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ABSTRACT 

Association studies on omic-level data other then genotypes (GWAS) are becoming 
increasingly common, i.e., epigenome- and transcriptome-wide association studies 
(EWAS/TWAS). However, a tool box for the analysis of EWAS and TWAS studies is largely
lacking and often approaches from GWAS are applied despite the fact that epigenome 
and transcriptome data have very different characteristics than genotypes. 
Here, we show that EWASs and TWASs are prone not only to significant inflation but 
also bias of the test statistics and that these are not properly addressed by GWAS-based 
methodology (i.e. genomic control) and state-of-the-art approaches to control for 
unmeasured confounding (i.e. RUV, sva and cate). We developed a novel approach that is
based on the estimation of the empirical null distribution using Bayesian statistics. 
Using simulation studies and empirical data, we demonstrate that our approach 
maximizes power while properly controlling the false positive rate. Finally, we illustrate 
the utility of our method in the application of meta-analysis by performing EWASs and 
TWASs on age and smoking which highlighted an overlap in differential methylation and
expression of associated genes. An implementation of our new method is available from 
http://bioconductor.org/packages/bacon/.

The large-scale analysis of epigenome and transcriptome data in population studies is thought to 
answer fundamental questions about genome biology and will be instrumental in 
linking genetic and environmental influences to disease etiology1. Worldwide, research groups 
are now joining forces to generate and analyze such data2-6 complementary to the vast resources 
of genetic data that are already present and have been successfully used in Genome-Wide 
Association Studies (GWASs). While the analysis tool box for GWAS has matured, the 
development of effective methodology for the analysis of epigenome- and transcriptome-wide 
association studies (EWAS and TWAS) is a nascent field of research. In an EWAS, DNA 
methylation levels of typically 100 thousands of CpG dinucleotides are individually tested for an 
association with an outcome of interest, while in a TWAS this is done for expression levels of 10 
thousands of genes. Currently, the analysis of EWASs and TWASs heavily relies on approaches 
specifically designed for GWAS7. However, epigenome and transcriptome data are crucially 
different from genetic data. They are quantitative measures, and not discrete like genotypes, that
are subject to major effects of technical batches and biological influences, including cellular 
heterogeneity, prone to introduce confounding. Moreover, the associations between complex 
diseases and their risk factors often are more widespread for epigenome and transcriptome data 
than for genetic data. 
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A key aspect in the analysis of ome-wide association studies is addressing test-statistic inflation, 
which leads to an overestimation of the level of statistical significance and can dramatically 
increase the number of false positive findings8. This has always been a major concern in GWAS, 
but is also observed in EWAS9,10 and often the level of inflation exceeds that observed in GWAS. In
GWAS, test statistic inflation is commonly addressed using genomic control in which the test 
statistics are divided by the genomic inflation factor ( ) that estimates the inflation by 
comparing observed test statistics across all genetic variants evaluated to those expected by 
chance9,10. Recent work pointed out crucial limitations of genomic control in GWAS11,12. Notably, 
genomic control was shown to provide an invalid estimate of test statistic inflation when the 
outcome of interest is associated with many, small genetic effects11. In EWAS and TWAS, this is 
the rule rather than exception. Moreover, it has been shown that test statistics may not only be 
subject to inflation but also to bias13, which is not corrected for when using genomic control. Bias 
leads to a shift in the distribution of effect-sizes and is driven by confounding, a prominent 
feature of EWAS and TWAS but not GWAS. Together, this calls for the development of new 
methods specifically designed to address inflation and bias in EWAS and TWAS analyses.

