
Could a Neuroscientist Understand a Microprocessor?

Eric Jonas1*, Konrad Paul Kording2,3,

1 Department of Electrical Engineering and Computer Science, University of California,
Berkeley
2 Department of Physical Medicine and Rehabilitation, Northwestern University and
Rehabilitation Institute of Chicago, 345 E Superior St., Chicago, Illinois, 60611
3 Department of Physiology, Northwestern University, 303 E Chicago Ave, Chicago,
Illinois 60611

* jonas@eecs.berkeley.edu

Abstract

There is a popular belief in neuroscience that we are primarily data limited, and that
producing large, multimodal, and complex datasets will, with the help of advanced data
analysis algorithms, lead to fundamental insights into the way the brain processes
information. These datasets do not yet exist, and if they did we would have no way of
evaluating whether or not the algorithmically-generated insights were sufficient or even
correct. To address this, here we take a classical microprocessor as a model organism,
and use our ability to perform arbitrary experiments on it to see if popular data
analysis methods from neuroscience can elucidate the way it processes information.
Microprocessors are among those artificial information processing systems that are both
complex and that we understand at all levels, from the overall logical flow, via logical
gates, to the dynamics of transistors. We show that the approaches reveal interesting
structure in the data but do not meaningfully describe the hierarchy of information
processing in the microprocessor. This suggests current analytic approaches in
neuroscience may fall short of producing meaningful understanding of neural systems,
regardless of the amount of data. Additionally, we argue for scientists using complex
non-linear dynamical systems with known ground truth, such as the microprocessor as a
validation platform for time-series and structure discovery methods.

Author Summary

Neuroscience is held back by the fact that it is hard to evaluate if a conclusion is
correct; the complexity of the systems under study and their experimental
inaccessability make the assessment of algorithmic and data analytic technqiues
challenging at best. We thus argue for testing approaches using known artifacts, where
the correct interpretation is known. Here we present a microprocessor platform as one
such test case. We find that many approaches in neuroscience, when used näıvely, fall
short of producing a meaningful understanding.

Introduction 1

The development of high-throughput techniques for studying neural systems is bringing 2

about an era of big-data neuroscience [1, 2]. Scientists are beginning to reconstruct 3
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connectivity [3], record activity [4], and simulate computation [5] at unprecedented 4

scales. However, even state-of-the-art neuroscientific studies are still quite limited in 5

organism complexity and spatiotemporal resolution [?, 6, 7]. It is hard to evaluate how 6

much scaling these techniques will help us understand the brain. 7

In neuroscience it can be difficult to evaluate the quality of a particular model or 8

analysis method, especially in the absence of known truth. However, there are other 9

systems, in particular man made ones that we do understand. As such, one can take a 10

human-engineered system and ask if the methods used for studying biological systems 11

would allow understanding the artificial system. In this way, we take as inspiration Yuri 12

Lazbnick’s well-known 2002 critique of modeling in molecular biology, “Could a biologist 13

fix a radio?” [8]. However, a radio is clearly much simpler than the nervous system, 14

leading us to seek out a more complex, yet still well-understood engineered system. The 15

microprocessors in early computing systems can serve this function. 16

Here we will try to understand a known artificial system, a classical microprocessor 17

by applying data analysis methods from neuroscience. We want to see what kind of an 18

understanding would emerge from using a broad range of currently popular data analysis 19

methods. To do so, we will analyze the connections on the chip, the effects of destroying 20

individual transistors, single-unit tuning curves, the joint statistics across transistors, 21

local activities, estimated connections, and whole-device recordings. For each of these, 22

we will use standard techniques that are popular in the field of neuroscience. We find 23

that many measures are surprisingly similar between the brain and the processor but 24

that our results do not lead to a meaningful understanding of the processor. The 25

analysis can not produce the hierarchical understanding of information processing that 26

most students of electrical engineering obtain. It suggests that the availability of 27

unlimited data, as we have for the processor, is in no way sufficient to allow a real 28

understanding of the brain. We argue that when studying a complex system like the 29

brain, methods and approaches should first be sanity checked on complex man-made 30

systems that share many of the violations of modeling assumptions of the real system. 31

An engineered model organism 32

The MOS 6502 (and the virtually identical MOS 6507) were the processors in the Apple 33

I, the Commodore 64, and the Atari Video Game System (VCS) (see [9] for a 34

comprehensive review). The Visual6502 team reverse-engineered the 6507 from physical 35

integrated circuits [10] by chemically removing the epoxy layer and imaging the silicon 36

die with a light microscope. Much like with current connectomics work [11,12], a 37

combination of algorithmic and human-based approaches were used to label regions, 38

identify circuit structures, and ultimately produce a transistor-accurate netlist (a full 39

connectome ) for this processor consisting of 3510 enhancement-mode transistors. 40

Several other support chips, including the Television Interface Adaptor (TIA) were also 41

reverse-engineered and a cycle-accurate simulator was written that can simulate the 42

voltage on every wire and the state of every transistor. The reconstruction has sufficient 43

fidelity to run a variety of classic video games, which we will detail below. The 44

simulation generates roughly 1.5GB/sec of state information, allowing a real big-data 45

analysis of the processor. 46

The simplicity of early video games has led to their use as model systems for 47

reinforcement learning [13] and computational complexity research [14]. The video game 48

system (“whole animal”) has a well defined output in each of the three behavioral 49

conditions (games). It produces an input-dependent output that is dynamic, and, in the 50

opinion of the authors, quite exciting. It can be seen as a more complex version of the 51

Mus Silicium project [15]. It is also a concrete implementation of a thought experiment 52

that has been mentioned on and off in the literature [16–19]. The richness of the 53

dynamics and our knowledge about its inner workings makes it an attractive test case 54
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Fig 1. Example behaviors. We use three classical video games as example behaviors
for our model organism – (A) Donkey Kong (1981), (B) Space Invaders (1978), and (C)
Pitfall (1981).

