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Abstract 1	

Genetic variation affecting gene regulation is a driver of phenotypic differences between individuals and can be 2	
used to uncover how biological processes are organized in a cell. Although detecting cis-eQTLs is now routine, 3	
trans-eQTLs have proven more challenging to find due to the modest variance explained and the multiple 4	
testing burden when comparing millions of SNPs for association to thousands of transcripts. Here, we provide 5	
evidence for the existence of trans-eQTLs by looking for SNPs associated with the expression of multiple 6	
genes simultaneously. We find substantial evidence of trans-eQTLs, with an 1.8-fold enrichment in nominally 7	
significant markers in all three populations and significant overlap between results across the populations. 8	
These trans-eQTLs target the same genes and show the same direction of effect across populations. We 9	
define a high-confidence set of eight independent trans-eQTLs which are associated to multiple transcripts in 10	
all three populations, and affect the same targets in all three populations with the same direction of effect. We 11	
then show that target transcripts of trans-eQTLs encode proteins that interact more frequently than expected 12	
by chance, and are enriched for pathway annotations indicative of roles in basic cell homeostasis. Thus, we 13	
have demonstrated that trans-eQTLs can be accurately identified even in studies of limited sample size. 14	
  15	

Author summary 16	

Understanding how biological processes are orchestrated requires unraveling how the genes involved are co-17	
regulated. Finding genetic variants affecting the expression of multiple genes can help identify both which 18	
genes are co-regulated and the nature of the control circuit. However, whilst mapping expression QTLs 19	
(eQTLs) close to a gene has been routine for some time, finding variants acting at a distance is more 20	
challenging as we have had to test millions of markers against thousands of transcripts. In this work we take a 21	
novel statistical approach to demonstrate the existence of trans-acting eQTLs that control hundreds of genes 22	
exist. The genes they control share regulatory machinery, form interaction networks and are involved in 23	
aspects of cellular homeostasis. We can thus begin unraveling the complex control architecture underlying 24	
biological processes. 25	
 26	
 27	
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Introduction 1	

Biological processes are carefully orchestrated events requiring precise activation and repression of 2	
participating genes by hierarchical gene regulation mechanisms. This elaborate co-regulation can be seen in 3	
the complex patterns of gene co-expression across tissues [1] and conditions [2]; the overlap and organization 4	
of transcription factor target sets [3]; the precise orchestration of developmental processes; and the 5	
organization of gene interaction networks [4]. Furthermore, it has become apparent that a substantial fraction 6	
of common genetic variants driving organismal traits such as disease risk affect gene regulatory sequences 7	
rather than coding sequence [5,6]. Thus, understanding how genetic variation influences the co-regulation of 8	
multiple genes will aid in the identification of major regulators of biological processes.  9	
 10	
Transcript levels are heritable, with a large proportion of the variance across the human population attributable 11	
to expression quantitative trait loci (eQTLs) acting in trans: one recent study estimated that 88%+/-3% of 12	
transcript level heritability is due to trans-acting effects [7]. Unlike cis-acting eQTLs which are by definition 13	
localized to proximal regulatory elements [8,9], these trans-eQTLs are presumed to affect gene regulatory 14	
machinery encoded elsewhere in the genome [9]. Thus, a trans-acting variant should alter levels of all the 15	
transcripts influenced by the regulatory machinery it affects, providing a powerful way to identify co-regulated 16	
genes and eventually understand the complex, often overlapping patterns of transcriptional control [10].  17	
 18	
Several approaches have been used to detect trans-eQTLs: the simplest is to treat each transcript level as an 19	
independent trait and identify regions of the genome where signals aggregate [11,12]. Genetic linkage of many 20	
transcripts to specific genomic loci in yeast [11], mouse [13,14], rat [15], maize [16] and human [16,17] 21	
suggested the presence of major trans-acting loci, but these have been hampered by the sensitivity of these 22	
methods to data processing artefacts [18]. In addition to thousands of cis-eQTLs, genetic association studies in 23	
humans have identified a limited number of trans-eQTLs in lymphoblasoid cell lines [19-21], adipose tissue 24	
[22,23] and whole blood samples [24]. As the majority of transcript level heritability is due to trans-acting 25	
influences [7], these results suggest that current eQTL cohorts lack adequate statistical power to detect trans-26	
eQTLs. In particular, the correction required for the number of independent association tests across the 27	
genome and the number of transcripts to be analyzed imposes a heavy multiple-testing burden, whilst practical 28	
considerations limit the sample size of eQTL studies to at most several hundred individuals. An alternative 29	
approach has been to use principal component or latent variable analysis to identify trends in covariance 30	
induced by a trans-eQTL in the expression levels of its targets, and using this as a meta-trait in an association 31	
or linkage test [25,26]. This has not, to date, led to the discovery of sufficient trans-eQTLs to account for the 32	
88% of heritability explained by trans-acting factors, indicating further approaches are warranted. 33	
 34	
Here, we take a complementary approach to identifying trans-eQTLs influencing a number of transcripts. 35	
Rather than the null hypothesis of no association, the association statistic distribution at a trans-eQTL in the 36	
genome will be a mixture drawn from null and non-null distributions, with the proportion of non-null statistics 37	
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proportional to the number of trans-eQTL target transcripts. We can therefore test the distribution of eQTL 1	
association statistics at each marker in the genome for evidence of deviation from the expected null (where no 2	
transcripts are associated), and infer the presence of a trans-eQTL if this null hypothesis is rejected (cross-3	
phenotype meta-analysis, CPMA [27]). This second-level significance testing [28] does not identify which 4	
transcripts are affected by a trans-eQTL, but only that there exists evidence of a trans-eQTL. We apply this 5	
approach to publicly available eQTL data from lymphoblastic cell lines across three African HapMap 6	
populations [20], and show evidence of multiple trans-eQTLs in these data. We detect eight independent trans-7	
eQTLs associated with multiple transcripts in all three populations, and where the transcript targets overlap 8	
significantly and the direction of effect is the same across the three populations. We then show that target 9	
transcripts of trans-eQTLs encode proteins that interact more frequently than expected by chance, and are 10	
enriched for pathway annotations indicative of roles in basic cell homeostasis, suggesting they are co-11	
regulated sets of genes.  12	
 13	

