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Abstract

We introduce the R package pcadapt that performs genome scans to detect genes
under selection based on population genomic data. The statistical method implemented
in pcadapt assumes that markers excessively related with population structure are can-
didates for local adaptation. Because population structure is ascertained with principal
component analysis (PCA), the package is fast and can handle large-scale data generated
with next-generation technologies. It can also handle missing data as well as data obtai-
ned from pooled sequencing. By contrast to population-based approaches, the package
can handle admixed individuals and does not require to group individuals into predefined
populations. Using data simulated under an island model, a divergence model and range
expansion, we compare pcadapt to other software performing genome scans (BayeScan,
hapflk, OutFLANK, sNMF). For the different software, the average proportion of false
discoveries is around the nominal false discovery rate set at 10% with the exception of
BayeScan that generates 40% of false discoveries. When comparing statistical power for a
realized percentage of false discoveries, we find that the power of BayeScan can be severely
impacted by the presence of admixed individuals whereas pcadapt is not impacted. Last,
we show that pcadapt is the most powerful method in a model of range expansion where
population structure is continuous. Because pcadapt can handle molecular data generated
with next sequencing technologies, we anticipate that it will be a valuable tool for modern
analysis in molecular ecology.
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Introduction

Looking for variants with unexpectedly large differences of allele frequencies between
populations is a common approach to detect signals of natural selection (Lewontin and
Krakauer, 1973). When variants confer a selective advantage in the local environment,
allele frequency changes are triggered by natural selection leading to unexpectedly large
differences of allele frequencies between populations. To detect variants with large diffe-
rences of allele frequencies, numerous test statistics have been proposed, which are usually
based on a chi-square approximation of a FST -related test statistic (François et al., 2016).

Statistical approaches for detecting selection should address several challenges. The
first challenge is to account for hierarchical population structure that arises when gene-
tic differentiation between populations is not identical between all pairs of populations.
Statistical tests based on FST that do not account for a hierarchical structure, when it
occurs, generate a large excess of false positive loci (Bierne et al., 2013; Excoffier et al.,
2009).

A second challenge arises because approaches based on FST -related measures require
to group individuals into populations, although defining populations is a difficult task
(Waples and Gaggiotti, 2006). Individual sampling may not be population-based but ba-
sed on more continuous sampling schemes (Lotterhos and Whitlock, 2015). Additionally
assigning an admixed individual to a single population involves some arbitrariness be-
cause different regions of its genome might come from different populations (Pritchard
et al., 2000). Several individual-based methods of genome scans have already been pro-
posed to address this challenge and there are based on related techniques of multivariate
analysis including principal component analysis, factor models, and non-negative ma-
trix factorization (Duforet-Frebourg et al., 2014; Hao et al., 2016; Galinsky et al., 2016;
Duforet-Frebourg et al., 2016; Martins et al., 2016).

The last challenge arises from the nature of multilocus datasets generated from next
generation sequencing platforms. Because datasets are massive with a large number of
molecular markers, Monte Carlo methods usually implemented in Bayesian statistics may
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be prohibitively slow (Lange et al., 2014). Additionally, data generated from next gene-
ration sequencing platforms may contain a substantial proportion of missing data that
should be accounted for (Arnold et al., 2013; Gautier et al., 2013).

To address the aforementioned challenges, we have developed the pcadapt R package.
The statistical method implemented in pcadapt assumes that markers excessively related
with population structure are candidates for local adaptation. Because pcadapt is based
on Principal Component Analysis, it is fast and can handle large-scale data generated
with next-generation technologies.

We use simulated data to compare software in terms of false discovery rate and statis-
tical power. To perform comparisons, we included population-based software : BayeScan
that implements a Bayesian algorithm to detect outliers (Foll and Gaggiotti, 2008), the
FLK statistic as implemented in the hapflk sotware that accounts for hierarchical popula-
tion structure (Bonhomme et al., 2010), and OutFLANK that provides a robust estimation
of the null distribution of a FST test statistic (Whitlock and Lotterhos, 2015). We addi-
tionally consider the sNMF software that implements an individual-based test statistic
for genome scans (Frichot et al., 2014; Martins et al., 2016).