for approaches in neuroscience. 55

For this paper we will only use three behaviors, three different games. Obviously 56

these “behaviors” are qualitatively different from those of animals and may seem more 57

complicated. However, even the simple behaviors that are studied in neuroscience still 58

involve a plethora of components, typically including the allocation of attention, 59

cognitive processing, and multiple modalities of inputs and outputs. As such, the 60

breadth of ongoing computation in the processor may actually be simpler than those in 61

the brain. 62

The objective of clever experimental design in neuroscience often is to find behaviors 63

that only engage one kind of computation in the brain. In the same way, all our 64

experiments on the chip will be limited by us only using these games to probe it. As 65

much as more neuroscience is interested in naturalistic behaviors [20], here we analyze a 66

naturalistic behavior of the chip. In the future it may be possible to excute simpler, 67

custom code on the processor to tease apart aspects of computation, but we currently 68

lack such capability in biological organisms. 69

Much has been written about the differences between computation in silico and 70

computation in vivo [21, 22]—the stochasticity, redundancy, and robustness [23] present 71

in biological systems seems dramatically different from that of a microprocessor. But 72

there are many parallels we can draw between the two types of systems. Both systems 73

consist of interconnections of a large number of simpler, stereotyped computing units. 74

They operate on multiple timescales. They consist of somewhat specialized modules 75

organized hierarchically. They can flexibly route information and retain memory over 76

time. Despite many differences there are also many similarities. We do not wish to 77

overstate this case – in many ways, the functional specialization present in a large 78

mammalian brain far eclipses that present in the processor. Indeed, the processor’s scale 79

and specialization share more in common with C. elegans than a mouse. 80

Yet many of the differences should make analysing the chip easier than analyzing the 81

brain. For example, it has a clearer architecture and far fewer modules. The human 82

brain has hundreds of different types of neurons and a similar diversity of proteins at 83

each individual synapse [24], whereas our model microprocessor has only one type of 84

transistor (which has only three terminals). The processor is deterministic while 85

neurons exhibit various sources of randomness. With just a couple thousand transistors 86

it is also far smaller. And, above all, in the simulation it is fully accessible to any and 87
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Fig 2. A microprocessor is understood at all levels. (A ) The instruction
fetcher obtains the next instruction from memory. This then gets converted into
electrical signals by the instruction decoder, and these signals enable and disable various
internal parts of the processor, such as registers and the arithmetic logic unit (ALU).
The ALU performs mathematical operations such as addition and subtraction. The
results of these computations can then be written back to the registers or memory. (B)
Within the ALU there are well-known circuits, such as this one-bit adder, which sums
two one-bit signals and computes the result and a carry signal. (C) Each logic gate in
(B) has a known truth table and is implemented by a small number of transistors. (D)
A single NAND gate is comprised of transistors, each transistor having three terminals
(E). We know (F) the precise silicon layout of each transistor.

all experimental manipulations that we might want to do on it. 88

What does it mean to understand a system 89

Importantly, the processor allows us to ask “do we really understand this system?” 90

Most scientists have at least behavioral-level experience with these classical video game 91

systems, and many in our community, including some electrophysiologists and 92

computational neuroscientists, have formal training in computer science, electrical 93

engineering, computer architecture, and software engineering. As such, we believe that 94

most neuroscientists may have better intuitions about the workings of a processor than 95

about the workings of the brain. 96

What constitutes an understanding of a system? Lazbnick’s original paper argued 97

that understanding was achieved when one could “fix” a broken implementation. 98

Understanding of a particular region or part of a system would occur when one could 99

describe so accurately the inputs, the transformation, and the outputs that one brain 100

region could be replaced with an entirely synthetic component. Indeed, some 101

neuroengineers are following this path for sensory [25] and memory [26] systems. 102

Alternatively, we could seek to understand a system at differing, complementary levels 103

of analysis, as David Marr and Tomaso Poggio outlined in 1982 [27]. First, we can ask if 104

we understand what the system does at the computational level: what is the problem it 105

is seeking to solve via computation? We can ask how the system performs this task 106

algorithmically : what processes does it employ to manipulate internal representations? 107

Finally, we can seek to understand how the system implements the above algorithms at 108

a physical level. What are the characteristics of the underlying implementation (in the 109

case of neurons, ion channels, synaptic conductances, neural connectivity, and so on) 110

that give rise to the execution of the algorithm? Ultimately, we want to understand the 111
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brain at all these levels. 112

In this paper, much as in systems neuroscience, we consider the quest to gain an 113

understanding of how circuit elements give rise to computation. Computer architecture 114

studies how small circuit elements, like registers and adders, give rise to a system 115

capable of performing general-purpose computation. When it comes to the processor, 116

we understand this level extremely well, as it is taught to most computer science 117

undergraduates. Knowing what a satisfying answer to ”how does a processor compute?” 118

looks like makes it easy to evaluate how much we learn from an experiment or an 119

analysis. 120

What would a satisfying understanding of the processor look 121

like? 122

We can draw from our understanding of computer architecture to firmly ground what a 123

full understanding of a processor would look like (fig 2). The processor is used to 124

implement a computing machine. It implements a finite state machine which 125

sequentially reads in an instruction from memory (fig 2a, green) and then either 126

modifies its internal state or interacts with the world. The internal state is stored in a 127

collection of byte-wide registers (fig 2a, red). As an example, the processor might read 128

an instruction from memory telling it to add the contents of register A to the contents 129

of register B. It then decodes this instruction, enabling the arithmetic logic unit (ALU, 130

fig 2a, blue) to add those registers, storing the output. Optionally, the next instruction 131

might save the result back out to RAM (fig 2a, yellow). It is this repeated cycle that 132

gives rise to the complex series of behaviors we can observe in this system. Note that 133

this description in many ways ignores the functions of the individual transistors, 134

focusing instead on circuits modules like ”registers” which are composed of many 135

transistors, much as a systems neuroscientist might focus on a 136

cytoarchitecturally-distinct area like hipppocampus as opposed to individual neurons. 137