Although generally ignored, the fact that genomic control results in an overestimation of the 
actual inflation unless it is estimated on the basis of genetic variants not associated with the 
outcome of interest was originally noted8,14 (Box 1). As a solution, it was proposed to estimate

 assuming a fixed but small number of associated genetic variants (i.e. 10) using a Bayesian 
outlier model15. Although an improvement for GWAS with few associations, it will not be sufficient
to solve the overestimation of inflation in EWAS and TWAS that typically yield substantially more 
associations, nor does it address the occurrence of bias. In other fields, alternative approaches 
have been proposed for large-scale multiple testing problems with invalid null distributions by 
using empirical null distributions that obviate inflation and bias16-19. The utility of these 
approaches in EWAS and TWAS, however, remains to be evaluated.

Here, we used simulations and large methylome (n=2203) and trancriptome (n=1910) data20,21 to 
show that correcting test statistic inflation using genomic control is too conservative for EWAS 
and TWAS and that bias in test statistics cannot be ignored. Moreover, we demonstrate that the 
bias and inflation in fact are the mean and variance estimates of the empirical null distribution, 
which can be estimated with a Bayesian algorithm. Application of state-of-the-art batch 
correction methods, like, ruv, sva and cate22-24, are not able to completely remove all bias and 
inflation and the resulting test-statistics require calibration to achieve optimal statistical power 
while controlling the number of false positives at the desired level. We present a fast and 
user-friendly software implementation of this new method called bacon. Finally, we show the 
utility of our approach by performing an EWAS and TWAS meta-analysis of two commonly studied
outcomes, namely age and smoking status.

RESULTS
The genomic inflation factor is not suitable to measure inflation in EWAS/TWAS
We performed an EWAS and TWAS of age and smoking status using a subset of two population 
cohorts containing 500 individuals each (Supplementary Table 1). The analyses were adjusted 
for known biological (including measured white blood cell counts) and technical covariates within
a linear model framework (Supplemental Methods). Test-statistic inflation was observed for 
both cohorts, data types and outcomes (Fig. 1). The amount of inflation, quantified using the

8 (Box 1), ranged between 1.33-1.72 for the EWASs and between 1.21-1.54 for the TWASs 
(Table 1). The levels of inflation appeared to be outcome-specific: the inflation was consistently 
higher for age than smoking status (Fig. 1 and Table 1). Also, there was a cohort-specific effect: 
the inflation for the age EWAS was much higher for the cohort, LifeLines, with a wide age range 
(34-55 years; =1.72) than for the cohort, Leiden Longevity Study, with the narrow age range
(55-64 years; =1.52). The level of inflation appeared to be correlated with the expected 
amount of true associations2-6. For example, for smoking status the expression of a moderate 
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number of genes and methylation levels CpG dinucleotides are known to be associated5,6, while 
the number of associations present for age is much greater2-4. A simulation study substantiated 
this impression (Fig. 2 and Supplemental Methods) and the dependence of  on the 
number of true associations could be shown mathematically (Box 1 and Supplemental Text) in 
line with previous work that reported this relationship for the Armitage trend test8,14. We 
conclude that in EWASs and TWASs the inflation of test statistics is commonly overestimated 
when using . 

EWAS/TWAS not only suffer from test-statistics inflation but biases too
While quantile-quantile plots of expected versus observed test statistics, or their corresponding P
values, are frequently used to visualize test-statistic inflation (Fig. 1), the alternative 
representation through a histogram of the test-statistics reveals a second artifact namely a bias 
in the test-statistics (Fig. 3a and Supplementary Fig. 2). This bias is visible as a deviation of 
the mode of the observed statistics from zero; the mode of the standard normal distribution. 
Since the majority of features, being genetic variants, CpGs or genes, will not be associated with 
the outcome of interest, statistical theory assumes that test-statistics obtained from a linear 
model follows a standard normal distribution that is centered at zero. We observed bias in the 
EWASs and TWASs of age and smoking irrespective of cohort and outcome (Supplementary Fig.
2). Genomic control does not address bias because it uses a normal distribution with the mode 
fixed at zero (Box 2 and Supplemental Text). The misspecification of the observed distribution 
of test statistics by genomic control is illustrated in Figure 2c. Of note, also permutation-based 
approaches, which are often assumed to rescue violations of assumptions regarding the 
theoretical null distribution, do not result in a proper null distribution and bias and inflation 
remains16,25 (Fig. 2d and Supplemental Text).

