






Fig 12. Dimensionality Reduction to understand the roles of transistors.
We apply non-negative matrix factorization (NMF) to the space invaders (SI) task. (A)
shows the six reduced dimensions as a function of time showing clear stereotyped
activity. (B) the learned transistor state vectors for each dimension (C) Map of total
activity — color indicates the dimension where the transistor has maximum value, and
both saturation and point size indicate the magnitude of that value.
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processor uses a two-phase clock. We also find that a component relates strongly to the 362

processors read-write signal (fig 13d). Thus, we find that variables of interest are indeed 363

encoded by the population activity in the processor. 364

In neuroscience, it is also frequently found that components from dimensionality 365

reduction relate to variables of interest [55,56]. This is usually then seen as an 366

indication that the brain cares about these variables. However, clearly, the link to the 367

read-write signal and the clock does not lead to an overly important insight into the 368

way the processor actually processes information. Similar questions arise in neuroscience 369

where scientists ask if signals, such as synchrony, are a central part of information 370

processing or if they are an irrelevant byproduct [57]. We should be careful at 371

evaluating how much we understand and how much we are aided by more data. 372

Pondering the results of the processor analysis we can obtain some insights into the 373

developments needed to better utilize dimensionality reduction towards an 374

understanding. The narrow range of games that we considered and the narrow range of 375

their internal states (we just simulated booting), means that many aspects of 376

computation will not be reflected by the activities and hence not in the dimensionality 377

reduction results. Moreover, the fact that we used linear reduction only allows for linear 378

dependencies and transistors, just like neurons, have important nonlinear dependencies. 379

Lastly, there is clearly a hierarchy in function in the processor and we would need to do 380

it justice using hierarchical analysis approaches. The results of dimensionality reduction 381

should be meaningful for guiding new experiments, necessitating transfer across chips in 382

the same way as neuroscience experiments should transfer across animals. Importantly, 383

the chip can work as a test case while we develop such methods. 384

Discussion 385

Here we have taken a reconstructed and simulated processor and treated the data 386

”recorded” from it in the same way we have been trained to analyze brain data. We 387

have used it as a test case to check the näıve use of various approaches used in 388

neuroscience. We have found that the standard data analysis techniques produce results 389

that are surprisingly similar to the results found about real brains. However, in the case 390

of the processor we know its function and structure and our results stayed well short of 391

what we would call a satisfying understanding. 392

Obviously the brain is not a processor, and a tremendous amount of effort and time 393

have been spent characterizing these differences over the past century [21,22,58]. 394

Neural systems are analog and and biophysically complex, they operate at temporal 395

scales vastly slower than this classical processor but with far greater parallelism than is 396

available in state of the art processors. Typical neurons also have several orders of 397

magnitude more inputs than a transistor. Moreover, the design process for the brain 398

(evolution) is dramatically different from that of the processor (the MOS6502 was 399

designed by a small team of people over a few years). As such, we should be skeptical 400

about generalizing from processors to the brain. 401

However, we cannot write off the failure of the methods we used on the processor 402

simply because processors are different from neural systems. After all, the brain also 403

consists of a large number of modules that can equally switch their input and output 404

properties. It also has prominent oscillations, which may act as clock signals as well [59]. 405

Similarly, a small number of relevant connections can produce drivers that are more 406

important than those of the bulk of the activity. Also, the localization of function that 407

is often assumed to simplify models of the brain is only a very rough approximation. 408

This is true even in an area like V1 where a great diversity of co-localized cells can be 409

found [60]. Altogether, there seems to be little reason to assume that any of the 410

methods we used should be more meaningful on brains than on the processor. 411
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Fig 13. Relating dimensions to known signals to understanding the
population code. (A) For each of the recovered dimensions in figure 12 we compute
the correlation in time with 25 known signals inside the process. As we know the
purpose of these signals we can measure how well the dimensions explain true
underlying function. (B) Dimension 1 is strongly correlated with the processor clock
CLK0, whereas (C) dimension 4 is correlated with the 180-degree out of phase
CLK1OUT signal. (D) dimension 0 is strongly correlated with signal RW, indicating
the processor switching between reading and writing memory.
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To analyze our simulations we needed to convert the binary transistor state of the 412

processor into spike trains so that we could apply methods from neuroscience to (see 413