Each of the functions within the processor contains algorithms and a specific 138

implementation. Within the arithmetic logic unit, there is a byte wide adder, which is 139

in part made of binary adders (fig 2b), which are made out of AND/NAND gates, 140

which are made of transistors. This is in a similar way as the brain consists of regions, 141

circuits, microcircuits, neurons, and synapses. 142

If we were to analyze a processor using techniques from systems neuroscience we 143

would hope that it helps guide us towards the descriptions that we used above. In the 144

rest of the paper we will apply neuroscience techniques to data from the processor. We 145

will finally discuss how neuroscience can work towards techniques that will make real 146

progress at moving us closer to a satisfying understanding of computation, in the chip, 147

and in our brains. 148

Results 149

Validating our understanding of complex systems is incredibly difficult when we do not 150

know the actual ground truth. Thus we use an engineered system, the MOS6502, where 151

we understand every aspect of its behavior at many levels. We will examine the 152

processor at increasingly-fine spatial and temporal resolutions, eventually achieving true 153

“big-data” scale : a “processor activity map”, with every transistor state and every wire 154

voltage. As we apply the various techniques that are currently used in neuroscience we 155

will ask how the analyses bring us closer to an understanding of the microprocessor (Fig. 156

2). We will use this well defined comparison to ask questions about the validity of 157

current approaches to studying information processing in the brain. 158

PLOS 5/27

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 14, 2016. ; https://doi.org/10.1101/055624doi: bioRxiv preprint 

https://doi.org/10.1101/055624


Fig 3. Optical reconstruction of the microprocessor to obtain its
connectome.In [10], the (A) MOS 6502 silicon die was examined under a visible light
microscope (B) to build up an image mosaic (C) of the chip surface. Computer vision
algorithms were used to identify metal and silicon regions (E) to detect transistors (F),
(G) ultimately producing a complete accurate netlist of the processor (D)
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Fig 4. Discovering connectivity and cell type . Reproduced from [29]. (A) The
spatial distribution of the transistors in each cluster show a clear pattern (B) The
clusters and connectivity versus distance for connections between Gate and C1, Gate
and C2, and C1 and C2 terminals on a transistor. Purple and yellow types have a
terminal pulled down to ground and mostly function as inverters. The blue types are
clocked, stateful transistors, green control the ALU and orange control the special data
bus (SDB).

Connectomics 159

The earliest investigations of neural systems were in-depth anatomical inquiries [28]. 160

Fortunately, through large scale microscopy (Figure 3a) we have available the full 3d 161

connectome of the system. In other words, we know how each transistor is connected to 162

all the others. The reconstruction is so good, that we can now simulate this processor 163

perfectly – indeed, were it not for the presence of the processor’s connectome, this paper 164

would not have been possible. This process is aided by the fact that we know a 165

transistor’s deterministic input-output function, whereas neurons are both stochastic 166

and vastly more complex. 167

Recently several graph analysis methods ranging from classic [30] to modern [29,31] 168

approaches have been applied to neural connectomes. The approach in [29] was also 169

applied to a region of this processor, attempting to identify both circuit motifs as well 170

as transistor “types” (analogous to cell types) in the transistor wiring diagram. Figure 4 171

(adapted from [29] ) shows the results of the analysis. We see that one identified 172

transistor type contains the “clocked” transistors, which retain digital state. Two other 173

types contain transistors with pins C1 or C2 connected to ground, mostly serving as 174

inverters. An additional identified type controls the behavior of the three registers of 175
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interest (X, Y, and S) with respect to the SB data bus, either allowing them to latch or 176

drive data from the bus. The repeat patterns of spatial connectivity are visible in 177

Figure 4a, showing the man-made horizontal and vertical layout of the same types of 178

transistors. 179

While superficially impressive, based on the results of these algorithms we still can 180

not get anywhere near an understanding of the way the processor really works. Indeed, 181

we know that for this processor there is only one physical “type” of transistor, and that 182

the structure we recover is a complex combination of local and global circuitry. 183

In neuroscience, reconstructing all neurons and their connections perfectly is the 184

dream of a large community studying connectomics [32,33]. Current connectomics 185

approaches are limited in their accuracy and ability to definitively identify synapses [12], 186

Unfortunately, we do not yet have the techniques to also reconstruct the i/o function – 187

neurotransmitter type, ion channel type, I/V curve of each synapse, etc. – of each 188

neuron. But even if we did, just as in the case of the processor, we would face the 189

problem of understanding the brain based on its connectome. As we do not have 190

algorithms that go from anatomy to function at the moment that go considerably 191

beyond cell-type clustering [29,34,35] it is far from obvious how a connectome would 192

allow an understanding of the brain. 193

Note we are not suggesting connectomics is useless, quite the contrary – in the case 194

of the processor the connectome was the first crucial step in enabling reliable, 195

whole-brain-scale simulation. But even with the whole-brain connectome, extracting 196

hierarchical organization and understanding the nature of the underlying computation is 197

incredibly difficult. 198

Lesion a single transistor at a time 199

Lesions studies allow us to study the causal effect of removing a part of the system. We 200

thus chose a number of transistors and asked if they are necessary for each of the 201

behaviors of the processor (figure 5. In other words, we asked if removed each transistor, 202

if the processor would then still boot the game. Indeed, we found a subset of transistors 203

that makes one of the behaviors (games) impossible. We can thus conclude they are 204

uniquely necessary for the game – perhaps there is a Donkey Kong transistor or a Space 205

