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Modeling Joint Abundance of Multiple
Species Using Dirichlet Process Random
E↵ects

Devin S. Johnsona⇤ and Elizabeth H. Sinclairb

Summary: We present a method for modeling multiple species distributions simultaneously using Dirichlet

Process random e↵ects to cluster species into guilds. Guilds are ecological groups of species that behave

or react similarly to some environmental conditions. By modeling latent guild structure, we capture the

cross-correlations in abundance or occurrence of species over surveys. In addition, ecological information

about the community structure is obtained as a byproduct of the model. By clustering species into similar

functional groups, prediction uncertainty of community structure at additional sites is reduced over treating

each species separately. The method is illustrated with a small simulation demonstration, as well as an

analysis of a mesopelagic fish survey from the eastern Bering Sea near Alaska. The simulation data analysis

shows that guild membership can be extracted as the di↵erences between groups become larger and if guild

di↵erences are small the model naturally collapses all the species into a small number of guilds which increases

predictive e�ciency by reducing the number of parameters to that which is supported by the data.
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1. INTRODUCTION

In recent years there has been considerable development of methodology for modeling and

predicting abundance and occurrence of species of interest. Much of this development uses

a hierarchical framework for developing models to fit the complexities of the observed data
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or natural abundance processes (Cressie et al., 2009; Royle and Dorazio, 2008; Hobbs and

Hooten, 2015). Some of these complexities may include: spatial and temporal dependence

(Carroll et al., 2010; Latimer et al., 2009; Johnson et al., 2013b; Thorson et al., 2015; Ward

et al., 2010; Thorson et al., 2016), nondetection of individuals at sampled sites (Dorazio

and Connor, 2014; Royle, 2004), and zero-inflation (Johnson and Fritz, 2014; Thorson et al.,

2016). Many of these species distribution models (SDMs) were used to make inference to

a single species or one-at-a-time modeling if community inference was desired. However,

by not recognizing the fact that species interact, use of single species models for making

inference for community abundance and structure can produce misleading results (Clark

et al., 2014). Hence, new joint species distribution models (JSDMs), which explicitly model

species interactions (or, cross-correlation) have recently been developed (e.g., Dorazio and

Connor, 2014; Latimer et al., 2009; Thorson et al., 2015, 2016). Herein, we propose a novel

JSDM approach which models species interactions through membership in a latent ecological

guild (Simberlo↵ and Dayan, 1991) or functional group within the sampled range of habitats.

Typically, description of an abundance model begins with a generalized linear model

(GLM) structure for the abundance process using a discrete value distribution such as

Poisson or negative-binomial. For example, one might model the abundance as a Poisson

observation with log-mean that is a function of covariates. Those covariates might include

habitat variables or variables related to the sampling procedure which are thought to be

related to the observed abundance. Alternatively, one might log transform the abundance

and use Gaussian linear models (Johnson et al., 2013b; Johnson and Fritz, 2014; Ward

et al., 2010), but the general mean structure is usually the same. Herein, we will focus on

the GLM versions. The focus of the abundance modeling is related to either establishing

an ecological relationship between (joint) abundance and the environmental covariates or

predicting abundance at unsampled locations.

To extend the single species GLM oriented model to account for interactions of multiple
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species and improve prediction and inference of community structure and joint abundance,

there have been several approaches which di↵er in the details of interaction modeling, but

all were placed in the GLM framework by adding random e↵ects which are either directly

correlated between species (Clark et al., 2014; Dorazio and Connor, 2014; Latimer et al.,

2009) or when marginalized from the (log-linear) model imply a cross-species correlation

structure (Thorson et al., 2015, 2016). The direct approach of using a free parameter for every

pair of species when modeling the species-level correlation has been successfully implemented

(Clark et al., 2014; Latimer et al., 2009), however, in those studies there were a high number of

sampled sites or a low number of species considered. In other studies, unstructured covariance

did not produce reliable results (Dorazio and Connor, 2014). Thus, recent e↵orts to contribute

novel methodology for JSDMs have focused on reducing the number of parameters used to

model species interactions. Dorazio and Connor (2014) used a known species trait proximity

matrix to model the species-level covariance matrix using a spatial correlation function. By

using the known information on species similarity there are only two parameters necessary to

model the cross-correlation. Another low complexity approach has been proposed (Thorson

et al., 2015, 2016) using linear combinations of latent random e↵ects. Specifically, the latent

e↵ects are spatial fields, but the same methodology could be applied using independent

random e↵ects. If the number of random e↵ects is small relative to the number of species

modeled, the number of parameters necessary for modeling species cross-correlation can be

significantly reduced from the unstructured scenario.

As a novel alternative, we propose a JSDM that uses latent ecological guilds to model

interactions among species and obtain joint abundance inference. Herein, we also consider

joint species occurrence as well, where occurrence is defined as the binary presence (i.e.,

abundance > 0) or absence (abundance = 0) of a species. Dorazio and Connor (2014) used

known guild membership of di↵erent species to model independence of some species in a cross-

correlated JSDM. Simberlo↵ and Dayan (1991) defines an ecological guild to be “a group of
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species that exploit the same class of environmental resources in a similar way.” With this

definition in mind, we seek to build a model where species are cross-correlated in abundance

because there are unknown group e↵ects for some set of covariates, i.e., if the group (guild)

structure was known they could be represented by (group ⇥ covariate) interaction terms in

the abundance GLM models. To accomplish this task we format the model as a latent class

or mixture model (see McLachlan and Peel, 2004). Mixture models or latent class models

are often used to model dependance between variables in a nonparametric fashion because

for a su�ciently large number of groups, marginalizing over the random latent classes can

approximate any dependence structure to whatever degree desired (McLachlan and Peel,

2004; Vermunt et al., 2008). It has been shown that this holds even when the conditional

models are independent given group membership (Dunson and Xing, 2009). In an ecological

abundance context, finite mixture models have been used in the past to model spatial

heterogeneity and correlation in a nonparametric fashion (Dorazio et al., 2008; Johnson

et al., 2013b). In this paper we take inspiration from nonparametric dependence methods

used for spatial association and apply it to species interaction in abundance modeling.

