Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Modeling Joint Abundance of Multiple Species Using Dirichlet Process Random Effects

Devin S. Johnson, Elizabeth H. Sinclair
doi: https://doi.org/10.1101/056150
Devin S. Johnson
aAlaska Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, Washington, 98115 USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: devin.johnson@noaa.gov
Elizabeth H. Sinclair
bAlaska Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, Washington, 98115, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Summary

We present a method for modeling multiple species distributions simultaneously using Dirichlet Process random effects to cluster species into guilds. Guilds are ecological groups of species that behave or react similarly to some environmental conditions. By modeling latent guild structure, we capture the cross-correlations in abundance or occurrence of species over surveys. In addition, ecological information about the community structure is obtained as a byproduct of the model. By clustering species into similar functional groups, prediction uncertainty of community structure at additional sites is reduced over treating each species separately. The method is illustrated with a small simulation demonstration, as well as an analysis of a mesopelagic fish survey from the eastern Bering Sea near Alaska. The simulation data analysis shows that guild membership can be extracted as the differences between groups become larger and if guild differences are small the model naturally collapses all the species into a small number of guilds which increases predictive efficiency by reducing the number of parameters to that which is supported by the data.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted July 28, 2016.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Modeling Joint Abundance of Multiple Species Using Dirichlet Process Random Effects
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Modeling Joint Abundance of Multiple Species Using Dirichlet Process Random Effects
Devin S. Johnson, Elizabeth H. Sinclair
bioRxiv 056150; doi: https://doi.org/10.1101/056150
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Modeling Joint Abundance of Multiple Species Using Dirichlet Process Random Effects
Devin S. Johnson, Elizabeth H. Sinclair
bioRxiv 056150; doi: https://doi.org/10.1101/056150

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Ecology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4383)
  • Biochemistry (9599)
  • Bioengineering (7094)
  • Bioinformatics (24865)
  • Biophysics (12615)
  • Cancer Biology (9958)
  • Cell Biology (14354)
  • Clinical Trials (138)
  • Developmental Biology (7950)
  • Ecology (12107)
  • Epidemiology (2067)
  • Evolutionary Biology (15989)
  • Genetics (10926)
  • Genomics (14743)
  • Immunology (9870)
  • Microbiology (23676)
  • Molecular Biology (9485)
  • Neuroscience (50872)
  • Paleontology (369)
  • Pathology (1539)
  • Pharmacology and Toxicology (2683)
  • Physiology (4016)
  • Plant Biology (8657)
  • Scientific Communication and Education (1509)
  • Synthetic Biology (2397)
  • Systems Biology (6436)
  • Zoology (1346)