Invaders transistor. Even if we can lesion each individual transistor, we do not get much 206

closer to an understanding of how the processor really works. 207

This finding of course is grossly misleading. The transistors are not specific to any 208

one behavior or game but rather implement simple functions, like full adders. The 209

finding that some of them are important while others are not for a given game is only 210

indirectly indicative of the transistor’s role and is unlikely to generalize to other games. 211

Lazebnik [8] made similar observations about this approach in molecular biology, 212

suggesting biologists would obtain a large number of identical radios and shoot them 213

with metal particles at short range, attempting to identify which damaged components 214

gave rise to which broken phenotype. 215

This example nicely highlights the importance of isolating individual behaviors to 216

understand the contribution of parts to the overall function. If we had been able to 217

isolate a single function, maybe by having the processor produce the same math 218

operation every single step, then the lesioning experiments could have produced more 219

meaningful results. However, the same problem exists in neuroscience. It is extremely 220

difficult or technically impossible to produce behaviors that only require a single aspect 221

of the brain. 222

Beyond behavioral choices, we have equivalent problems in neuroscience that make 223

the interpretation of lesioning data complicated [36]. In many ways the chip can be 224

lesioned in a cleaner way than the brain: we can individually abolish every single 225

transistor (this is only now becoming possible with neurons in simple systems [37,38]). 226
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Fig 5. Lesioning every single transistor to identify function. We identify
transistors whose elimination disrupts behavior analogous to lethal alleles or lesioned
brain areas. These are transistors whose elimination results in the processor failing to
render the game. (A) Transistors which impact only one behavior, colored by behavior.
(B) Breakdown of the impact of transistor lesion by behavioral state. The elimination of
1565 transistors have no impact, and 1560 inhibit all behaviors.
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Fig 6. Analyzing the spikes to understand their statistics. (A) 10 identified
transistors and (B) their spiking (rising edge) behavior over a short time window during
behavior DK.

Even without this problem, finding that a lesion in a given area abolishes a function is 227

hard to interpret in terms of the role of the area for general computation. And this 228

ignores the tremendous plasticity in neural systems which can allow regions to take over 229

for damaged areas. In addition to the statistical problems that arise from multiple 230

hypothesis testing, it is obvious that the “causal relationship” we are learning is 231

incredibly superficial: a given transistor is obviously not specialized for Donkey Kong or 232

Space Invaders. 233

While in most organisms individual transistors are not vital, for many less-complex 234

systems they are. Lesion individual interneurons in C. elegans or the H1 neuron in the 235

fly can have marked behavioral impacts. And while lesioning larger pieces of circuitry, 236

such as the entire TIA graphics chip, might allow for gross segregation of function, we 237

take issue with this constituting “understanding”. Simply knowing functional 238

localization, at any spatial scale, is only the most nacent step to the sorts of 239

understanding we have outlined above. 240

Analyzing tuning properties of individual transistors 241

We may want to try to understand the processor by understanding the activity of each 242

individual transistor. We study the “off-to-on” transition, or “spike”, produced by each 243

individual transistor. Each transistor will be activated at multiple points in time. 244

Indeed, these transitions look surprisingly similar to the spike trains of neurons (fig 6). 245

Following the standards in neuroscience we may then quantify the tuning selectivity of 246

each transistor. For each of our transistors we can plot the spike rate as a function of the 247

luminance of the most recently displayed pixel (fig 7). For a small number of transistors 248

we find a strong tuning to the luminance of the most recently displayed pixel, which we 249

can classify into simple (fig 7a) and (fig 7b) complex curves. Interestingly, however, we 250

know for each of the five displayed transistors that they are not directly related to the 251

luminance of the pixel to be written, despite their strong tuning. The transistors relate 252

in a highly nonlinear way to the ultimate brightness of the screen. As such their 253

apparent tuning is not really insightful about their role. In our case, it probably is 254

related to differences across game stages. In the brain a neuron can calculate something, 255

or be upstream or downstream of the calculation and still show apparent tuning making 256

the inference of a neurons role from observational data very difficult [39]. This shows 257

how obtaining an understanding of the processor from tuning curves is difficult. 258
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Fig 7. Quantifying tuning curves to understand function. Mean transistor
response as a function of output pixel luminance. (A) Some transistors exhibit simple
unimodal tuning curves. (B) More complex tuning curves. (C) Transistor location on
chip.

Much of neuroscience is focused on understanding tuning properties of neurons, 259

circuits, and brain areas [40–43]. Arguably this approach is more justified for the 260

nervous system because brain areas are more strongly modular. However, this may well 261

be an illusion and many studies that have looked carefully at brain areas have revealed 262

a dazzling heterogeneity of responses [44–46]. Even if brain areas are grouped by 263

function, examining the individual units within may not allow for conclusive insight into 264

the nature of computation. 265

The correlational structure exhibits weak pairwise and strong 266

global correlations 267

Moving beyond correlating single units with behavior, we can examine the correlations 268

present between individual transistors. We thus perform a spike-word analysis [47] by 269

looking at “spike words” across 64 transistors in the processor. We find little to very 270

weak correlation among most pairs of transistors (fig 8a). This weak correlation 271

suggests modeling the transistors’ activities as independent, but as we see from shuffle 272

analysis (fig 8b), this assumption fails disastrously at predicting correlations across 273

many transistors. 274

In neuroscience, it is known that pairwise correlations in neural systems can be 275

incredibly weak, while still reflecting strong underlying coordinated activity. This is 276

often assumed to lead to insights into the nature of interactions between neurons [47]. 277