In the following section we describe the general infinite mixture framework using latent

groups and describe the Dirichlet Process (DP) for modeling group membership and the

number of groups. There are several models choices for number and assignment of latent

classes, but we utilize the DP due to its long history and good clustering properties (Casella

et al., 2014). Parameter estimation in the DP-JSDM is challenging due to the latent class

process. We provide a reversible-jump MCMC (RJMCMC; Green 2003) algorithm for making

Bayesian inference. Finally, we apply the method to few simulated data sets, as well as, a

real data set on mesopelagic fish communities in the eastern Bering Sea, Alaska.
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2. METHODS

2.1. General model framework

We begin the description of the proposed methods with some notation. First we assume there

are J surveys, for which abundance (or count index; hereafter we use the term “counts”) of

I di↵erent species is measured. Let n
ij

be the observed count for ith species in survey j. We

also use the vector notation n
i

= (n
i1, . . . , niJ

)0 and n = (n0
1, . . . ,n

0
I

)0 for the n
ij

, as well as,

other quantities described later. For occurrence modeling we denote occurrence as y
ij

= 1

if n
ij

> 0 otherwise y
ij

= 0. In practice, n
ij

need not necessarily be observed for occurrence

modeling. The notation y
i

and y are similar to the abundance counterparts.

For abundance modeling, there are several possible distributions that could be used to

model the observed discrete counts, Poisson, negative binomial, zero-inflated Poisson, etc., so

we will generically denote this observation model as [n
ij

|z
ij

,�] where z
ij

is a latent Gaussian

variable controlling the level of expected abundance and � is a set of, possibly nuisance,

parameters. The notation “[A|B]” refers to the conditional distribution of A given B. For

example, if a Poisson distribution is considered,

[n
ij

|z
ij

,�] = Poisson(n
ij

|ezij), (1)

and � is not necessary. In the example analysis of mesopelagic fish surveys we utilize a

zero-inflated Poisson (ZIP) model, so,

[n
ij

|z
ij

,�] = �
ij

1[nij=0] + (1� �
ij

)Poisson(n
ij

|ezij), (2)

the additional �
ij

parameter is the mixing probability for the extra zeros. For occurrence

modeling we use

[y
ij

|z
ij

] = Bernoulli(��1{z
ij

}), (3)
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where �(·) is the standard normal CDF, that is, a probit link function.

To account for unknown interspecies correlations we take a clustering approach inspired

by the analysis of Johnson et al. (2013b) for incorporating spatial structure when there

are no reasonable distance metrics or neighborhood groupings are unknown. The model is

constructed by envisioning an unknown partition, p, of the species into 
p

groups such that

species within groups behave similarly with respect to the abundance process. For a given

p, we model (in vector form) the latent z process with the linear model

[z|p, �
p

,�, �] = N(X� +K
p

�
p

,⌃), (4)

where

• X is a design matrix of covariates for which there are no group-level e↵ects,

• � is a vector of regression coe�cients,

• K
p

= C
p

⌦H, where C
p

is an I ⇥ 
p

binary matrix indicating which species belong to

each group in p and H is a J ⇥ q matrix of q habitat covariates recorded at the jth

survey,

• �
p

= (�0
1, . . . , �

0
p
)0 is a vector of normally distributed random e↵ects, where, [�

k

|⌦] =
N (0,⌦), for k = 1, . . . ,

p

.

• ⌃ is a diagonal matrix with entries �2
ij

(for occurance modeling �
ij

= 1).

To reduce the complexity of the proposed model we suggest the following for general

practice:

(i) for abundance models, set � = diag(⌃1/2) = exp{L✓}, where L is a matrix of design

covariates and

(ii) set ⌦ = !2(H0H)�1, where ! = exp(⇠).

With respect to (i), there are some useful special cases, namely, L = 1 gives �
ij

= � and

L = I
I

⌦ 1
J

gives �
ij

= �
i

. However, the overdispersion parameters could also be modeled

6

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 28, 2016. ; https://doi.org/10.1101/056150doi: bioRxiv preprint 

https://doi.org/10.1101/056150
http://creativecommons.org/licenses/by/4.0/


Abundance of multiple species Environmetrics

based on covariates associated with sampling methods, etc. Suggestion (ii) was formulated

from the covariances of the g-prior (Tiao and Zellner, 1964). The g-prior, N(0,!2(H0H)�1),

is an often used prior for regression coe�cient parameters. It has the nice benefit that, with

a single parameter, it automatically controls the scale of variance and covariance for each

coe�cient based on the scale of the covariates and their cross-correlation. The exponential

reparameterization is used for ease of inference, that is ⇠ can be unconstrained.

The previous description assumed that the correct partitioning of the species is known,

however, for most real data sets, the correct partition is unknown. Thus, we must also provide

a probability model over partitions, [p|↵], such that marginalization over the unknown

partitions creates random coe�cient vectors that are nonparametric in their distribution.

A commonly used distribution over partitions is the Chinese Restaurant Process (CRP). A

construction definition of the CRP is described as follows, for a given parameter ↵ > 0,

1. A customer enters the restaurant and sits at one of an infinite number of tables.

2. The next customer enters and chooses to sit at the occupied table with probability

1/(1 + ↵) or a new table with probability ↵/(1 + ↵).

3. In general,the i+ 1 customer sits at an occupied table with probability proportional to

the number of customers already seated or chooses an unoccupied table with probability

proportional to ↵.

Under the CRP model individuals are exchangeable, i.e., individuals join groups based only

on how many other individuals are in the group, not who else is in the group. This fact forms

the basis for Bayesian inference for the CRP model via MCMC (Neal, 2000). The density

function for the CRP cluster model is given by,

[p|↵] = CRP(↵) / �(↵)

�(↵ + I)
↵p

pY

k=1

(g
pk

� 1)!, (5)

where g
pk

is the size of the kth group in p. Note, that the distribution of p is only a function
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of the number and sizes of the groups. Realizations of p with the same number of groups and

groups sizes have the same probability regardless of which individuals fall in which cluster.

The Dirichlet process is connected to the CRP process because a DP process is constructed

using the same procedure to seat the guests in the CRP model. Specifically, in terms of (4),

let �̄
i

be the coe�cient associated with the ith species, that is �̄
i

=
P

p

k=1 Cik

�
k

, where C
ik

is the (i, k) entry of the C
p

matrix. Now, if �̄
i

follows a DP then, conditionally,

[�̄
i

|�̄1, . . . , �̄i�1,↵,⌦] =
↵

↵ + i� 1
N (0,⌦) +

uiX

k=1

n
k

↵ + i� 1
�
k

, (6)

where u
i

is the number of unique values, �
k

, of �̄
i

0 i0 = 1, . . . , i� 1, and n
k

is the number

of species 1 through i� 1 belonging to group k. In other words, a new table is represented

by a new value of �
k

. Thus, the CRP partitioning combined with the � realizations for each

group implies that [�̄
i

|↵,⌦] = DP(↵,⌦).

