  (Supplementary Figure 8). However, qualitatively we observed the prevalence of highly clustered cell

455 bodies at late stages of differentiation.
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456  Metric computation. All the network metrics described in Table 1 were computed using cytoNet. It is to
457  be noted that not all metrics derived from graph theory have a ready biological interpretation, especially
458  in the context of spatial graphs. For example, interpretation of metrics like degree-degree correlations
459  and rich-club metric (Supplementary Figure 4) are limited, due to the implicit limit in the type of
460  connections that are possible in spatial graphs. Keeping this in mind, we focused on analyzing metrics with
461 an intuitive biological interpretation, i.e., information flow and connectivity.

462

463 Random graphs were constructed through degree-preserving rewiring, maintaining the degree
464  distribution of the original graph (Supplementary Figure 3). Each link (edge) belonging to any given node
465 in the original graph was randomly re-assigned to a node that was chosen from all possible nodes with
466  uniform probability. Metrics computed for random graphs were averaged across 100 different realizations
467  of the random graphs. This mode of random graph generation was chosen to eliminate finite-size effects
468  inherent in other models of random graphs such as Erdds-Rényi random graphs. To ensure robustness of
469  the network metrics, we tested varying fields of view for the images, and confirmed the trends remained
470  consistent (Supplementary Figure 5).

471

472  Single-cell analysis. Consolidated multi-parametric datasets were obtained by performing calcium
473 imaging followed by immunocytochemistry (Supplementary Videos 8-10). Functional data obtained
474  through calcium imaging (e.g., number of spikes) was combined with cell identity information obtained
475  through immunostaining (e.g., Ki67, Tujl status), and spatial features extracted using nuclei as described
476  earlier. Cells within 100 pixels of the border of the field of view were excluded from analysis to eliminate
477  border effects. Occasionally, colonies of cells were washed away during the immunostaining process. In

478  these cases, the calcium imaging channel was used to obtain an approximate mask of such cells in order
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479  to obtain a complete image set for spatial analysis. Additionally, large masks likely representing
480  undersegmented objects were excluded from analysis.

481

482  Code and data availability. All MATLAB code and data that support the findings of this study are available
483 from the corresponding author upon request. The cytoNet user interface can be found at

484 http://qutublab.rice.edu/cytoNet/
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S | tary Vi 4
upplementary Video Calcium imaging movie from day 3 ReNcell culture

Supplementary Video 5 Calcium imaging movie from day 3 ReNcell culture showing
waves of calcium activity.

| Vi
Supplementary Video 6 Calcium imaging movie from day 5 ReNcell culture.

Supplementary Video 7 Four-day time-lapse movie of differentiating ReNcell culture.

| Vi
Supplementary Video 8 Calcium imaging movie from day 3 NCRM-5 culture.

Supplementary Video 9 Calcium imaging movie from day 3 NCRM-5 culture with
immunostain image overlay showing Tujl and Ki67 channels.

Supplementary Video 10 Calcium imaging movie from day 7 NCRM-5 culture with
immunostain image overlay showing Tujl and Ki67 channels.
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Supplementary Figure 1

Comparison of automated image segmentation and manual tracing of cell soma (a) hNP1 image
at day 4 with cell soma outlines picked out by algorithm outlined in red; scale bar = 50 um. (b)
Same image in (a), with manual tracing of cell soma outlined in cyan. (c) Comparison of number
of cell soma picked out by algorithm and manual tracing by 3 independent observers. Error bars
indicate SEM.
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Supplementary Figure 2

Scaling factor analysis

(a-c) hNP1 phase contrast image at day 3 of differentiation with graph representations using
different scaling factors; scale bar = 50 um. (a) scaling factor = 2; soma boundaries are outlined
in red, and proximity edges are shown in yellow (scale bar = 50um). (b) scaling factor = 2.5 (c)
scaling factor = 3. (d) Boxplot of network density for all hNP1 networks. (e) Box plot of network
density for all ReNcell networks, where nuclei were designated as nodes. Based on similarity in
overall network density, scaling factor = 2 was used for phase contrast images (hNP1) and scaling
factor = 3 was chosen for nucleus immunofluorescence images (ReNcell, NCRM-5 and CWI 4F2).
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Supplementary Figure 3
Random graph generation through degree-preserving rewiring

(a) Original graph representation of day 14 of differentiation image. Cell soma are outlined in red
and edges are shown in yellow; scale bar = 50 um. (b) Random graph generated by rewiring nodes
in panel A with uniform probability. (c) Network parameters for graphs in (a) and (b).
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Supplementary Figure 4
Trends in network metrics in hNP1 cultures not reported in main text.

(a-d) All degree-related metrics decrease over 14 days of differentiation. (a) Network Density. (b)
Variance in Degree. (c) Average Degree. (d) Variance in Neighbor Degree. (e) Average component
size increases to a peak at day 6 and decreases as cells break up into smaller clusters. (f) Variance
in Component Size is also highest at day 6. (g) Network Diameter. (h-j) Counts of loops and star
motifs are highest at early stages, due to arrangement of neuroepithelial cells in rosette-like
structures. (h) Triangular Loop Count. (i) 4-Star Motif Count. (j) 5-Star Motif Count. (k) Rich-Club
Metric Average. (l) Assortativity.
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Supplementary Figure 5

Scale invariance of network metrics in hNP1 network analysis

(a-c) Different fields of view chosen for network analysis. (a) Representative image at day 14 of
differentiation; green box represents 75% of the field of view, white box represents 50% of the
field of view (scale bar =50um). (b) Green inset from panel A. (c) White inset from (a). (d-f) Graph-
based metrics computed for full image, 75% of the image and 50% of the image. (d) Network
Efficiency across time. (e) Clustering coefficient. (f) Total number of cells in field of view. Values

are reported as the mean across N = 30 networks + SEM.
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Supplementary Figure 6.