Methods). While this may be artefactual, we want to remind the reader that in 414

neuroscience the idea of an action potential is also only an approximate description of 415

the effects of a cell’s activity. For example, there are known effects based on the 416

extrasynaptic diffusion of neurotransmitters [61] and it is believed that active 417

conductances in dendrites may be crucial to computation [62]. 418

Our behavioral mechanisms are entirely passive as both the transistor based 419

simulator is too slow to play the game for any reasonable duration and the hardware for 420

game input/output has yet to be reconstructed. Even if we could “play” the game, the 421

dimensionality of the input space would consist at best of a few digital switches and a 422

simple joystick. One is reminded of the reaching tasks which dominate a large fraction 423

of movement research. Tasks that isolate one kind of computation would be needed so 424

that interference studies would be really interpretable. 425

If we had a way of hypothesizing the right structure, then it would be reasonably 426

easy to test. Indeed, there are a number of large scale theories of the brain [5, 63,64]. 427

However, the set of potential models of the brain is unbelievably large. Our data about 428

the brain from all the experiments so far, is very limited and based on the techniques 429

that we reviewed above. As such, it would be quite impressive if any of these high level 430

models would actually match the human brain to a reasonable degree. Still, they 431

provide beautiful inspiration for a lot of ongoing neuroscience research and are starting 432

to exhibit some human-like behaviors [63]. If the brain is actually simple, then a human 433

can guess a model, and through hypothesis generation and falsification we may 434

eventually obtain that model. If the brain is not actually simple, then this approach 435

may not ever converge. Simpler models might yield more insight – specifically seeking 436

out an “adder” circuit might be possible, if we had a strong understanding of binary 437

encoding and could tease apart the system to specifically control inputs and outputs of 438

a subregion – examine it in slice, if you will. 439

The analytic tools we have adopted are in many ways “classic”, and are taught to 440

graduate students in neuroinformatics courses. Recent progress in methods for 441

dimensionality reduction, subspace identification, time-series analysis, and tools for 442

building rich probabilistic models may provide some additional insight, assuming the 443

challenges of scale can be overcome. Culturally, applying these methods to real data, 444

and rewarding those who innovate methodologically, may become more important. We 445

can look at the rise of bioinformatics as an independent field with its own funding 446

streams. Neuroscience needs strong neuroinformatics to make sense of the emerging 447

datasets and known artificial systems can serve as a sanity check and a way of 448

understanding failure modes. 449

We also want to suggest that it may be an important intermediate step for 450

neuroscience to develop methods that allow understanding a processor. Because they 451

can be simulated in any computer and arbitrarily perturbed, they are a great testbed to 452

ask how useful the methods are that we are using in neuroscience on a daily basis. 453

Scientific fields often work well in situations where we can measure how well a project is 454

doing. In the case of processors we know their function and we can know if our 455

algorithms discover it. Unless our methods can deal with a simple processor, how could 456

we expect it to work on our own brain? Machine learning and statistics currently lack 457

good high-dimensional datasets with complex underlying dynamics and known ground 458

truth. While not a perfect match, the dynamics of a processor may provide a 459

compelling intermediate step. Additionally, most neural datasets are still “small data” – 460

hundreds of cells over tens of minutes. The processor enables the generation of arbitrary 461

complexity and arbitrarially-long timeseries, enabling a focus on scalable algorithms. 462

We must be careful to not over-fit, but neuroscience is rife with examples of adopting 463
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Fig 14. Understanding the processor. (A) For the processor we know which part
of the the chip is responsible for which function. We know that these are meaningful
because the designers told us so. And for each of these modules we know how the
outputs depend on the inputs. (B) For the brain, it is harder to be sure. The primate
visual system is often depicted in a similar way, such as this diagram adapted from the
classic Felleman and vanEssen [65] diagram. These areas are primarially divided
according to anatomy, but there is extensive debate about the ideal way of dividing the
brain into functional areas. Moreover, we currently have little of an understanding how
each area’s outputs depend on its inputs.