Like the spatial covariance model use by Dorazio and Connor (2014), the DP-JSDM also

marginally possesses generally positive cross-covariance structure. This makes intuitive sense

as one is grouping similar species together or, if species are dissimilar, allowing them to

be independent. The covariance structure of the DP-JSDM can be derived by forming an

intercept random e↵ect, ⌘ = K
p

�
p

, such that z = X� + ⌘ + ✏, where [✏] = N(0,⌃). Then,

conditioning on the cluster assignment, the covariance matrix of the random e↵ect ⌘ is,

Var(⌘|p) = C
p

C0
p

⌦H⌦H0, (7)

and the marginal variance is given by the mixture,

Var(⌘) =

(
X

p

C
p

C0
p

[p|↵]
)

⌦H⌦H0 =  ⌦H⌦H0, (8)

where  is a matrix with (i, i0) entries equal to the probabilities that species i shares a guild

with species i0. We term the  matrix to be the species proximity matrix due to the fact

8

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 28, 2016. ; https://doi.org/10.1101/056150doi: bioRxiv preprint 

https://doi.org/10.1101/056150
http://creativecommons.org/licenses/by/4.0/


Abundance of multiple species Environmetrics

that it forms a distance, of sorts, in the guild space of the species. Although, the covariance

is never negative between any two species, it can be zero, thus those species that occupy

di↵erent guilds will have uncorrelated ⌘ random e↵ects, i.e., if  
ii

0 ⇡ 0, then Cov(⌘
ij

, ⌘
i

0
j

)

⇡ 0.

It should be noted, however, that although the covariance of the ⌘ random e↵ect is

generally, positive, that does not mean that there are only ‘positive’ (or zero) relationships

between species. The clustering is based on the relationship each species has with the chosen

covariates. For example, one species may react positively along a covariate gradient (�
i

> 0)

and another reacts negatively along that same gradient (�
i

0 < 0), therefore if a new site has

a high level of this covariate, the first species will be predicted to be relatively abundant,

while the other species abundance will be lower.

2.2. Bayesian inference

Because of the hierarchical and variable dimensional nature of the parameter space of the

DP-JSDM model we employ a Bayesian approach via MCMC (Markov Chain Monte Carlo)

for model fitting and inference. The posterior distribution of interest is given by

[z, p, �
p

,�,!,�|n] / [n|z] [z|�, �
p

,�]

⇥ [�
p

|!, p] [p|↵] [!] [�] [�] [↵],
(9)

where [!], [�], [�], and [↵] are the prior distributions for the parameters.

There are several derived parameters which may be of interest for making desired ecological

inference. First, are predictions of community abundance at new locations or times. Second,

one may be interested in the overall e↵ect of the environmental covariates for a particular

species represented by �̄
i

. Finally, the matrix C
p

C0
p

is an I ⇥ I indicator that a species is

in the same guild (associated with) another species. The posterior mean of C
p

C0
p

provides

estimated guild proximity matrix,  . Finally, the number of guilds, 
p

(number of columns

9
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in C
p

) may be of interest.

The most direct way to make inferences on the proposed hierarchical clustering model is

through a reversible-jump Markov chain Monte Carlo (RJMCMC) algorithm (Green, 2003)

to sample the posterior distribution of the parameters and clustering assignment. Here,

we provide an overview of the RJMCMC, additional details of the sampler are given in

Supplementary Material A.

In our description, we will assume the following prior distributions for the parameters:

[�] = N (µ�,⌃�), [�p

|!, p] = N (0, I
p ⌦ !2Q),

[!] = HT (�
!

, d
!

), [�] = HT (�
�

, d
�

)

[p|↵] = CRP(↵), and [↵] = G(a, b),

where I
p is an identity matrix of size 

p

, Q is a known positive-definite matrix, HT (�, d)

represents a scaled half-t distribution with scale parameter � and d degrees of freedom, and

G represents a gamma distribution with parameters a and b. For most of these parameters,

the priors can be adjusted to whatever distribution the user would like, the trade-o↵ being a

Metropolis-Hastings (MH) update instead of a Gibbs step (e.g., for �) or no di↵erence at all

if the parameter has to be updated with an MH step to begin with (!, �, and ↵). However,

the normal [�
p

|!, p] prior is necessary to the proposed RJMCMC algorithm. Although, the

known Q is not necessary. This is not as critical as it sounds as the marginal distribution is

still a nonparametric DP process we just require that the base distribution be a multivariate

normal.

The majority of the proposed RJMCMC algorithm is a standard Metropolis-within-Gibbs

(hybrid) sampler for a GLM-like model. Conditioned on a realization of p, all the other

parameters can be updated with a traditional MH step or a Gibbs step. Hence, we do

not focus on their updates here (see Supplementary Material A). However, to update p,

the dimension of the �
p

vector will potentially change, necessitating the trans-dimensional

aspect of the RJMCMC. Naively, the trans-dimensional moves require a joint (p, �
p

) proposal
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which can be rejected often if one of those quantities is a bad fit for the current state of

the remaining parameters even though the other is acceptable. Second, proposing new p

such that the MCMC chain will mix well over the space of partitions is itself challenging.

Because we are assuming that [z|�, �
p

,�] and [�
p

|!, p] are multivariate normal, the first

problem can be handled with the partial-analytic RJMCMC method proposed by Godsill

(2001) and utilized by Johnson and Hoeting (2011) and Johnson et al. (2013b) in similar

trans-dimensional MCMC applications. The partial-analytic method allows proposal of a new

model (p in this case) without jointly proposing the associated model specific parameters

(�
p

) because they can be analytically marginalized. This is a special case of a collapsed Gibbs

sampler (Van Dyk and Park, 2008).

To produce e�cient moves through guild space we use the the “individual links” definition

of the the CRP process proposed by Blei and Frazier (2011) and subsequently used by

Johnson et al. (2013b) for clustering spatial abundance trends. The links version of the CRP

process is constructed as follows:

1. A customer enters the restaurant and sits at one of an infinite number of tables.

2. The next customer enters and chooses to sit with the first customer with probability

1/(1 + ↵) or a new table with probability ↵/(1 + ↵).

3. In general, upon entering the restaurant, the i+ 1 customer sits with a previous

customer (not a table) with probability proportional to 1 or the new customer sits

by himself (self-links) with probability proportional to ↵.

4. Groups are constructed by collecting all cliques of the mathematical graph formed by

the links between customers.