However, the processor has a very simple nature of interactions and yet produces 278

remarkably similar spike word statistics. This again highlights how hard it is to derive 279

functional insights from activity data using standard measures. 280
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Fig 8. Spike-word analysis to understand synchronous states. (A) Pairs of
transistors show very weak pairwise correlations during behavior SI, suggesting
independence. (B) If transistors were independent, shuffling transistor labels (blue)
would have no impact on the distribution of spikes per word, which is not the case (red)

Fig 9. Examining local field potentials to understand network properties.
We recorded from the processor during behavior DK. (A) Transistor switching is
integrated and low-pass filtered over the indicated region. (B) local-field potential
measurements from the indicated areas. (C) Spectral analysis of the indicated LFP
regions identifies varying region-specific oscillations or “rhythms”
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Analyzing local field potentials 281

The activity of the entire chip may be high dimensional, yet we know that the chip, just 282

like the brain, has some functional modularity. As such, we may be able to understand 283

aspects of its function by analyzing the average activity within localized regions, in a 284

way analogous to the local field potentials or the BOLD signals from functional magnetic 285

imaging that are used in neuroscience. We thus analyzed data in spatially localized 286

areas (fig 9a). Interestingly, these average activities look quite a bit like real brain 287

signals (Fig 9b). Indeed, they show a rather similar frequency power relation of roughly 288

power-law behavior. This is often seen as a strong sign of self-organized criticality [48]. 289

Spectral analysis of the time-series reveals region-specific oscillations or ”rhythms” that 290

have been suggested to provide a clue to both local computation and overall inter-region 291

communication. In the chip we know that while the oscillations may reflect underlying 292

periodicity of activity, the specific frequencies and locations are epiphenomena. They 293

arise as an artifact of the computation and tell us little about the underlying flow of 294

information. And it is very hard to attribute (self-organized) criticality to the processor. 295

In neuroscience there is a rich tradition of analyzing the rhythms in brain regions, 296

the distribution of power across frequencies as a function of the task, and the relation of 297

oscillatory activity across space and time. However, the example of the processor shows 298

that the relation of such measures to underlying function can be extremely complicated. 299

In fact, the authors of this paper would have expected far more peaked frequency 300

distributions for the chip. Moreover, the distribution of frequencies in the brain is often 301

seen as indicative about the underlying biophysics. In our case, there is only one 302

element, the transistor, and not multiple neurotransmitters. And yet, we see a similarly 303

rich distribution of power in the frequency domain. This shows that complex 304

multi-frequency behavior can emerge from the combination of many simple elements. 305

Analyzing the frequency spectra of artifacts thus leads us to be careful about the 306

interpretation of those occurring in the brain. Modeling the processor as a bunch of 307

coupled oscillators, as is common in neuroscience, would make little sense. 308

Granger causality to describe functional connectivity 309

Granger causality [49] has emerged as a method of assessing putative causal 310

relationships between brain regions based on LFP data. Granger causality assesses the 311

relationship between two timeseries X and Y by comparing the predictive power of two 312

different time-series models to predict future values of Y . The first model uses only past 313

values of Y , whereas the second uses the history of X and Y . The additon of X allows 314

one to assess the putative “causality” (really, the predictive power) of X. 315

To see if we can understand information transmission pathways in the chip based on 316

such techniques, we perform conditional Granger causality analysis on the 317

above-indicated LFP regions for all three behavioral tasks, and plot the resulting 318

inferences of causal interactions (fig 10). We find that the decoders affect the status 319

bits. We also find that the registers are affected by the decoder, and that the 320

accumulator is affected by the registers. We also find communication between the two 321

parts of the decoder for Donkey Kong, and a lack of communication from the 322

accumulator to the registers in Pitfall. Some of these findings are true, registers really 323

affect the accumulator and decoders really affect the status bits. Other insights are less 324

true, e.g. decoding is independent and the accumulator obviously affects the registers. 325

While some high level insights may be possible, the insight into the actual function of 326

the processor is limited. 327

The analysis that we did is very similar to the situation in neuroscience. In 328

neuroscience as well, the signals come from a number of local sources. Moreover, there 329

are also lots of connections but we hope that the methods will inform us about the 330
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Fig 10. Analyzing conditional Granger causality to understand functional
connectivity. Each of the recordings come from a well defined functional subcircuit.
Green and blue are two parts of the decoder circuit. Red includes the status bits. Violet
are part of the registers and yellow includes parts of the accumulator. We estimated for
each behavioral state from LFP sites indicated in figure 9. Arrows indicate direction of
Granger-causal relationship, arrow thickness indicates effect magnitude.

relevant ones. It is hard to interpret the results - what exactly does the Granger 331

causality model tell us about. Granger causality tells us how activity in the past are 332

predictive of activity in the future, and the link from there to causal interactions is 333

tentative at best [50] and yet such methods are extensively used across large subfields of 334

neuroscience. Even if such methods would reliably tell us about large scale influences, it 335

is very hard to get from a coarse resolution network to the microscopic computations. 336

Dimensionality reduction reveals global dynamics independent 337

of behavior 338

In line with recent advances in whole-animal recordings [?, 2, 6, 7], we measure the 339

activity across all 3510 transistors simultaneously for all three behavioral states (fig 11) 340

and plot normalized activity for each transistor versus time. Much as in neural systems, 341

some transistors are relatively quiet and some are quite active, with a clear 342

behaviorally-specific periodicity visible in overall activity. 343

While whole-brain recording may facilitate identification of putative areas involved 344

in particular behaviors [51], ultimately the spike-level activity at this scale is difficult to 345

interpret. Thus scientists turn to dimensionality reduction techniques [2, 52,53], which 346

seek to explain high-dimensional data in terms of a low-dimensional representation of 347

state. We use non-negative matrix factorization [54] to identify constituent signal parts 348

across all time-varying transistor activity. We are thus, for the first time in the paper, 349

taking advantage of all transistors simultaneously. 350

Non-negative matrix factorization assumes each recovered timeseries of transistor 351

activity is a linear combination of a small number of underlying nonnegative 352

time-varying signals (dimensions). Analogous with [2] we plot the recovered dimensions 353

as a function of time (fig 12a) and the transistor activity profile of each component 354

