Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Accurate prediction of single-cell DNA methylation states using deep learning

View ORCID ProfileChristof Angermueller, View ORCID ProfileHeather J. Lee, View ORCID ProfileWolf Reik, View ORCID ProfileOliver Stegle
doi: https://doi.org/10.1101/055715
Christof Angermueller
1European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Christof Angermueller
Heather J. Lee
2Epigenetics Programme, Babraham Institute, Cambridge, UK
3Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Heather J. Lee
Wolf Reik
2Epigenetics Programme, Babraham Institute, Cambridge, UK
3Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Wolf Reik
Oliver Stegle
1European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Oliver Stegle
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

  • Supplementary Figures
  • Supplementary Tables

  • Additional File 1
  • Addition Table 1: Evaluation
  • Additional Table 2: Hyper-parameters
  • Additional Table 3: Genomic contexts
  • Additional Table 4: Feature RF Zhang
  • Additional Table 5: Data samples
Back to top
PreviousNext
Posted February 01, 2017.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Accurate prediction of single-cell DNA methylation states using deep learning
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Accurate prediction of single-cell DNA methylation states using deep learning
Christof Angermueller, Heather J. Lee, Wolf Reik, Oliver Stegle
bioRxiv 055715; doi: https://doi.org/10.1101/055715
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Accurate prediction of single-cell DNA methylation states using deep learning
Christof Angermueller, Heather J. Lee, Wolf Reik, Oliver Stegle
bioRxiv 055715; doi: https://doi.org/10.1101/055715

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Bioinformatics
Subject Areas
All Articles
  • Animal Behavior and Cognition (3497)
  • Biochemistry (7341)
  • Bioengineering (5317)
  • Bioinformatics (20248)
  • Biophysics (9999)
  • Cancer Biology (7734)
  • Cell Biology (11291)
  • Clinical Trials (138)
  • Developmental Biology (6431)
  • Ecology (9943)
  • Epidemiology (2065)
  • Evolutionary Biology (13311)
  • Genetics (9358)
  • Genomics (12575)
  • Immunology (7696)
  • Microbiology (18998)
  • Molecular Biology (7432)
  • Neuroscience (40971)
  • Paleontology (300)
  • Pathology (1228)
  • Pharmacology and Toxicology (2133)
  • Physiology (3154)
  • Plant Biology (6855)
  • Scientific Communication and Education (1272)
  • Synthetic Biology (1895)
  • Systems Biology (5309)
  • Zoology (1087)