Blei and Frazier (2011) show that this definition of the CRP process is equivalent to the

traditional definition presented previously. However, MCMC sampling is now based on

sampling independent links between individuals. In terms of the multiple species model,
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let `
i

2 {1, . . . , I} be the link for the ith species. The full conditional distribution of `
i

is,

[`
i

|·] / [z|�, �
p

,�] [�
p

|!, p] [`
i

|↵], (10)

where p is the partition constructed from all `
i

and ,

[`
i

|↵] = ↵1{`i=i} + 1{`i<i}

1 + ↵
, (11)

and 1{·} is an indicator function for the condition in the brackets. It would be tempting to

sample from this discrete distribution in Gibbs fashion, however, note that it depends on �
p

which may be of di↵erent dimension under a di↵erent value of `
i

. We can collapse over �
p

and use the marginal distribution

[`
i

|z,�,�,!,↵] =
Z

[z|�, �
p

,�] [�
p

|!, p] [`
i

|↵] d�
p

= [z|�,�,!, p] [`
i

|↵]

/ N (z|X�,K
p

(I
p ⌦ !2Q)K0

p

+⌃) [`
i

|↵],

(12)

which does not depend on �
p

. This approach was used by Johnson and Hoeting (2011) and

Johnson et al. (2013b) exactly as described, however, we found that for a large number of

species and samples, the covariance matrix K
p

(I
p ⌦ !2Q)K0

p

+⌃ may be quite large and

the inversion necessary to evaluate the [`
i

|z,�,�,!,↵] for each species and potential link

would make the chain prohibitively slow in practice. So, we sought an alternative formulation

of the marginal distribution that did not require inversion of such a large covariance matrix.

Using Laplace’s method (see Kass and Raftery 1995, Section 4.1) we can write

[z|�,�,!, p] =
Z
[z|�, �

p

,�] [�
p

|!, p] d�
p

= (2⇡)p/2|bV
p

|�1/2 · N (�̂
p

|0, I
p ⌦ !2Q) · N (z|X� +K

p

�̂
p

,⌃),

(13)
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where bV
p

= K0
p

⌃K
p

+ (I
p ⌦ !�2Q�1) and �̂

p

= V�1
p

(K0
p

⌃�1(z�X�)), which are respec-

tively the inverse covariance and mean for the Gaussian full conditional distribution

[�
p

|z,�,�,!, p]. This is the same distribution used to update �
p

with a Gibbs step following

an update of p. Normally, Laplace’s method produces an approximation to the integral,

but in this case the approximation is exact because the log integrand is quadratic in �
p

(Goutis and Casella, 1999). By writing the integral in this way we need only invert ⌃,

which is diagonal, and Q because (I
p ⌦ !2Q)�1 = I

p ⌦ !�2Q�1. If we use Q = (H0H)�1 as

previously suggested, then the inverse is trivial. Because, [`
i

|z,�,�,!,↵] is relatively cheap

to evaluate for each `
i

we can use a Gibbs step and draw from the discrete distribution

[`
i

|z,�,�,!,↵] for each i = 1, . . . , I, with [z|�,�,!, p] evaluated using (13) instead of (12).

3. A SIMULATION PROOF-OF-CONCEPT

To examine the ability of the DP-JSDM model to make inference to species interaction,

as well as, to make community abundance predictions, we tested the model and RJMCMC

sampler with a small group of simulated data sets. In analyzing the simulated data our

objective was to assess whether the DP-JDSM model would, in practice, produce generally

correct estimates of the guild structure. Second, would the DP-JSDM exhibit the expected

behavior that as ! becomes small, the number of guilds (groups) estimated will go to one as

the functional di↵erences between the guilds (with respect to the variables in H) becomes

insignificant.

3.1. Simulation and Analysis

Data were simulated for I = 20 species, J = 35 samples, and 
p

= 5 groups. Six data sets

were simulated corresponding to ! equal to 0.25, 0.5, 0.75, 1, 1.5, and 2. While the true

number of groups is always technically equal to five, the practical di↵erences between the
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groups tends to zero as ! becomes smaller. The group sizes were g
pk

= 7, 5, 4, 3, and 1. Three

environmental variables composing the guild design matrixH were generated from a standard

normal distribution. In addition, a single survey e↵ort variable, x was generated to adjust

overall abundance measurement. The global design matrix was set to X = [1,x,H
x

], where

H
x

= [H0| . . . |H0]0, that is, H matrix is concatenated I times over species. Thus, �
p

denotes

guild di↵erences from the overall global e↵ect of the environmental variables, H. In order to

maintain identifiability, we imposed the constraint that
P

p

k=1 �k

= 0. The global coe�cient

was set to � = (2, 1, 0,�1, 0.5)0 and each �
k

; k = 1, . . . , 5, was drawn from N(0,!2H0H). In

these simulations all �
ij

= 0, therefore, z ⌘ X� +K
p

�
p

. However, a common � was estimated

in each analysis using a Poisson observation model, that is, [n
ij

|z
ij

] = Poisson(ezij).

The prior distributions used were the same as specified in Section 2.2, specifically,

• [�]: µ� = (µ̂0, 0, 0, 0)0 and µ̂0 is the log of the mean observed count and ⌃� =

100(X0X)�1.

• [!]: �
!

= 1 and d
!

= 1 which implies a half-Cauchy prior distribution.

• [�]: �
�

= 1 and d
�

! 1 which implies a half-normal prior distribution.

• [↵]: a = 0.258 and b = 0.038.

The prior distribution parameters for the gamma distribution [↵] were chosen based upon the

method of Dorazio (2009) with one alteration. Dorazio (2009) used the method to choose a

and b such that the prior distribution over the number of groups was approximately uniform,

that is, [
p

] ⇡ 1/I, 
p

= 1, . . . , I. However, we agree with the philosophy of Casella et al.

(2014) that a priori we should prefer fewer groups, therefore, using the same optimization

approach as Dorazio (2009), we chose a and b such that, approximately, [
p

] / 1/
p

. So, all

else being equal, a smaller number of groups is a priori preferred.

For each of the six simulated datasets, we sampled the posterior distribution (9) using the

RJMCMC algorithm detailed in Supplementary Material A. Each sample consisted of 50,000
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iterations following a burnin of 10,000 iterations. We created the multAbund† package for

the R statistical environment (R Development Core Team, 2015) which contains the code to

run the RJMCMC algorithm described in Supplementary Material A.

3.2. Simulation results

As expected, when ! became small the DP-JSDM model was not able to distinguish

guild di↵erences between the species and essentially estimated one single group (Figure

1; ! = 0.25).