(fig 12b). We can also examine a map of transistor-component activity both statically 355

(fig 12c) and dynamically (videos available in online supplementary materials). Clearly 356

there is a lot of structure in this spatiotemporal dataset. 357

To derive insight into recovered dimensions, we can try and relate parts of the 358

low-dimensional time series to known signals or variables we know are important 359

(fig 13a). Indeed, we find that some components relate to both the onset and offset (rise 360

and fall) of the clock signal(fig 13b,c). This is quite interesting as we know that the 361
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Fig 11. The processor activity map. For each of three behavioral states we
plotted all the activities. Each transistor’s activity is normalized to zero-mean and unit
variance and plotted as a function of time.
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Fig 12. Dimensionality Reduction to understand the roles of transistors.
We apply non-negative matrix factorization (NMF) to the space invaders (SI) task. (A)
shows the six reduced dimensions as a function of time showing clear stereotyped
activity. (B) the learned transistor state vectors for each dimension (C) Map of total
activity — color indicates the dimension where the transistor has maximum value, and
both saturation and point size indicate the magnitude of that value.
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processor uses a two-phase clock. We also find that a component relates strongly to the 362

processors read-write signal (fig 13d). Thus, we find that variables of interest are indeed 363

encoded by the population activity in the processor. 364

In neuroscience, it is also frequently found that components from dimensionality 365

reduction relate to variables of interest [55,56]. This is usually then seen as an 366

indication that the brain cares about these variables. However, clearly, the link to the 367

read-write signal and the clock does not lead to an overly important insight into the 368

way the processor actually processes information. Similar questions arise in neuroscience 369

where scientists ask if signals, such as synchrony, are a central part of information 370

processing or if they are an irrelevant byproduct [57]. We should be careful at 371

evaluating how much we understand and how much we are aided by more data. 372

Pondering the results of the processor analysis we can obtain some insights into the 373

developments needed to better utilize dimensionality reduction towards an 374

understanding. The narrow range of games that we considered and the narrow range of 375

their internal states (we just simulated booting), means that many aspects of 376

computation will not be reflected by the activities and hence not in the dimensionality 377

reduction results. Moreover, the fact that we used linear reduction only allows for linear 378

dependencies and transistors, just like neurons, have important nonlinear dependencies. 379

Lastly, there is clearly a hierarchy in function in the processor and we would need to do 380

it justice using hierarchical analysis approaches. The results of dimensionality reduction 381

should be meaningful for guiding new experiments, necessitating transfer across chips in 382

the same way as neuroscience experiments should transfer across animals. Importantly, 383

the chip can work as a test case while we develop such methods. 384

Discussion 385

Here we have taken a reconstructed and simulated processor and treated the data 386

”recorded” from it in the same way we have been trained to analyze brain data. We 387

have used it as a test case to check the näıve use of various approaches used in 388

neuroscience. We have found that the standard data analysis techniques produce results 389

that are surprisingly similar to the results found about real brains. However, in the case 390

of the processor we know its function and structure and our results stayed well short of 391

what we would call a satisfying understanding. 392

Obviously the brain is not a processor, and a tremendous amount of effort and time 393

have been spent characterizing these differences over the past century [21,22,58]. 394

Neural systems are analog and and biophysically complex, they operate at temporal 395

scales vastly slower than this classical processor but with far greater parallelism than is 396

available in state of the art processors. Typical neurons also have several orders of 397

magnitude more inputs than a transistor. Moreover, the design process for the brain 398

(evolution) is dramatically different from that of the processor (the MOS6502 was 399

designed by a small team of people over a few years). As such, we should be skeptical 400

about generalizing from processors to the brain. 401

However, we cannot write off the failure of the methods we used on the processor 402

simply because processors are different from neural systems. After all, the brain also 403

consists of a large number of modules that can equally switch their input and output 404

properties. It also has prominent oscillations, which may act as clock signals as well [59]. 405

Similarly, a small number of relevant connections can produce drivers that are more 406

important than those of the bulk of the activity. Also, the localization of function that 407

is often assumed to simplify models of the brain is only a very rough approximation. 408

This is true even in an area like V1 where a great diversity of co-localized cells can be 409

found [60]. Altogether, there seems to be little reason to assume that any of the 410

methods we used should be more meaningful on brains than on the processor. 411

PLOS 17/27

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 14, 2016. ; https://doi.org/10.1101/055624doi: bioRxiv preprint 

https://doi.org/10.1101/055624


Fig 13. Relating dimensions to known signals to understanding the
population code. (A) For each of the recovered dimensions in figure 12 we compute
the correlation in time with 25 known signals inside the process. As we know the
purpose of these signals we can measure how well the dimensions explain true
underlying function. (B) Dimension 1 is strongly correlated with the processor clock
CLK0, whereas (C) dimension 4 is correlated with the 180-degree out of phase
CLK1OUT signal. (D) dimension 0 is strongly correlated with signal RW, indicating
the processor switching between reading and writing memory.
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To analyze our simulations we needed to convert the binary transistor state of the 412

processor into spike trains so that we could apply methods from neuroscience to (see 413