Statistical and Computational approach

Input data

The R package can handle different data formats for the genotype data matrix. In the
version 3.0 that is currently available on CRAN, the package can handle genotype data
files in the vcf, ped and lfmm formats. In addition, the package can also handle a pcadapt
format that is a text file where each line contains the allele counts of all individuals at
a given locus. When reading a genotype data matrix with the read.pcadapt function, a
.pcadapt file is generated, which contains the genotype data in the pcadapt format.

Choosing the number of principal components

In the following, we denote by n the number of individuals, by p the number of genetic
markers, and by G the genotype matrix that is composed of n lines and p columns.
The genotypic information at locus j for individual i is encoded by the allele count Gij,
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1 ≤ i ≤ n and 1 ≤ j ≤ p, which is a value in 0, 1 for haploid species and in 0, 1, 2 for
diploid species.

First, we normalize the genotype matrix columnwise. For diploid data, we consider the
usual normalization in population genomics where G̃ij = (Gij−pj)/(2×pj(1−pj))1/2, and
pj denotes the minor allele frequency for locus j (Patterson et al., 2006). The normalization
for haploid data is similar except that the denominator is given by (pj(1 − pj))

1/2.
Then, we use the normalized genotype matrix G̃ to ascertain population structure

with principal component analysis (Patterson et al., 2006). The number of principal com-
ponents to consider is denoted K and is a parameter that should be chosen by the user.
In order to choose K, we recommend to consider the graphical approach based on the
scree plot (Jackson, 1993). The scree plot displays the eigenvalues of the covariance matrix
in descending order. Up to a constant, eigenvalues are proportional to the proportion of
variance explained by each principal component. The eigenvalues that correspond to ran-
dom variation lie on a straight line whereas the ones corresponding to population structure
depart from the line. We recommend to use Cattell’s rule that states that components
corresponding to eigenvalues to the left of the straight line should be kept (Cattell, 1966).

Test statistic

We now detail how the package computes the test statistic. We consider multiple linear
regressions by regressing each of the p SNPs by the K principal components X1, . . . , XK

Gj =
K∑
k=1

βjkXk + εj, j = 1, . . . , p, (1)

where βjk is the regression coefficient corresponding to the j-th SNP regressed by the
k-th principal component, and εj is the residuals vector. To summarize the result of the
regression analysis for the j-th SNP, we return a vector of z-scores zj = (zj1, . . . , zjK)

where zjk corresponds to the z-score obtained when regressing the j-th SNP by the k-th
principal component.

The next step is to look for outliers based on the vector of z-scores. We consider a
classical approach in multivariate analysis for outlier detection. The test statistic is the
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Mahalanobis distance D which is defined as

D2
j = (zj − z̄)TΣ−1(zj − z̄), (2)

where Σ is the (K × K) covariance matrix of the z-scores and z̄ is the vector of the K
z-score means. When K > 1, the covariance matrix is estimated with the Orthogonalized
Gnanadesikan-Kettenring method that is a robust estimate of the covariance able to
handle large-scale data (Maronna and Zamar, 2012) (covRob function of the robust R
package). When K = 1, the variance is estimated with another robust estimate (cov.rob
function of the MASS R package).

Genomic Inflation Factor

To perform multiple hypothesis testing, Mahalanobis distances should be transformed
into p-values. If the z-scores were truly multivariate Gaussian, the Mahalanobis distances
D should be chi-square distributed with K degrees of freedom. However, we found that
Mahalanobis distances should rather be divided by a constant λ, to be approximated by
a chi-square distribution with K degrees of freedom. This constant, called the genomic
inflation factor, is estimated using the median of the Mahalanobis distances divided by the
median of the chi-square distribution with K degrees of freedom λ (Devlin and Roeder,
1999).

Control of the False Discovery Rate (FDR)

Once p-values are computed, there is a problem of decision-making related to the
choice of a threshold for p-values. We recommend to use the FDR approach where the
objective is to provide a list of candidate genes with an expected proportion of false
discoveries smaller than a specified value (François et al., 2016). For controlling the FDR,
we consider the q-value procedure as implemented in the qvalue R package that is less
conservative than Bonferroni or Benjamini-Hochberg correction (Storey and Tibshirani,
2003). The qvalue R package transform the p-values into q-values and the user can control
a specified value α of FDR by considering as candidates the SNPs with q-values smaller
than α.
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Numerical computations