[Figure 1 about here.]

As ! increased and guild di↵erences became apparent the model was able to separate the

species into their respective guilds reasonably well (Figure 1). In addition, as ! became large

the precision with which the number of guilds was estimated increased as well (Figure 2).

[Figure 2 about here.]

There may be some bias as a few of the simulation runs produced ̂
p

= 6 (Figure 2; ! = 1 and

2), however, a full simulation experiment would be necessary to assess that fact. Even though

we strived to create an e�cient RJMCMC algorithm, it is still somewhat computationally

intensive.

4. EXAMPLE: MESOPELAGIC FISH ABUNDANCE

4.1. Data

In our next demonstration of the DP-JSDM we analyze community structure and abundance

of fishes that migrate diurnally between three mesopelagic depths in the eastern Bering Sea

†
Available from github at: https://github.com/dsjohnson/multAbund. The package can be installed from within an R session using the

devtools package, but users need to be able to compile source code on their platform as the multAbund package uses C++ code in its

routines.
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near Alaska. The tendency for most mesopelagic species to vertically migrate makes them an

important trophic link between the deep scattering layer and upper surface waters (Sinclair

et al., 2015) yet, fundamental aspects of multi-species distributions and relative abundances

have not been previously described.

The field e↵ort identified three primary sample stations over highly productive areas of the

eastern Bering Sea pelagic (Figure 3).

[Figure 3 about here.]

In the summers of 1999 and 2000 a total of 29 daytime and 16 nighttime trawls were

conducted at three depths (250, 500, and 1000 m) during a narrow sampling period. Four

of these trawls were not analyzed due to technical di�culties in the field and we discarded

them, resulting in J = 41 samples. Trawls were run at-depth for 15–90 minutes resulting in

collections of over 50,000 individuals representing 55 species of fish and squid. Essentially,

each individual trawl sample represents a community as influenced by depth and time of day.

Here we will demonstrate the DP-JSDM using I = 20 of the relatively most common fish

species (as opposed to squids, etc.). Many of the species were extremely rare in the survey

e↵ort (i.e., one individual observed over the entire study) and were removed.

The variables we put in theH design matrix reflect the belief that the species segregate into

guilds based on diurnal vertical migration characteristics. So, the guild covariates recorded

for each trawl are daylight cycle (day or night) and depth category (250, 500, or 1000 m). Here

we used the full interaction model to define the H design matrix (i.e., ‘⇠ cycle*depth’ in

R language model syntax). Because the duration of the trawl varied from survey to survey,

the duration was included in the X matrix to model the overall abundance of fish caught in

the trawl.
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4.2. Model and analysis

Initial attempts at fitting a DP-JSDM proceeded in the same manner as the analysis of the

simulation data in the previous section. Namely, we used the same Poisson model for the

observed abundance counts. However, after initial fittings it became evident that the trawl

data set possessed a significant level of zero-inflation relative to the Poisson distribution.

This is likely due to the spatial patchiness of pelagic fish occurrence distributions (Benoit-

Bird and Au, 2003). In addition, there may also be detection issues in the survey such that

a zero count in the trawl does not necessarily mean absence of the species. However, unlike

Dorazio and Connor (2014) we do not have replicated surveys at the same site and time in

which to separate detection and absence. Therefore, we utilized a zero-inflated Poisson (ZIP)

model in place of a Poisson GLM. The ZIP model used for this analysis is

[n
ij

|z
ij

, �
i

] = �
i

1{nij=0} + (1� �
i

)Poisson(n
ij

|ezij), (14)

where 1{nij=0} is an indicator of a zero count and �
i

is a species-specific zero-inflation mixture.

We used the prior distribution,

[logit �
i

] = T (�
�

, d
�

), (15)

with scale parameter �
�

= 1.5 and degrees of freedom d
�

= 6. This t distributed prior implies

a prior distribution for �
i

that is approximately uniform over (0,1). For the remaining

parameters we used the same prior specification as the simulated data analysis of Section

3.1.

To assess if there is any improvement gained by using the DP-JSDM we also fitted the

‘independent species’ JSDM, that is 
p

= I, to the data. The JSDM we fitted was did not

truly treat each species independently because there are shared terms in the X design matrix

(i.e., trawl duration) but it allows us to assess improvement in classifying animals into
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functional guilds relative to cycle and depth over treating them separately. To ascertain the

magnitude of improvement we would have liked to be able to use the ‘leave one out’ Bayesian

predictive information criterion (BPIC) given by

�2 BPIC = �2
X

i,j

E{log[n
ij

|n�(i,j), z�(ij),�,�, �p

, p,�,!,↵]}

= �2
X

i,j

E{log[n
ij

|n�(i,j), z�(ij),�]}
(16)

where n�(i,j) is a vector of all observed data except n
ij

and log[n
ij

|n�(i,j),�,�, �p

, p,�,!,↵]

is the log posterior predictive density for the (i, j)th observation. However, it would

be computationally infeasible to rerun the RJMCMC for every left out (i, j) entry. So,

we used the ‘Widely Applicable Information Criterion’ (WAIC; Watanabe (2013)) as an

approximation (Watanabe, 2010; Link and Sauer, 2016) to �2 BPIC, where

WAIC = �2
X

i,j

E{log[n
ij

|n, z,�]}

+ 2
X

i,j

V ar{log[n
ij

|n, z,�]}
(17)

The WAIC requires only one run of the RJMCMC with the full data set. There are also

other selection methods applicable, (Hooten and Hobbs, 2015), however, we found WAIC

straightforward to implement for the DP-JSDM.

The model was fitted using the R package multAbund. The RJMCMC algorithm was run

for 100,000 iterations following a burnin of 10,000 iterations. The package contains code to

fit the Poisson abundance data model as well as the ZIP and Bernoulli probit model for

occurrence. In addition to the joint analysis of abundance, we also analyzed the trawl survey

data as an occurrence data set where y
ij

= 1 if n
ij

> 0, else y
ij

= 0. The occurrence analysis

results are presented in Supplementary Material C.
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4.3. Results

After fitting the ZIP version of the DP-JSDM and the independent species JSDM we noted

there was a substantial improvement in WAIC under the DP-JSDM. WAIC for the DP-JSDM

model was 3052.071 and WAIC = 3078.992 for the independence model. The posterior mode

of the number of guilds was ̂
p

= 8 with 95% of the posterior probability mass falling on


p

= 8 or 9 guilds. Figure 4 depicts the estimated posterior matrix, b = E[C
p

C0
p

|n] which
defines the probability that any two species share the same vertical migration guild.