Immunostaining of ReNcell cultures and functional analysis of cultures with proliferation
medium.

(a) Immunostaining of cultures in differentiation medium for nuclei (DAPI), proliferating cells
(Ki67) and new neurons (Tuj1); scale bar = 50um. (b) Immunostaining of cultures in proliferation
medium. (c) Fraction of active cells in cultures with proliferation medium (cells whose normalized
fluorescence traces have three or more calcium transients).


https://doi.org/10.1101/055533
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/055533; this version posted July 30, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

a b

0.5783 correlation ~ 0.8137  cell1,
‘ AF/Fo 04
0.2
0
0 5 10 15
Time (min)
cell 2
06
AF/Fo 04
02
0
0 5 10 15
Time (min)
cell 3
06
AF/Fo
0.2
0
0 5 10 15

Time (min)

Supplementary Figure 7

Cross-correlation analysis to infer functional connectivity from calcium imaging data.

(a) Maximum intensity image from day 3 ReNcell culture loaded with Fluo-4 for calcium imaging.
Inferred functional network is overlaid on the image, with correlation magnitude represented by
edge color heatmap. ROIs obtained from corresponding nucleus image are shown in red. (b)
Normalized calcium traces from 3 highly correlated cells marked in (a) are shown.
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Supplementary Figure 8
Long-term differentiation of NCRM-5 neural stem cells.

NCRM-5 cultures at day 0, 7, 14, 21 and 28 stained for DAPI and B(lll)-Tubulin (Tuj1). Cultures
become more highly clustered at later stages of differentiation; scale bar - 50um

DAPI

Tuj1

Merge
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Supplementary Table 1. List of parameters in image processing for hNP1 phase contrast images.

Parameter Description

Parameter Value

Size of median filtering neighborhood

First threshold for removing small particles

Second threshold for removing small particles (after

separation of cell body objects)

Radius of disk used for morphological opening

Neighborhood connectivity used for connected

component labeling

3 pixels x 3 pixels

50 pixels

150 pixels

4 pixels
8-connected

neighborhood

Supplementary Table 2. List of antibodies used for immunocytochemistry.

Antibody Host Supplier Catalog Number Dilution
Anti-Nestin Mouse Neuromics MO15012 1:200
Anti-MAP2 Rabbit Millipore AB5622 1:500
Anti-Tujl Mouse Millipore MAB1637 1:2000
Anti-Ki67 Rabbit Abcam Ab15580 1.43uL/mL
Alexa Fluor 488 anti-mouse  Goat Life Technologies A-21121 1:1000
Alexa Fluor 594 anti-rabbit Goat Life Technologies A-11037 1:1000
Alexa Fluor 594 anti-mouse  Goat Life Technologies A-11005 1:1000
Alexa Fluor 647 anti-rabbit Goat Life Technologies A-21244 1:1000
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Supplementary Table 3. List of neural stem cell lines used in this study

Name Source Primary neuron type formed via

differentiation

hNP1 Derived from H9 human embryonic -
stem cells
ReNcell VM Ventral mesencephalon of 10-week Dopaminergic

human fetal brain

NCRM-5 Induced pluripotent stem cells derived Mixture of glutamatergic and
from human male; NHCDR Cat# GABAergic
ND50031, RRID: CVCL_1E75

CWI4F2 Induced pluripotent stem cells derived Mixture of glutamatergic and
from female subject (6 months) with GABAergic

classical SLOS
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Supplementary Videos

Supplementary Video 1. 8-day time-lapse movie of differentiating hNP1 human neural

progenitor cells.

Supplementary Video 2. Same image sequence as in Supplementary Video 1, with cell bodies

detected through image processing outlined in red and proximity edges shown in yellow.

Supplementary Video 3. Calcium imaging movie from day 1 ReNcell culture. Movie is sped up

100X. Original video was captured with a frame rate of 1Hz for a total duration of 15min.

Supplementary Video 4. Calcium imaging movie from day 3 ReNcell culture. Movie is sped up

100X. Original video was captured with a frame rate of 1Hz for a total duration of 15 min.

Supplementary Video 5. Calcium imaging movie from day 3 ReNcell culture showing calcium
wave propagating through culture. Original video was captured with a frame rate of 1Hz for a

total duration of 15 min.

Supplementary Video 6. Calcium imaging movie from day 5 ReNcell culture. Movie is sped up

100X. Original video was captured with a frame rate of 1Hz for a total duration of 15 min.
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Supplementary Video 7. Four-day time lapse movie of differentiating ReNcell cultures. Video was

captured at a frame rate of 1 frame/30min.

Supplementary Video 8. Calcium imaging movie from day 3 NCRM-5 culture. Movie is sped up

100X. Original video was captured with a frame rate of 1Hz for a total duration of 15 min.

Supplementary Video 9. Calcium imaging movie from day 3 NCRM-5 culture with immunostain
image overlay showing Tujl (red) and Ki67 (blue) channels. Original video was captured with a

frame rate of 1Hz for a total duration of 15 min.

Supplementary Video 10. Calcium imaging movie from day 7 NCRM-5 culture with immunostain
image overlay showing Tujl (red) and Ki67 (blue) channels. Movie is sped up 100X. Original video

was captured with a frame rate of 1Hz for a total duration of 15 min.
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