Principal component analysis is performed using a C routine that allows to compute
scores and eigenvalues efficiently with minimum RAM access (Duforet-Frebourg et al.,
2016). Computing the covariance matrix is the most computationally demanding part.
To provide a fast routine, we compute the n × n covariance matrix instead of the much
larger p× p covariance matrix. We compute the covariance incrementally by adding small
storable covariance blocks successively. Multiple linear regression is then solved directly
by computing an explicit solution, written as a matrix product. Using the fact that the
(n,K) score matrix X is orthogonal, the (p,K) matrix β̂ of regression coefficients is given
by GTX and the (n, p) matrix of residuals is given by G−XXTG. The z-scores are then
computed using the standard formula for multiple regression

zjk = β̂jk

√∑n
i=1 x

2
ik

σ2
j

, (3)

where σ2
j is an estimate of the residual variance for the jth SNP, and xik is the score of

kth principal component for the ith individual.

Missing data

Missing data should be accounted for when computing principal components and when
computing the matrix of z-scores. There are many methods to account for missing data in
PCA and we consider the pairwise covariance approach (Dray and Josse, 2015). It consists
in estimating the covariance between each pair of individuals using only the markers that
are available for both individuals. To compute z-scores, we account for missing data in
formula (3). The term in the numerator

∑n
i=1 x

2
ik depends on the quantity of missing data.

If there are no missing data, it is equal to 1 by definition of the scores obtained with PCA.
As the quantity of missing data grows, this term and the z-score decrease such that it
becomes more difficult to detect outlier markers.

Pooled sequencing

When data have been sequenced in pool, the Mahalanobis distance is not based on the
matrix of z-score anymore but on the matrix of allele frequency computed in each pool.
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Materials and Methods

Simulated data

We generated simulated data under different demographic scenarios using the ms soft-
ware and the Python package simuPOP (Hudson, 2002; Peng and Kimmel, 2005) (Fig
SI1). All simulated data are composed of 3 populations, each of them containing 50 sam-
pled diploid individuals. SNPs were simulated assuming no linkage disequilibrium. SNPs
with minor allele frequencies lower than 5% were discarded from the datasets. The mean
FST for each simulation is comprised between 5% and 10%. Using the simulations based
on a island and a divergence model, we also created datasets composed of admixed indi-
viduals. We assume that an instantaneous admixture event occurs at the present time so
that all sampled individuals are the results of this admixture event. Admixed individuals
were generated by drawing randomly admixture proportions using a Dirichlet distribution
of parameter (α, α, α) (α ranging from 0.005 to 1). In addition to these simulations, we
also included simulations of range expansion in a continuous square landscape (Lotterhos
and Whitlock, 2015). These simulations assume that there are two refugia from which
range expansion occurred. The entire landscape was colonized during range expansion
and adaptation is assumed to occur during the expansion process.

Island model

We used ms to create simulations under an island model (Fig SI1). We set a lower
migration rate for the 50 adaptive SNPs compared to the 950 neutral ones to mimick
diversifying selection (Bazin et al., 2010). For a given locus, migration from population i
to j is specified by choosing a value of the effective migration rate that is set toMneutral =

10 for neutral SNPs and to Madaptive for adaptive ones. We simulated 35 SNP data in
the island model with different strengths of selection, where the strength of selection
corresponds to the ratio Mneutral/Madaptive, which varies here from 10 to 1, 000. The ms
command lines for neutral and adaptive SNPs are given by (Madaptive = 0.01 andMneutral =

10)

./ms 300 950 -s 1 -I 3 100 100 100 -ma x 10 10 10 x 10 10 10 x

./ms 300 50 -s 1 -I 3 100 100 100 -ma x 0.01 0.01 0.01 x 0.01 0.01 0.01 x
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Divergence model

For the divergence models, we used the package simuPOP, which is an individual-based
population genetic simulation environment (Peng and Kimmel, 2005), to simulate 6 data
sets. An ancestral panmictic population evolves during 20 generations before splitting
into two subpopulations. The second subpopulation then splits into another two subpo-
pulations 2 and 3 at time T > 20, and all 3 subpopulations 1, 2 and 3 continue to evolve
until 200 generations have been reached, without migration between them (Figure SI1). A
total of 50 diploid individuals are sampled in each population. Selection only occurs in the
branch associated with population 2 and selection is simulated by assuming an additive
model (fitness is equal to 1 − 2s, 1 − s, 1 depending on the genotypes). We simulated a
total of 3, 000 SNPs comprising of 100 adaptive ones for which the selection coefficient is
of s = 0.1.