[Figure 4 about here.]

Using 1� b as a measure of distance between species, we plotted the species according to

the associated dendogram (Figure 5), which gives a better visualization of the groupings.

[Figure 5 about here.]

The predicted abundance for each species was calculated as n̂⇤ = E[n⇤|n] where n⇤ =

(n⇤
1, . . . , n

⇤
I

)0 is an observation under the various environmental conditions (Figure 6).

[Figure 6 about here.]

Results for the � parameters are presented in Table B.1 of Supplementary Material B along

with estimates of the �̄
i

values (Figure B.1). Supplementary Material C provides similar

figures and results for the DP-JSDM model using binary occurrence data instead of the

observed abundance.

The model profiled a wide range in behavior among species from the two dominant

mesopelagic fish families in the Bering Sea, Myctophidae and Bathylagidae. All but one

of the 8 guilds described by the model (Figures 5 and C.2) include a single species from

one or both of these families, implying that they partition the water column based on a

characteristic response to physical factors and foraging requirements.

The accuracy and predictive capability of the model was confirmed by the correct guild

assignment of individual species with previously known abundance and depth distribution
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profiles in the Bering Sea (i.e., bathylagids, Leuroglossus schmidti and Lipolagus ochotensis).

Then by virtue of guild membership, the model described distribution patterns of species for

which there is little reported data (i.e., myctophids, Stenobrachias leucopsarus and Diaphus

theta).

For instance, L. schmidti and S. leucopsarus formed the tightest cluster in both abundance

and occurrence dendograms (Figures 5 and C.2). Each is the most abundant species within

their respective families in the Bering Sea (Brodeur et al., 1999; Sinclair et al., 1999) and

both were highly represented throughout the water column day and night in this study.

Guild membership with L. schmidti suggests that S. leucopsarus shares a similar life history

and foraging strategy wherein juveniles and adults have indistinct vertical migration and are

stratified in the water column according to age (size) with adults remaining below 240 m

(Beamish et al., 1999; Mecklenburg et al., 2002).

The bathylagid L. ochotensis and myctophid D. theta also form a guild in abundance

(Figure 5) along with Stenobrachias nannochir in occurrence guilds (Figure C.2). Lipolagus

ochotensis and S. nannochir are among the most abundant mesopelagic species in the Bering

Sea (Sinclair et al., 1999; Mecklenburg et al., 2002). Both are size-stratified by depth with

adults residing in the deepest layers and especially present between 500-1000 m (Mecklenburg

et al., 2002). As a strong vertical migrator, L. ochotensis is also abundant between 200-500

m (Sinclair et al., 1999; Mecklenburg et al., 2002). Little is known about D. theta from

directed catch in the Bering Sea, however guild identity with S. nannochir and especially

with L. ochotensis suggests they share similar patterns of behavior. The model implication

that D. theta is an age-stratified strong vertical migrator available at upper mesopelagic

depths (Figure 6, B.1, and C.3) is supported by observations that it is a primary prey item

of Dall’s porpoise (Phocoenoides dalli) in the top 250 m of water column (Crawford, 1981).

The best example of the degree of fine detail captured by the model was demonstrated by

Bathylagus pacificus, a common and abundant species of Bathylagidae that formed its own
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cluster (Figure 5). Like other members of its family B. pacificus demonstrates a bimodal

pattern in body size at depth (Peden et al., 1985; Mecklenburg et al., 2002). In our study,

juvenile fish were concentrated at mid-layer levels during the day (500 meters) rising to 250

meters at night, while adults concentrate at deeper daytime layers (1000 m) rising to 500

m at night (Sinclair and Stabeno, 2002). This vertical migratory movement is apparent in

the log abundance plots (Figure 6; and �̄
i

values in Figure B.1) that together with known

age distribution suggest B. pacificus may form its own guild based on abundances at depth

driven by varying foraging requirements of juvenile and adults.

5. DISCUSSION

We presented a new methodology for modeling joint species distributions based on Dirichlet

process random e↵ects to model species associations through a latent guild structure. Instead

of trying to directly parameterize cross-correlation in a species-specific random e↵ect, we used

latent membership in an ecological guild. Species belonging to the same guild followed the

same response to environmental conditions through random coe�cients e↵ects in a GLM-like

setting. Unlike simple cross-correlated species random intercepts, the DP-JSDM provides

some valuable information on which species belong to guilds together and for the species

within a guild, how they respond to the selected environmental conditions together.

A fundamental aspect of mesopelagic ecology is diel vertical migration. The DP-JSDM

successfully identified community structure among 20 species of fish from the eastern Bering

Sea within this framework. The selected model parameters of depth and light describe real-

time clusters of species that move together similarly through the water column on a 24 hour

cycle, presumably in relation to foraging. Based on studies conducted in the North Pacific

Ocean, the diets of many of these same species collected from di↵erent depths match vertical

distribution patterns of the variety of copepods and euphausiids that they consume (Beamish
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et al., 1999).

Although the DP-JSDM model was initially designed to model species association, it has

the added benefit that it automatically adjusts to the necessary complexity because the

number of guilds is also simultaneously being estimated as well. In the simulation experiment

it was demonstrated that if there is little di↵erence between the species in their response to

the recorded environmental conditions the DP-JSDM will collapse to one guild, that is, no

statistical di↵erence between the species. This reduction in model complexity was noted by

Johnson et al. (2013b) in reference to spatially clustering abundance trends.

In our description of the model and our examples, we have provided a relatively

straightforward demonstration of the model and associated RJMCMC algorithm. However,

there are several extensions that would be useful in other ecological settings. Here we did not

have repeated observations at each site, so, we could not add an identifiable detection model

to the observation process, although, we illustrated that covariates (i.e., trawl duration)

could be added as a quasi-detection model as Ver Hoef and Frost (2003) used. However, if

multiple observations are available for each site, then a detection process could be added to

the observation model. Dorazio and Connor (2014) made use of an N -mixture model and

the DP-JSDM could use that as well. Instead of the ZIP model, one could add a another

observation model,

[ñ
ijk

, n
ij

|...] = Binomial(ñ
ijk

|n
ij

, �
ijk

)Poisson(n
ij

|z
ij

), (18)

as the observation portion of the model, where ñ
ij

is the observed abundance of species i at

site j during survey k and �
ijk

is the probability of each of the n
ij

individuals being observed.