Estimating bias and inflation
To detect bias and inflation in EWAS and TWAS, we developed a method that estimates the 
empirical null distribution of test statistics using a Bayesian statistical approach. The method fits 
a three component normal mixture to the observed distribution of test-statistics using a Gibbs 
Sampling algorithm26. One component is forced to represent the null distribution with mean and 
standard deviation representing the bias and inflation. The other two components, one smaller 
than zero the other larger, capture the fraction of true associations present in the data, which is 
assumed to be an unknown minority of tests (Supplemental Methods). Hence, our method 
simultaneously provides parametric estimates for the distribution of test-statistics not associated 
with the outcome of interest (i.e. the empirical null distribution), and adapts to test-statistics bias
without being affected by an unknown proportion of true associations (Fig. 2b and 
Supplementary Fig. 2). We compared our method to derive the empirical null distribution to 
previously proposed methods16 in a simulation study. This showed that the performance of our 
method is equal or better than other methods under different scenarios. Importantly, our method 
resulted in the most stable estimation of the inflation which suggests that other methods 
randomly over- or underestimate the level of bias and inflation (Supplemental Methods and 
Supplementary Fig. 3).

Correction for unobserved covariates reduces test-statistic bias and inflation
The primary causes of inflation and bias are thought to be unmeasured technical and biological 
confounding16,27, e.g., population-substructure or batch effects. Various methods have been 
developed to control for these factors in high-dimensional data22-24, 28-31. We applied four methods 
to adjust an EWAS and TWAS of age in one cohort of 500 individuals and investigated their 
impact on bias and inflation. All approaches reduced the bias and inflation as compared with a 
model using known covariates only (Table 2, Supplemental Methods and Supplementary 
Table 2). Nevertheless, residual bias and inflation was observed. Therefore, we designed a 
two-stage approach in order to preserve statistical power while appropriately controlling the 
number of false positives. First, we performed an analysis that correct for known biological and 
technical covariates plus estimated unobserved covariates, followed by estimating and adjusting 
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the residual bias and inflation using the empirical null distribution. In the adjustment step, P 
values are calculated using the empirical null distribution instead of the standard normal or 
overdispersed or inflated normal that is used by the genomic control approach. It is crucial to 
note, that bias not only results in incorrect test statistics and P values but also results in biased 
effect size estimates (Box 2 and Supplemental Methods). 
To evaluate the performance of the two-stage approach, we conducted a numerical simulation. To
account for unmeasured confounding, we selected cate, a state-of-the-art method that was shown
to have superior performance in estimating unobserved covariates as compared with alternative 
approaches24. Under three different scenarios, our method in combination with cate yielded the 
highest power with the fraction of false positives close to the nominal level (0.058±0.0052, 
0.059±0.0055 and 0.059±0.0059), whereas approaches that ignore unobserved covariates lead 
to high false positive rates and those that use genomic control resulted in lower power (Table 3 
and Supplemental Methods). Also test-statistic calibration that was proposed to use in 
combination with cate24 and is closely related to genomic control, was conservative resulting in 
lower power.