Methods). While this may be artefactual, we want to remind the reader that in 414

neuroscience the idea of an action potential is also only an approximate description of 415

the effects of a cell’s activity. For example, there are known effects based on the 416

extrasynaptic diffusion of neurotransmitters [61] and it is believed that active 417

conductances in dendrites may be crucial to computation [62]. 418

Our behavioral mechanisms are entirely passive as both the transistor based 419

simulator is too slow to play the game for any reasonable duration and the hardware for 420

game input/output has yet to be reconstructed. Even if we could “play” the game, the 421

dimensionality of the input space would consist at best of a few digital switches and a 422

simple joystick. One is reminded of the reaching tasks which dominate a large fraction 423

of movement research. Tasks that isolate one kind of computation would be needed so 424

that interference studies would be really interpretable. 425

If we had a way of hypothesizing the right structure, then it would be reasonably 426

easy to test. Indeed, there are a number of large scale theories of the brain [5, 63,64]. 427

However, the set of potential models of the brain is unbelievably large. Our data about 428

the brain from all the experiments so far, is very limited and based on the techniques 429

that we reviewed above. As such, it would be quite impressive if any of these high level 430

models would actually match the human brain to a reasonable degree. Still, they 431

provide beautiful inspiration for a lot of ongoing neuroscience research and are starting 432

to exhibit some human-like behaviors [63]. If the brain is actually simple, then a human 433

can guess a model, and through hypothesis generation and falsification we may 434

eventually obtain that model. If the brain is not actually simple, then this approach 435

may not ever converge. Simpler models might yield more insight – specifically seeking 436

out an “adder” circuit might be possible, if we had a strong understanding of binary 437

encoding and could tease apart the system to specifically control inputs and outputs of 438

a subregion – examine it in slice, if you will. 439

The analytic tools we have adopted are in many ways “classic”, and are taught to 440

graduate students in neuroinformatics courses. Recent progress in methods for 441

dimensionality reduction, subspace identification, time-series analysis, and tools for 442

building rich probabilistic models may provide some additional insight, assuming the 443

challenges of scale can be overcome. Culturally, applying these methods to real data, 444

and rewarding those who innovate methodologically, may become more important. We 445

can look at the rise of bioinformatics as an independent field with its own funding 446

streams. Neuroscience needs strong neuroinformatics to make sense of the emerging 447

datasets and known artificial systems can serve as a sanity check and a way of 448

understanding failure modes. 449

We also want to suggest that it may be an important intermediate step for 450

neuroscience to develop methods that allow understanding a processor. Because they 451

can be simulated in any computer and arbitrarily perturbed, they are a great testbed to 452

ask how useful the methods are that we are using in neuroscience on a daily basis. 453

Scientific fields often work well in situations where we can measure how well a project is 454

doing. In the case of processors we know their function and we can know if our 455

algorithms discover it. Unless our methods can deal with a simple processor, how could 456

we expect it to work on our own brain? Machine learning and statistics currently lack 457

good high-dimensional datasets with complex underlying dynamics and known ground 458

truth. While not a perfect match, the dynamics of a processor may provide a 459

compelling intermediate step. Additionally, most neural datasets are still “small data” – 460

hundreds of cells over tens of minutes. The processor enables the generation of arbitrary 461

complexity and arbitrarially-long timeseries, enabling a focus on scalable algorithms. 462

We must be careful to not over-fit, but neuroscience is rife with examples of adopting 463
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Fig 14. Understanding the processor. (A) For the processor we know which part
of the the chip is responsible for which function. We know that these are meaningful
because the designers told us so. And for each of these modules we know how the
outputs depend on the inputs. (B) For the brain, it is harder to be sure. The primate
visual system is often depicted in a similar way, such as this diagram adapted from the
classic Felleman and vanEssen [65] diagram. These areas are primarially divided
according to anatomy, but there is extensive debate about the ideal way of dividing the
brain into functional areas. Moreover, we currently have little of an understanding how
each area’s outputs depend on its inputs.

analytic tools from vary different domains (linear system theory, stochastic process 464

theory, kalman filtering) to understand neural systems. 465

In the case of the processor, we really understand how it works. We have a name for 466

each of the modules on the chip and we know which area is covered by each of them 467

(fig 14a). Moreover, for each of these modules we know how its outputs depend on its 468

inputs and many students of electrical engineering would know multiple ways of 469

implementing the same function. In the case of the brain, we also have a way of 470

dividing it into regions (fig 14b). However, we only use anatomy to divide into modules 471

and even among specialists there is a lot of disagreement about the division. Most 472

importantly though, we do not generally know how the output relates to the inputs. As 473

we reviewed in this paper, we may even want to be careful about the conclusions about 474

the modules that neuroscience has drawn so far, after all, much of our insights come 475

from small datasets, with analysis methods that make questionable assumptions. 476

There are other computing systems that scientists are trying to reverse engineer. 477

One particularly relevant one are artificial neural networks. A plethora of methods are 478

being developed to ask how they work. This includes ways of letting the networks paint 479

images [66] and ways of plotting the optimal stimuli for various areas [67]. While 480

progress has been made on understanding the mechanisms and architecture for networks 481

performing image classification, more complex systems are still completely opaque [68]. 482

Thus a true understanding even for these comparatively simple, human-engineered 483

systems remains elusive, and sometimes they can even surprise us by having truly 484
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surprising properties [69]. The brain is clearly far more complicated and our difficulty 485

at understanding deep learning may suggest that the brain is hard to understand if it 486

uses anything like gradient descent on a cost function. 487

What kind of developments would make understanding the processor, and ultimately 488

the brain, more tractable? While we can offer no definitive conclusion, we see multiple 489

ways in which we could have better understood the processor. If we had experiments 490

that would more cleanly separate one computation then results would be more 491

meaningful. For example, lesion studies would be far more meaningful if we could also 492

simultaneously control the exact code the processor was executing at a given moment. 493