If one marginalizes over the true abundances, the Poisson observation model results,

[ñ
ijk

|�
ijk

, z
ij

] = Poisson(ñ
ijk

| log �
ijk

+ z
ij

), (19)
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where E[n
ijk

] = exp{log �
ijk

+ z
ij

}. The same approach could also be used for occurrence

modeling, in which case, it becomes occupancy modeling, that is, for the observed presence

ỹ
ijk

, we use the hierarchical observation model,

[ỹ
ijk

, y
ij

|...] = Bernoulli(ỹ
ijk

|y
ij

�
ijk

)Bernoulli(y
ij

|z
ij

), (20)

where the probability that ỹ
ijk

= 1 is y
ij

�
ijk

. The main point being that the process model

does not change in either of these two settings, so, the DP-JSDM can easily be adapted to

these situations.

There is also an alteration that can be made when many sites are visited and spatial

correlation between sights might also be a consideration. We are not calling this an extension,

because spatial correlation can be added without making additions to the basic structure

presented. All that needs to be changed to add random spatial e↵ects is to use the basis

function approach of Ver Hoef and Jansen (2014), Johnson et al. (2013a), or Hefley et al.

(2016). In a spatial basis function model, the random spatial field is modeled as ⌘ = H�

where the columns of the matrix H contain the spatial basis functions evaluated at each of

the modeled sites (rows). Each basis column represents a di↵erent frequency. In the notation

just presented it should be fairly obvious how the DP-JSDM can be changed to contain

spatial correlation, one simply needs to use a basis function matrix for the environmental

design matrix. In that case, it might be appropriate to use [�|!] = N (0,!2I) for the DP

baseline distribution to match prior specifications that are usually used in spatial analysis.

And, of course, one could combine the spatial model with the previously mentioned detection

model extensions to form mutivariate spatial models for occupancy and abundance modeling.
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Figure 1.Estimated probabilities of joint guild membership between each species. For each panel, the value of ! used to simulated the

data is provided in the bar above the plot.
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Figure 2.Estimated number of guilds, p, for simulated Poisson data sets with ! ranging from 0.25 to 2. For each panel, the value of

! used to simulate the data is provided in the bar above the plot.
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Figure 3. Locations of the mesopelagic trawl surveys. There were J = 41 separate trawl surveys used in the analysis of Section 4,

however, some surveys were attempted geographically near other surveys, so, they are somewhat obscured in the figure.
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Figure 4.Estimated probability of joint guild membership for 20 of the fish species in the trawl survey with respect to abundance.
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used as a distance matrix for forming the dendogram. The colored labels reflect guild groupings based on the posterior mode number

of guilds, ̂p = 8
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Figure 6. Species-specific predictions of log-abundance for each level of cycle (day or night), and depth (250, 500, or 1000 m).
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1 Prior distributions

Here we describe the details for performing the necessary parameter updates in the RJMCMC

algorithm. To facilitate the description the reader should recall we use the following prior

distributions in full vector form (where appropriate):

• [logit �i] = T (��, d�) for i = 1, . . . , I

• [�] = N (µ�,⌃�),

• [�p|!] = N (0, Ip ⌦ !

2(H0H)�1),

• [!] = HT (�!, d!)

• [�] = HT (��, d�)

• [p|↵] = CRP(↵)

• [↵] = G(a, b),
where T denotes a t distribution, N is a (multivariate) normal distribution, HT is a half-t

distribution, CRP is the Chinese restaurant process, and G is a gamma distribution. Now, we

can describe the Markov Chain Monte Carlo (MCMC) sampler. The sampler is constructed

from repeated draws from the full conditional posterior distributions. We use the notation

[x|·] to represent the conditional distribution of the variable ‘x’ given all of the other model

components.

2 Updating z

We will first describe the updating of z for the abundance models. Unfortunately, for the

abundance models used in this paper (e.g., [nij|zij,�] = ZIP or Poisson), the full conditional

distribution does not exist in a nice closed form and we suspect this is the case for every

abundance model one may want to use. The full conditional distribution required for the

update is,

[z|·] / [n|z,�] · N (z|X� +Kp�p,⌃), (A.1)

for which a Metropolis-Hastings (MH) step is used with a random walk proposal distribution

[z⇤|z] = N(z,Rz), where Rz is a diagonal matrix that is tuned for optimal sampling. In

the R package multAbund we use the adaptive random walk proposal described by Shaby

and Wells (2011) that continually adjusts proposal distribution throughout the MCMC run.

Once the new z⇤ is drawn, each z

⇤
ij is accepted with probability

max

⇢
1,

[z⇤ij|·]
[zij|·]

�
. (A.2)
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Note, that even though z⇤ is proposed as a vector, the independence of each element implies

that each z

⇤
ij can be accepted or rejected independently.

If one is analyzing occurrence data with a probit link as described in the main text of

the paper, then the full conditional distribution,

[z|·] / [y|z] · N (z|X� +Kp�p,⌃), (A.3)

is available in closed form. For each (i, j), the necessary full conditional distribution is

[zij|·] = N bij
aij (X� +Kp�p,⌃), (A.4)

where N bij
aij is a truncated normal distribution with lower bound

aij =

(
�1 for yij = 0

0 for yij = 1
(A.5)

and upper bound

bij =

(
0 for yij = 0

1 for yij = 1
(A.6)

(Albert and Chib, 1993). If another link function is used, then the same procedure as the

abundance model updates is used with a MH acceptance step.

3 Udating �

Here, the only model used where � was present is the ZIP model used in the analysis of the

fish survey data. Therefore, we only describe updating of this parameter with respect to the

ZIP model with species-specific ZIP parameters, �i. The full conditional distribution of logit

�i is

[logit �i|·] = [ni|zi, �i] · T (logit �i|,��, d�). (A.7)

As with the z updates, the adaptive random walk MH update N (logit �i, R�) was used were

R� is continually adapted through the RJMCMC.

4 Updating � and �
p

All of the coe�cient vectors in the model have a normal prior distribution, thus the full

conditional distributions [�|·] and [�p|·] are normal distributions where each is given in

Table A.1.

3

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 28, 2016. ; https://doi.org/10.1101/056150doi: bioRxiv preprint 

https://doi.org/10.1101/056150
http://creativecommons.org/licenses/by/4.0/


Table A.1: Means and variances for sampling of � and �p. Each parameter

has a full conditional distribution of the form N (V�1m,V�1).