Bayesian control for fixed-effect meta-analysis 
A main development in the field of EWAS and TWAS, analogous to current practice in GWAS, is 
the combined analysis of multiple population studies to detect an increasing number of 
associations including those with small effect-sizes. Fixed-effect meta-analysis combines 
estimated effect-sizes and their standard errors from different studies to construct pooled 
estimates resulting in higher precision and hence superior statistical power32. 
We performed an EWAS and TWAS of age and smoking status in four cohorts totaling 2203 and 
1910 samples, respectively. We combined the results through fixed-effect meta-analysis after 
correction for bias and inflation in the individual cohorts (Fig. 4 and Table 4). The level of bias 
and inflation remained present despite addressing unmeasured confounding using cate. Of note, 
estimates of inflation using genomic control were much more variable across analyses and 
cohorts and adjustment of test statistics using  can be expected to result in invalid results 
for a subset of cohorts. Our method fully removed all bias and inflation. Critically, bias (<0.03) 
and inflation (<1.14) remained minimal in the meta-analysis compared to an meta-analysis using 
genomic control (Table 4). The top-hits identified for age and smoking included those 
consistently reported2-6. Furthermore, our simultaneous performance of an EWAS and TWAS in a 
large meta-analysis showed a remarkable overlap in results, 410 and 57 unique genes for the 
association studies on age and smoking status, respectively (assigning the nearest gene to a CpG 
probe) (Supplementary Table 3a, 3b, 3c and 3d). For example, both DNA methylation near and
expression of CD248, DNMT3A and FBLN2 was associated with age (Fig. 5a), while the same 
was true for GPR15, AHRR and CLDND1 for smoking (Fig. 5b). In total 15967 (3.5%) CpG loci 
and 1020 (2.7%) genes were significantly associated with age (Bonferroni corrected P values 
<0.05) for smoking status 1128 (0.25%) CpG loci and 301 (0.80%) genes.

DISCUSSION
We describe a novel Bayesian approach to detect and correct bias and inflation in EWASs and 
TWASs which has the crucial characteristic that it is largely independent of the fraction of true 
associations in the data. We showed that genomic control, that is commonly used in GWAS, 
results in spurious association because it does not address bias and, moreover, inflation 
adjustment on the basis of genomic control reduces power because it increases with the fraction 
of true associations. We implemented our method in the software package bacon including bias 
and inflation corrected fixed-effect meta-analyses that are increasingly being used. Moreover, the
performance of our approach towards estimating the empirical null distribution of test statistics 
performs better or as good as existing approaches16 by taking advantage of prior knowledge of 
the distribution and the composition of test-statistics. 

Methods that try to estimate unmeasured covariates22-24 and those that try to recover the 
empirical null distribution are based on same principle: extracting information from features that
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are not associated with the outcome of interest to control the impact of unobserved covariates. 
For example, RUV23, extracts this information from control probes that, a priori, should not be 
associated with the phenotype of interest but can reflect the presence of unobserved covariates 
or unwanted variation. Recently, Wang et al.24 showed that such state-of-the-art approaches22,23 
can be unified in a single mathematical framework, which was implemented in cate. Genomic 
control, as proposed by Devlin and Roeder8, is based on estimating an inflation factor from 
features known not to be associated with the phenotype of interest but in practice are estimated 
using all data because those unassociated features are not known. Existing methods that 
estimate the complete empirical null distribution similarly assume that majority of features are 
not associated16-19. Although our method bacon is related to the latter approaches, it is designed 
to be much more flexible in dealing with larger fractions of true associations, which turns out to 
be crucial in particular for EWAS and TWAS meta-analyses. 

In the present paper we describe how to correct for bias and inflation remaining after 
state-of-the-art control for unmeasured confounding factors. Our study cannot identify the causes
of the remaining bias and inflation. In general, the potential causes include failed mathematical 
assumptions, correlation across sampling units, correlation across cases and the presence of 
unobserved covariates16. While we have attributed the latter cause in detail, the first cause, of 
failed mathematical assumptions, is of particular relevance for EWAS/TWAS. Since, most 
EWAS/TWAS use a linear regression approach, whereas a Poisson or negative binomial 
regression model might be more appropriate for a TWAS using RNA-seq count data33,34. Here we 
have chosen to use appropriate data transformations that allows us to use the linear model 
framework for association analyses35,36. 