Range expansion

We consider 6 simulations of range expansion with two glacial refugiees (Lotterhos and
Whitlock, 2015). Adaptation occurs during the recolonization phase of the species range
from the two refugia. We consider 6 different simulated data with 30 populations and a
number of sampled individual per population that varies from 20 to 60.

Parameter settings for the different software

When using hapflk, we set K = 1 that corresponds to the computation of the FLK
statistic. When using BayeScan and OutFLANK, we use the default parameter values. For
sNMF, we use K = 3 for the island and divergence model and K = 5 for range expansion
as indicated by the cross-entropy criterion. The regularization parameter of sNMF was
set to α = 1000. For sNMF and hapflk, we use the genomic inflation factor to recalibrate
p-values. When using population-based methods with admixed individuals, we use known
ancestries for each individual to make assignment using a Max rule.
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Results

Choosing the number of principal components

We evaluate Cattell’s graphical rule to choose the number of principal components.
For the island and divergence model, the choice of K is evident (Figure 1). For K ≥ 3, the
eigenvalues follow a straight line. As a consequence, Cattell’s rule indicates K = 2, which
is expected because there are 3 populations (Patterson et al., 2006). For the model of
range expansion, applying Cattell’s rule to choose K is more difficult (Figure 1). Ideally,
the eigenvalues that correspond to random variation lie on a straight line whereas the ones
corresponding to population structure depart from the line. However, there is no obvious
point at which eigenvalues depart from the straight line. Choosing a value of K between
5 and 8 is compatible with Cattell’s rule. Using the package qvalue to control 10% of false
discovery rate, we find that the actual proportion of false discoveries as well as statistical
power is weakly impacted when varying the number of principal components from K = 5

to K = 8 (Figure SI2).

An example of genome scans performed with pcadapt

To provide an example of results, we applied pcadapt with K = 6 in the model of
range expansion. Population structure captured by the first 2 principal components is
displayed in Figure 2. The p-values are well calibrated since there is a mixture of uniform
distribution and of a peaky distribution around 0, which corresponds to outlier loci (Figure
2). Controlling 10% of false discoveries, we find 122 outliers among 10, 000 SNPs, resulting
in 23% actual false discoveries and a power of 95%.

Control of the False Discovery Rate

We evaluate to what extent using pcadapt and the qvalue packages can control a False
Discovery rate set at 10% (Figure 3). All SNPs with a q-value smaller than 10% were
considered as candidate SNPs for the simulations. For the island model, we find that the
average proportion of false discoveries is of 8% and it increases to 10% when including
admixture. For the divergence model, the average proportion of false discoveries is of 11%

and it increases to 22% when including admixture. The largest average proportion of false
discoveries is obtained under range expansion and is equal to 25%.
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We then evaluate the average proportion of false discoveries obtained with BayeScan,
hapflk, OutFLANK, and sNMF (Figure 3). We find that hapflk is the most conservative
approach (FDR = 6%) followed by OutFLANK and pcadapt (FDR = 11%). The software
sNMF is more liberal (FDR = 19%) and BayeScan generates the largest proportion of false
discoveries (FDR = 41%). When not recalibrating the p-values of hapflk, we find that the
test is even more conservative (results not shown). For all software, the range expansion
scenario is the one that generates the largest proportion of false discoveries with expected
proportion of false discoveries ranging from 22% (OutFLANK) to 93% (BayeScan).

Statistical power

To provide a fair comparison between software, we compare statistical power of the
different software for equal values of the observed proportion of false discoveries. Then we
compute statistical power averaged over observed proportion of false discoveries ranging
from 0% to 50%.

For the simulations obtained with the island model where there is no hierarchical
population structure, the statistical power is similar for all software (Figure SI3 and SI4).
Including admixed individuals hardly changes their statistical power (Figure SI3).