Distribution V m

[�|·] X0⌃�1X+⌃�1
� X0⌃�1(z�K�p) +⌃�1

� µ�

[�p|·] K0
p⌃

�1Kp + (Ip ⌦⌦)�1 K0
p⌃

�1(z�X�)

5 Updating ! and �

Using an HT family of priors is not directly conjugate, therefore, a MH step is used here as

well. Recall that here we are using ⌦ = !

2(H0H)�1 and ⌃ = �

2I, where ! = exp(⇠) and

� = exp(✓). These choices could be easily modified if desired. For !, the full conditional

distribution is given by

[!|·] / N (�p|0, Ip ⌦⌦) · HT (!|�!, d!). (A.8)

when converting to the log parameterization, we obtain the full conditional for ⇠,

[⇠|·] / N (�p|0, Ip ⌦ e

2⇠(H0H)�1) · HT (e⇠|�!, d!) · ⇠ (A.9)

As in the z updates, we use a normal random-walk proposal [⇠⇤|·] = N (⇠, R⇠), where R⇠

is adaptively tuned throughout the MCMC run in the way as the z updates. With regards

to �, the ✓ parameter is updated in an identical fashion with the full conditional distribution

given by

[✓|·] / N (z|X� +Kp�p, e
✓I) · HT (e✓|��, d�) · ✓ (A.10)

and adaptive random walk proposal distribution N (✓⇤|✓, R✓).

6 Updating p and ↵

The update of p was described in the main portion of the paper, therefore we omit it here

and refer the reader to Section 2.2 for details.

The CRP parameter ↵ is updated through an MH step with the previously described

adaptive random walk proposal on log↵. The full conditional distribution is given by

[↵|·] / CRP(p|↵) · G(↵|a, b). (A.11)

However, as with all of the positive valued parameters, we choose to reparameterize to the log

scale to make use of the adaptive random walk proposal distribution. So, the full conditional
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distribution for log↵ is

[log↵|·] / CRP(p|↵) · G(↵|a, b) · log↵. (A.12)

The same adaptive procedure was used with an MH acceptance step to sample the full

conditional distribution.
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Table B.1: Results for species-specific Zero-inflated Poisson (ZIP) mixture parameters, �i.

The ‘Estimate’ column is the posterior mode estimate and the ‘CI’ columns are the upper and

lower 0.95 highest probability density interval values. The mixture probabilities represent

the probability that a given species is unavailable for surveying in a particular survey.

Estimate Lower CI Upper CI

Albatrossia pectoralis 0.20 0.03 0.44

Avocettina infans 0.52 0.27 0.74

Bathylagus pacificus 0.04 0.00 0.20

Chauliodus macouni 0.03 0.00 0.17

Coryphaenoides cinereus 0.14 0.00 0.46

Diaphus theta 0.18 0.04 0.33

Lampanyctus jordani 0.08 0.00 0.24

Leuroglossus schmidti 0.01 0.00 0.07

Lipolagus ochotensis 0.13 0.02 0.28

Lycodapus fierasfer 0.43 0.20 0.69

Lycodapus poecilus 0.58 0.35 0.79

Macropinna microstoma 0.07 0.00 0.36

Melamphaes lugubris 0.18 0.00 0.40

Nannobrachium regale 0.54 0.28 0.75

Poromitra crassiceps 0.03 0.00 0.28

Pseudobathylagus milleri 0.28 0.00 0.56

Sigmops gracilis 0.37 0.03 0.66

Stenobrachius leucopsarus 0.01 0.00 0.07

Stenobrachius nannochir 0.04 0.00 0.15

Tactostoma macropus 0.32 0.00 0.57
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Figure B.1: Species-specific � estimates, �̄i, for each level of cycle (day or night), and depth

(250, 500, or 1000 m).
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Figure C.1: Estimated probability of joint guild membership for each of the fish species in

the trawl survey with respect to occurence.
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Figure C.2: Clustering of trawl survey fish species occurrence based on the estimated prob-

ability of joint guild membership.

3

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 28, 2016. ; https://doi.org/10.1101/056150doi: bioRxiv preprint 

https://doi.org/10.1101/056150
http://creativecommons.org/licenses/by/4.0/


|

|

||

|

|

|

|

|

|

|

|

|

|

|||

|

|

|
|

|

||

|

|

|

|

|

|

|

|

|

|

|||

|

|

|

|

|

||

|

|

|

|

|

|

|

|

|

|

| ||

|

|

|
|

|

||

|

|

|

|

|

|

|

|

|

|

|||

|

|

|

|

|

||

|

|

|

|

|

|

|

|

|

|

|||

|

|

|
|

|

||

|

|

|

|

|

|

|

|

|

|

| ||

|

|

|

Cycle: day, Depth: 250m Cycle: night, Depth: 250m

Cycle: day, Depth: 500m Cycle: night, Depth:500m

Cycle: day, Depth: 1000 Cycle: night, Depth: 1000m

Stenobrachius nannochir
Lipolagus ochotensis

Diaphus theta
Stenobrachius leucopsarus

Leuroglossus schmidti
Chauliodus macouni
Bathylagus pacificus
Lampanyctus jordani

Nannobrachium regale
Lycodapus poecilus

Avocettina infans
Tactostoma macropus
Melamphaes lugubris
Albatrossia pectoralis

Lycodapus fierasfer
Macropinna microstoma

Sigmops gracilis
Pseudobathylagus milleri

Poromitra crassiceps
Coryphaenoides cinereus

Stenobrachius nannochir
Lipolagus ochotensis

Diaphus theta
Stenobrachius leucopsarus

Leuroglossus schmidti
Chauliodus macouni
Bathylagus pacificus
Lampanyctus jordani

Nannobrachium regale
Lycodapus poecilus

Avocettina infans
Tactostoma macropus
Melamphaes lugubris
Albatrossia pectoralis

Lycodapus fierasfer
Macropinna microstoma

Sigmops gracilis
Pseudobathylagus milleri

Poromitra crassiceps
Coryphaenoides cinereus

Stenobrachius nannochir
Lipolagus ochotensis

Diaphus theta
Stenobrachius leucopsarus

Leuroglossus schmidti
Chauliodus macouni
Bathylagus pacificus
Lampanyctus jordani

Nannobrachium regale
Lycodapus poecilus

Avocettina infans
Tactostoma macropus
Melamphaes lugubris
Albatrossia pectoralis

Lycodapus fierasfer
Macropinna microstoma

Sigmops gracilis
Pseudobathylagus milleri

Poromitra crassiceps
Coryphaenoides cinereus

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Figure C.3: Species-specific predictions of occurrence for each level of cycle (day or night),

and depth (250, 500, or 1000 m).
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