Controlling bias and inflation in EWAS/TWAS and meta-analyses thereof is critical to obtain 
correct inference. Often the high-dimensionality of omics data is seen as a burden for the 
statistical analyses. However, statistical approaches that are based on empirical Bayes methods 
turn the dimensionality into advantage. Our method bacon is such a method. The fact that it is a 
priori known that the majority of features will not be associated (without the requirement for 
specific assumptions as to the precise fraction) facilitates the derivation of an empirical null 
distribution that can be applied to achieve a correct inference, even in situations were 
unmeasured confounding remains undetected or is subject to measurement error. 

Our work extends the work of Devlin and Roeder8, who originally propose to use genomic control 
to tackle test-statistic inflation for GWAS and links their method to the pioneering work of Efron16

on estimating an empirical null distribution for high-dimensional data inference. Hence, although
specifically applied to EWAS and TWAS, our statistical approach may have implications for any 
field focusing on inference for high-dimensional data.
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Box 1 | Inflation factors are variance estimates of the empirical null
Given a set of p z-statistics, , the genomic inflation factor is often calculated as the 
median of the squared z-statistics divided by 0.456; median , where 0.456 is
the theoretical median of a chi-square distribution with one degree of freedom. Alternatively, a 
“squared” inflation factor can be calculated by instead of squaring the test-statistics taking the 
absolute value of the test-statistics which leads to test-statistics following a half-normal 
distribution with theoretical median, . Occasionally, an inflation factor is calculated
based on P values, i.e., the ratio of the median log10-transformed P values with empirical median 
of log10-transformed uniformly distributed statistics (P values that follow the null distribution). 

Actually, median  can be used since, 0.30103 is the 
median of the exponential distribution, , with rate parameter,  which is the same as 
a log10-transformed uniformly distributed random variable. 

As a matter of fact, the inflation factor is an estimator of the variance of the z-statistics that 
follow the null distribution. Therefore, any “robust” estimator of the variance (or standard 
deviation) could have been used, e.g., the median absolute deviation of the z-statistics (using the 
appropriate scale factor, 1.4826, for normally distributed statistics). 

However, as we show in this paper these approaches are not robust enough when a moderated 
proportion of true associations is present. A fact that can be proven easily16: 

“The median of the squared test-statistics will be the ordered test-statistic at position  or
, if p is odd or even, respectively. Since, the set of test-statistics represents  

test-statistics following the null distribution and  the alternative with most of them larger 
than those from the null. The set of ordered test-statistics is roughly given by

. Furthermore, it is known in advance that , e.g.,
the proportion of true associations is small, it follows that

 and  even in case no true inflation is 

present.”
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Box 2 | The linear model for association studies
Linear regression is one of the most commonly used models for EWAS/TWAS analysis. In 
EWAS/TWAS analysis, DNA methylation or gene expression data are considered the dependent 
variable, in contrast to GWAS where the phenotype of interest is more often considered to be the 
dependent variable. The linear model for association of the jth feature, i.e., gene or CpG, with the 
phenotype of interest, x, can be given by:

Known technical or biological covariates can simply be added to the model as covariates (Z), as 
well as, estimated unobserved covariates (W), e.g., the first few principal components of the data.
The corresponding test for association of the jth feature with the phenotype of interest is the 
regular test for the null hypothesis that the true slope ( ) of a regression model, is identical to 
zero. 
It has been common, if inflation is present, to divided the test-statistics by the inflation factor 
before calculation of P values. This approach is identical to calculation of P values using an 
inflated or overdispersed normal distribution, with mean zero and variance equal to the squared 
inflation factor, on the uncorrected test-statistics, i.e, a two-sided association P value is 
calculated as:

where , a standard normal distribution and , an inflated or 
overdispersed normal distribution.