analytic tools from vary different domains (linear system theory, stochastic process 464

theory, kalman filtering) to understand neural systems. 465

In the case of the processor, we really understand how it works. We have a name for 466

each of the modules on the chip and we know which area is covered by each of them 467

(fig 14a). Moreover, for each of these modules we know how its outputs depend on its 468

inputs and many students of electrical engineering would know multiple ways of 469

implementing the same function. In the case of the brain, we also have a way of 470

dividing it into regions (fig 14b). However, we only use anatomy to divide into modules 471

and even among specialists there is a lot of disagreement about the division. Most 472

importantly though, we do not generally know how the output relates to the inputs. As 473

we reviewed in this paper, we may even want to be careful about the conclusions about 474

the modules that neuroscience has drawn so far, after all, much of our insights come 475

from small datasets, with analysis methods that make questionable assumptions. 476

There are other computing systems that scientists are trying to reverse engineer. 477

One particularly relevant one are artificial neural networks. A plethora of methods are 478

being developed to ask how they work. This includes ways of letting the networks paint 479

images [66] and ways of plotting the optimal stimuli for various areas [67]. While 480

progress has been made on understanding the mechanisms and architecture for networks 481

performing image classification, more complex systems are still completely opaque [68]. 482

Thus a true understanding even for these comparatively simple, human-engineered 483

systems remains elusive, and sometimes they can even surprise us by having truly 484
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surprising properties [69]. The brain is clearly far more complicated and our difficulty 485

at understanding deep learning may suggest that the brain is hard to understand if it 486

uses anything like gradient descent on a cost function. 487

What kind of developments would make understanding the processor, and ultimately 488

the brain, more tractable? While we can offer no definitive conclusion, we see multiple 489

ways in which we could have better understood the processor. If we had experiments 490

that would more cleanly separate one computation then results would be more 491

meaningful. For example, lesion studies would be far more meaningful if we could also 492

simultaneously control the exact code the processor was executing at a given moment. 493

Better theories could most obviously have helped; if we had known that the 494

microprocessor has adders we could have searched for them. Lastly, better data analysis 495

methods, e.g. those that can explicitly search for hierarchical structure or utilize 496

information across multiple processors. Development in these areas seems particularly 497

promising. The microprocessor may help us by being a sieve for ideas: good ideas for 498

understanding the brain should also help us understand the processor. Ultimately, the 499

problem is not that neuroscientists could not understand a microprocessor, the problem 500

is that they would not understand it given the approaches they are currently taking. 501

Methods 502

Netlist acquisition 503

All acquisition and development of the initial simulation was performed in James [10]. 504

200◦ F sulfuric acid was used to decap multiple 6502D ICs. Nikon LV150n and Nikon 505

Optiphot 220 light microscopes were used to capture 72 tiled visible-light images of the 506

die, resulting in 342 Mpix of data. Computational methods and human manual 507

annotation used developed to reconstruct the metal, polysilicon, via, and interconnect 508

layers. 3510 active enhancement-mode transistors were captured this way. The authors 509

inferred 1018 depletion-mode transistors (serving as pullups) from the circuit topology 510

as they were unable to capture the depletion mask layer. 511

Simulation and behaviors 512

An optimized C++ simulator was constructed to enable simulation at the rate of 1000 513

processor clock cycles per wallclock second. We evaluated the four provided ROMs 514

(Donkey Kong, Space Invaders, Pitfall, and Asteroids) ultimately choosing the first three 515

as they reliably drove the TIA and subsequently produced image frames. 10 seconds of 516

behavior were simulated for each game, resulting in over 250 frames per game. 517