Better theories could most obviously have helped; if we had known that the 494

microprocessor has adders we could have searched for them. Lastly, better data analysis 495

methods, e.g. those that can explicitly search for hierarchical structure or utilize 496

information across multiple processors. Development in these areas seems particularly 497

promising. The microprocessor may help us by being a sieve for ideas: good ideas for 498

understanding the brain should also help us understand the processor. Ultimately, the 499

problem is not that neuroscientists could not understand a microprocessor, the problem 500

is that they would not understand it given the approaches they are currently taking. 501

Methods 502

Netlist acquisition 503

All acquisition and development of the initial simulation was performed in James [10]. 504

200◦ F sulfuric acid was used to decap multiple 6502D ICs. Nikon LV150n and Nikon 505

Optiphot 220 light microscopes were used to capture 72 tiled visible-light images of the 506

die, resulting in 342 Mpix of data. Computational methods and human manual 507

annotation used developed to reconstruct the metal, polysilicon, via, and interconnect 508

layers. 3510 active enhancement-mode transistors were captured this way. The authors 509

inferred 1018 depletion-mode transistors (serving as pullups) from the circuit topology 510

as they were unable to capture the depletion mask layer. 511

Simulation and behaviors 512

An optimized C++ simulator was constructed to enable simulation at the rate of 1000 513

processor clock cycles per wallclock second. We evaluated the four provided ROMs 514

(Donkey Kong, Space Invaders, Pitfall, and Asteroids) ultimately choosing the first three 515

as they reliably drove the TIA and subsequently produced image frames. 10 seconds of 516

behavior were simulated for each game, resulting in over 250 frames per game. 517

Lesion studies 518

Whole-circuit simulation enables high-throughput targeted manipulation of the 519

underlying circuit. We systematically perturb each transistor in the processor by forcing 520

its input high, thus leaving it in an “on” state. We measure the impact of a lesion by 521

whether or not the system advances far enough to draw the first frame of the game. 522

Failure to produce the first frame constitutes as a loss of function. We identified 1560 523

transistors which resulted in loss of function across all games, 200 transistors which 524

resulted in loss of function across two games, and 186 transistors which resulted in loss 525

of function for a single game. We plot those single-behavior lesion transistors by game 526

in figure 5. 527
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Connectomic Analysis 528

Using the acquired netlist, we implement the authors method from [29] on the region of 529

the processor consisting of the X, Y, and S registers. A nonparametric 530

distance-dependent stochastic block model is jointly fit to six connectivitiy matrices : 531

G→ C1, G→ C2, C1→ C2 C2→ C1, C1→ G, C2→ G, and via Markov-chain 532

Monte Carlo, seeks the maximum a posteriori estmate for the observed connectivity. 533

Spiking 534

We chose to focus on transistor switching as this is the closest in spirit to discrete action 535

potentials of the sort readily available to neuroscientific analysis. The alternative, 536

performing analysis with the signals on internal wires, would be analogous to measuring 537

transmembrane voltage. Rasters were plotted from 10 example transistors which showed 538

sufficient variance in spiking rate. 539

Tuning curves 540

We compute luminance from the RGB output value of the simulator for each output 541

pixel to the TIA. We then look at the transistor rasters and sum activity for 100 542

previous timesteps and call this the “mean rate”. For each transistor we then compute a 543

tuning curve of mean rate versus luminance, normalized by the frequency of occurrence 544

of that luminance value. Note that each game outputs only a small number of discrete 545

colors and thus discrete luminance values. We used SI as it gave the most equal 546

sampling of luminance space. We then evaluate the degree of fit to a unimodial 547

Gaussian for each resulting tuning curve and classify tuning curves by eye into simple 548

and complex responses, of which figure 5 contains representative examples. 549

Spike-word analysis 550

For the SI behavior we took spiking activity from the first 100ms of SI and performed 551

spike word analysis on a random subset of 64 transistors close to the mean firing rate of 552

all 3510. 553

Local Field Potential 554

To derive “local field potentials” we spatially integrate transistor switching over a region 555

with a Gaussian weighting of σ = 500µm and low-pass filter the result using a window 556

with a width of 4 timesteps. 557

We compute periodograms using Welch’s method with 256-sample long windows 558

with no overlap and a Hanning window. 559

Granger Causality 560

We adopt methods for assessing conditional Granger causality as outlined in [70]. We 561

take the LFP generated using methods in section and create 100 1ms-long trials for 562

each behavioral experiment. We then compute the conditional Granger causality for 563

model orders ranging from 1 to 31. We compute BIC for all behaviors and select a 564

model order of 20 as this is where BIC plateaus. 565

PLOS 22/27

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 14, 2016. ; https://doi.org/10.1101/055624doi: bioRxiv preprint 

https://doi.org/10.1101/055624


Whole brain recording 566

The transistor switching state for the first 106 timestamps for each behavioral state is 567

acquired, and binned in 100-timestep increments. The activity of each transistor is 568

converted into a z-score by subtracting mean and normalizing to unit variance. 569

Dimensionality Reduction 570

We perform dimensionality reduction on the first 100,000 timesteps of the 3510-element 571

transistor state vectors for each behavioral condition. We use non-negative matrix 572

factorization, which attempts to find two matrices, W and H, whose product WH 573

approximates the observed data matrix X. This is equivalent to minimizing the 574

objective ||WH −X||22. 575

The Scikit-Learn [71] implementation initialized via nonnegative double singular 576

value decomposition solved via coordinate descent, as is the default. We use a latent 577

dimensionality of 6 as it was found by hand to provide the most interpretable results. 578

When plotting, the intensity of each transistor in a latent dimension is indicated by the 579

saturation and size of point. 580

To interpret the latent structure we first compute the signed correlation between the 581

latent dimension and each of the 25 known signals. We show particularly interpretable 582

results. 583
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