It has been shown that the omission of covariates not only introduces inflation but bias too37, 
which leads to an empirical null distribution with mean and variance representing bias and 
inflation. The previous results can easily be translate to fixed-effect meta-analyses. Consider a set
of test-statistics  obtained for  features and  cohorts. Bayesian 
estimates for  bias ( ) and inflation ( )  for cohort j are obtained. Then the corresponding bias 
and inflation corrected test-statistics are given by:

Fixed effect meta-analyses are based on effect sizes and standard errors, since , 

where  represents the effect-size and  the corresponding standard error, we can rewrite
the above equation to get corrected effect sizes and standard errors:

The corrected effect sizes and standard errors can be used in any software to perform fixed effect
meta-analysis.
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 FIGURES

Figure 1 | Inflated epigenome- and transcriptome-wide association studies  
Quantile-quantile plots for EWASs (a and b) and TWASs (c and d) on two cohorts LifeLines and 
Leiden Longevity Study for phenotypes age and smoking status. QQ-plots shows the observed 
log10-transformed P values obtain from a linear model corrected for known biological- and 
technical covariates against quantiles from the theoretical null distribution. Strong inflation is 
observed for both the EWAS and TWAS for age while for smoking status the inflation is much 
smaller.
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Figure 2 | The genomic inflation factor overestimates inflation if a moderated 
proportion of true associations is present Sets of test-statistics were generated with different
amounts of true associations (20%, 10% and 5%) but without any true inflation, i.e., the inflation 
factor should be equal to one (Supplemental Methods). The genomic inflation factor was 
calculated as the square-root of the median of squared test-statistics divided by 0.456, the 
median of chi-square distribution with one degree of freedom8. 
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Figure 3 | Bias in transcriptome-wide association studies Histogram of test-statistics from 
the TWAS on age for the LifeLines cohort. Each panel a different null distribution is shown. a) a 
standard normal distribution with mean and variance (0.0, 1.0), b) the empirical null; normal 
distribution with estimated mean and variance using our novel Bayesian approach (0.23, 1.5^2) 
c) normal distribution with zero mean and variance equal to the estimate genomic inflation factor
(0.0, 1.5^2) and d) normal distribution with permutation based estimates of mean and variance 
(-0.006, 1.1^2).
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Figure 4 | Bayesian control for fixed-effect meta-analyses- Quantile-quantile plots for 
meta-analysis for TWAS (a and b) and EWAS (c and d) on Age (a and c) and Smoking Status (b 
and d). In each plot left-panels represents bias and inflation uncorrected qq-plots and 
right-panels the bias and inflation corrected qq-plots. 
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Figure 5 | Manhattan plots for meta-analyses results for EWAS and TWAS of age and 
smoking- Panel a show the -log10 P values from the meta-analysis of age were the positive part 
of the y-axis show the results for the EWAS while the negative part of the TWAS. Black dashed 
lines indicated 0.05 Bonferroni thresholds. In red are highlighted the top 10 genes which for the 
EWAS are the genes closest to the significant CpG locus. In black are highlighted the top 10 
genes that are both significant for the EWAS as well as the TWAS.
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TABLES

Table 1 | Genomic inflation factors for the EWAS and TWAS shown in Figure 1 
Inflation factors are calculated as the square-root of the median of squared test-statistics divided 
by 0.456, the median of chi-square distribution with one degree of freedom8.

Association Study Transcriptome Epigenome

Cohort LLS LL LLS LL

Age 1.24 1.54 1.52 1.72

Smoking Status 1.21 1.21 1.39 1.33

  
Table 2 | Correction for unknown batches reduces the inflation in a TWAS on age 
Genomic and Bayesian inflation factors (and biases) calculated from test-statistics obtained by 
fitting linear models with 1) only known covariates 2, 3, and 4) known covariates plus one, two 
and three principal component 5) plus three optimal surrogate variables estimated using SVA22  6)
plus three unobserved covariates estimated using RUV29 with the residual-method 7) plus three 
unobserved covariates estimated using RUV29 with the empirical-method and 8) plus two optimal 
latent variables estimated using CATE24.