Then, we compare statistical power in a divergence model where adaptation took place
in one of the external branches of the population divergence tree. The software pcadapt
and hapflk, which account for hierarchical population structure, as well as BayeScan are
the most powerful in that setting (Figure 4 and Figure SI5). The values of averaged power
in decreasing order are of 23% for BayeScan, of 20% for pcadapt, of 17% for hapflk, of 4%

for sNMF and of 0% for OutFLANK. When including admixed individuals, the power of
hapflk and of pcadapt hardly decreases whereas the power of BayeScan decreases to 0%

(Figure 4).
The last model we consider is the model of range expansion. The package pcadapt is

the most powerful approach in this setting but other software also discover many true
positive loci with the exception of BayeScan that provides no true discovery (Figure 5
and SI6) The values of averaged power in decreasing order are of 46% for pcadapt, of 41%

for hapflk, of 37% for OutFLANK, of 30% for sNMF and of 0% for BayeScan.
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Running time of the different software

Last, we compared the software running times. The characteristics of the computer
we used to perform comparisons is the following : OSX El Capitan 10.11.3, 2,5 GHz In-
tel Core i5, 8 Go 1600 MHz DDR3. We discarded BayeScan as it is too time consuming
compared to other software. For instance, running BayeScan on a genotype matrix contai-
ning 150 individuals and 1, 500 SNPs took 9 hours. The different software were run on
genotype matrices containing 300 individuals and from 500 to 50, 000 SNPs. We find that
OutFLANK is the software for which running time increases the most rapidly with the
number of markers and it took around 25 minutes to analyse 50, 000 SNPs (Figure SI7).
For the other 3 software (hapflk, pcadapt, sNMF), analyzing 50, 000 SNPs took less than
3 minutes.

Discussion

We have shown that the R package pcadapt implements a fast method to perform ge-
nome scans with next generation sequencing data. It can handle datasets where population
structure is continuous or datasets containing admixed individuals. It can handle missing
data as well as data generated with pooled sequencing techniques. We have shown with
simulations that it compares favorably to other software of genome scans. In the future, we
anticipate that statistical properties of genome-wide approaches should be investigated in
settings that mimic more realistically NGS data including for instance pooled sequencing,
linkage disequilibrium or a substantial proportion of missing data.
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Figure 1 – Determining K with the screeplot. To choose K, we recommend to use
Cattell’s rule that states that components corresponding to eigenvalues to the left of the
straight line should be kept. For the island and divergence model, the choice of K is
evident. For the model or range expansion, a value of K between 5 and 8 is compatible
with Cattell’s rule.
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Figure 2 – Population structure (first 2 principal components) and distribution of p-
value obtained with pcadapt for a simulation of range expansion. The p-values are well
calibrated since there is a mixture of a uniform distribution and of a peaky distribution
around 0, which corresponds to outlier loci. In the left panel, each color correspond to
individuals sampled from the same population.
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Figure 3 – Control of the False Discovery Rate for different software of genome scans. We
find that the average proportion of false discoveries is around the nominal false discovery
rate set at 10% (6% for hapflk, 11% for both OutFLANK and pcadapt, and 19% for sNMF)
with the exception of BayeScan that generates 41% of false discoveries.
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Figure 4 – Statistical power averaged over the expected proportion of false discoveries
(ranging between 0% and 50%) for the divergence model with 3 populations. We assume
that adaptation took place in an external branch that follows the most recent population
divergence event. 15
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Figure 5 – Statistical power averaged over the expected proportion of false discoveries
(ranging between 0% and 50%) for a range expansion model with two refugia. Adaptation
took place during the recolonization event.
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Figure SI1 – Schematic description of the island and divergence model. For the island
model, adaptation occurs simultaneously in each population. For the island model, adap-
tation takes place in the branch leading to the second population.

22

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2016. ; https://doi.org/10.1101/056135doi: bioRxiv preprint 

https://doi.org/10.1101/056135
http://creativecommons.org/licenses/by-nc/4.0/


0.00

0.25

0.50

0.75

1.00

4 5 6 7 8 9
K

P
er

ce
nt

ag
e

Curve

FDR

Power

E[FDR] < 10%

Figure SI2 – Proportion of false discoveries and statistical power as a function of the
number of principal components in a model of range expansion.
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Figure SI3 – Statistical power averaged over the expected proportion of false discoveries
(ranging between 0% and 50%) for the island model.
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Figure SI4 – Statistical power as a function of the proportion of false discoveries for the
island model.
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Figure SI5 – Statistical power as a function of the proportion of false discoveries for the
divergence model.
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Figure SI6 – Statistical power as a function of the proportion of false discoveries for the
model of range epxansion.
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Figure SI7 – Running times of the different software. The different software were run
on genotype matrices containing 300 individuals and from 500 to 50, 000 SNPs. The
characteristics of the computer we used to perform comparisons is the following : OSX El
Capitan 10.11.3, 2,5 GHz Intel Core i5, 8 Go 1600 MHz DDR3.
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