Lesion studies 518

Whole-circuit simulation enables high-throughput targeted manipulation of the 519

underlying circuit. We systematically perturb each transistor in the processor by forcing 520

its input high, thus leaving it in an “on” state. We measure the impact of a lesion by 521

whether or not the system advances far enough to draw the first frame of the game. 522

Failure to produce the first frame constitutes as a loss of function. We identified 1560 523

transistors which resulted in loss of function across all games, 200 transistors which 524

resulted in loss of function across two games, and 186 transistors which resulted in loss 525

of function for a single game. We plot those single-behavior lesion transistors by game 526

in figure 5. 527
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Connectomic Analysis 528

Using the acquired netlist, we implement the authors method from [29] on the region of 529

the processor consisting of the X, Y, and S registers. A nonparametric 530

distance-dependent stochastic block model is jointly fit to six connectivitiy matrices : 531

G→ C1, G→ C2, C1→ C2 C2→ C1, C1→ G, C2→ G, and via Markov-chain 532

Monte Carlo, seeks the maximum a posteriori estmate for the observed connectivity. 533

Spiking 534

We chose to focus on transistor switching as this is the closest in spirit to discrete action 535

potentials of the sort readily available to neuroscientific analysis. The alternative, 536

performing analysis with the signals on internal wires, would be analogous to measuring 537

transmembrane voltage. Rasters were plotted from 10 example transistors which showed 538

sufficient variance in spiking rate. 539

Tuning curves 540

We compute luminance from the RGB output value of the simulator for each output 541

pixel to the TIA. We then look at the transistor rasters and sum activity for 100 542

previous timesteps and call this the “mean rate”. For each transistor we then compute a 543

tuning curve of mean rate versus luminance, normalized by the frequency of occurrence 544

of that luminance value. Note that each game outputs only a small number of discrete 545

colors and thus discrete luminance values. We used SI as it gave the most equal 546

sampling of luminance space. We then evaluate the degree of fit to a unimodial 547

Gaussian for each resulting tuning curve and classify tuning curves by eye into simple 548

and complex responses, of which figure 5 contains representative examples. 549

Spike-word analysis 550

For the SI behavior we took spiking activity from the first 100ms of SI and performed 551

spike word analysis on a random subset of 64 transistors close to the mean firing rate of 552

all 3510. 553

Local Field Potential 554

To derive “local field potentials” we spatially integrate transistor switching over a region 555

with a Gaussian weighting of σ = 500µm and low-pass filter the result using a window 556

with a width of 4 timesteps. 557

We compute periodograms using Welch’s method with 256-sample long windows 558

with no overlap and a Hanning window. 559

Granger Causality 560

We adopt methods for assessing conditional Granger causality as outlined in [70]. We 561

take the LFP generated using methods in section and create 100 1ms-long trials for 562

each behavioral experiment. We then compute the conditional Granger causality for 563

model orders ranging from 1 to 31. We compute BIC for all behaviors and select a 564

model order of 20 as this is where BIC plateaus. 565
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Whole brain recording 566

The transistor switching state for the first 106 timestamps for each behavioral state is 567

acquired, and binned in 100-timestep increments. The activity of each transistor is 568

converted into a z-score by subtracting mean and normalizing to unit variance. 569

Dimensionality Reduction 570

We perform dimensionality reduction on the first 100,000 timesteps of the 3510-element 571

transistor state vectors for each behavioral condition. We use non-negative matrix 572

factorization, which attempts to find two matrices, W and H, whose product WH 573

approximates the observed data matrix X. This is equivalent to minimizing the 574

objective ||WH −X||22. 575

The Scikit-Learn [71] implementation initialized via nonnegative double singular 576

value decomposition solved via coordinate descent, as is the default. We use a latent 577

dimensionality of 6 as it was found by hand to provide the most interpretable results. 578

When plotting, the intensity of each transistor in a latent dimension is indicated by the 579

saturation and size of point. 580

To interpret the latent structure we first compute the signed correlation between the 581

latent dimension and each of the 25 known signals. We show particularly interpretable 582

results. 583
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