Method Genomic inf. fac. Bayesian inf. fac. (bias)

No 1.322 1.229 (-)

Known 1.237 1.169 (0.080)

PC(1)1 1.257 1.183 (0.048)

PC(2) 1.222 1.147 (-0.002)

PC(3) 1.160 1.090 (-0.139)

SVA(3)      1.181 1.116 (0.022)

RUV-Res(3) 1.332 1.166 (0.086)

RUV-Emp(3) 1.197 1.130 (0.021)

CATE(2) 1.161 1.077 (0.053)
1Within brackets the number of principal components, optimal number of surrogate variables or 
optimal number of latent factors is shown.
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Table 3 | Numerical simulation with unobserved covariates Mean and standard deviation of 
Type I error and Power for 100 simulations using different approaches to reduced the impact of 
unobserved covariates for three different scenario's. A scenario with 5 or 10 unobserved 
covariates and 10% true associations or 5 unobserved covariates with 15% true associations. 
Number of samples and number of features in each scenario was set to 100 and 2000, 
respectively. The different approach are naïve) a linear model ignoring unobserved covariates, 
naïve-gc) naïve with genomic control, naïve-bc) naïve with control of bias and inflation using 
bacon, cate) cate.calibrate) cate.bacon and oracle) linear model with the simulated unobserved 
covariates.

5 unobs. cov./prop 0.9 10 unobs. cov./prop. 0.9 5 unobs. cov./prop 0.85

Type I error Power Type I error Power Type I error Power

naive 0.72 (0.036) 0.72 (0.049) 0.58 (0.043) 0.59 (0.055) 0.71 (0.037) 0.71 (0.043)

naive-gc 0.00091 (0.0021) 0.0048 (0.0073) 0.023 (0.0083) 0.028 (0.013) 0.0014 (0.0029) 0.0048 (0.0054)

naive-bc 0.029 (0.0076) 0.047 (0.018) 0.045 (0.0054) 0.053 (0.016) 0.029 (0.0073) 0.045 (0.014)

cate 0.06 (0.0056) 0.86 (0.037) 0.069 (0.0061) 0.85 (0.042) 0.062 (0.0059) 0.86 (0.036)

cate.calibrate 0.03 (0.0042) 0.77 (0.053) 0.032 (0.0053) 0.74 (0.055) 0.021 (0.0046) 0.7 (0.057)

cate.bacon 0.058 (0.0052) 0.86 (0.041) 0.059 (0.0055) 0.83 (0.047) 0.059 (0.0059) 0.86 (0.04)

oracle 0.052 (0.0052) 0.85 (0.039) 0.053 (0.0051) 0.83 (0.044) 0.053 (0.0053) 0.85 (0.037)

      

Table 4 | Inflation factors for the different EWAS/TWAS that were part of the 
meta-analyses EWAS/TWAS meta-analysis conducted on four cohorts. Table represents the 
Bayesian inflation/bias and genomic inflation factor within brackets for each cohort and 
phenotype tested. In all analyses we used CATE to estimated three unobserved covariates, which 
were added to the linear model.

TWAS EWAS

Age Smoking Age Smoking

CODAM (n=181, n=164) 1.14 -0.030 (1.20) 1.06 0.110 (1.06) 1.18  0.080 (1.22) 1.03  0.024 (1.04)

LL (n=605, n=744) 1.16  0.029 (1.39) 1.15 0.075 (1.22) 1.49 -0.500 (1.99) 1.07  0.005 (1.08)

LLS (n=589, n=683) 1.18  0.044 (1.26) 1.15 -0.009 (1.17) 1.24  0.200 (1.36) 1.06 -0.230 (1.08)

RS (n=535, n=612) 1.11 -0.004 (1.12) 1.11 -0.008 (1.12) 1.31 0.800 (1.47) 1.00 -0.048 (1.00)

Meta-analyses (n=1910, n=2203) 0.99 0.032 (1.70)1 1.06 0.003 (1.34) 1.14 -0.023 (2.67) 1.01  0.025 (1.17)
1genomic inflation factor after genomic control in each cohorts. 
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