Methods 14	

Unless otherwise stated, all statistical analyses were done using the R programming language (v 3.1.0) [29]. 15	
Additional libraries are cited where appropriate. An overview of our pipeline is shown in Figure S1 and our 16	
pipeline is available for download at [[www.github.com/cotsapaslab/]]. 17	
 18	
Genotype data processing 19	
We selected to study unrelated individuals from the three African populations included in the HapMap project 20	
phase III, reasoning that the high genetic diversity and average minor allele frequencies observed in Africa will 21	
increase the statistical power of the eQTL association tests. We obtained genome-wide genotype data for 135 22	
Maasai in Kinyawa, Kenya (MKK); 83 Luhya in Webuye, Kenya (LWK); and 107 Yoruba in Ibadan Nigeria 23	
(YRI) from the HapMap Project website (ftp://ftp.ncbi.nlm.nih.gov/hapmap/genotypes/2009-24	
01_phaseIII/plink_format/; accessed: 2014-06-18). As our sample size is limited, we restricted our analysis to 25	
737,867 autosomal markers with at least 15% minor allele frequency in all three populations. All remaining 26	
variants are in Hardy-Weinberg equilibrium (PHWE > 1e-6); all individuals have <3% of genotypes missing and all 27	
remaining variants have <8% missing data. Genotype data annotation was converted into hg38 coordinates.  28	
 29	
Expression data processing 30	
We obtained processed expression data for lymphoblastoid cell line profiling on the Illumina Human-6 v2 31	
Expression BeadChip array for all 322 individuals, publicly available under ArrayExpress accession number E-32	
MTAB-264 [20]. The expression data includes 21,802 probes mapping to one single gene, excluding probes 33	
that map to multiple genes or to genes on the X or Y chromosome, and that have not been subjected to the 34	
PEER method [20]. After quantile normalization to reduce inter-individual variability [30], we removed 35	
probesets with low variance or low intensity in each population. Both the interquartile range and mean intensity 36	
across probe sets showed clear bimodal shapes (Figure S1), and we used mixture modeling (mclust v.5.1 in R) 37	
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to detect those probe sets that belonged to each higher distribution with 80% probability. We retained those 1	
probe sets that had a higher variance and higher intensity in all three populations, resulting in 9085 analyzed 2	
probe sets.  3	
 4	
By converting Illumina probe IDs to HGNC gene symbols (biomaRt v2.22.0 [30]) we could map 8673/9085 5	
probesets to 7984 unique HGNC genes with unambiguous hg38 genomic coordinates in GENCODE v.20. 6	
Unmapped probesets were excluded from analyses relying on annotation.  7	
 8	
Expression data suffer from systematic, non-genetic biases, hampering eQTL studies [18]. Several multivariate 9	
approaches have been used to correct these data artefacts [25,31,32], all of which identify trends in variance in 10	
expression data assumed to stem from (usually unmeasured) confounders. These methods clearly improve 11	
power to detect cis-eTQLs [23,33], but cannot distinguish between systematic artefacts and genuine trans-12	
eQTLs, both of which will explain some proportion of variance across many transcripts [25,31,32]. For this 13	
reason, we have chosen not to use these corrections in our data processing pipeline, as our goal is to detect 14	
the presence of trans-eQTLs.   15	
 16	
Calculating eQTL association statistics 17	
We calculated association statistics for each probeset intensity to each SNP by linear regression [34], 18	
controlling for population stratification by adding structure principal components as covariates [35]. In each 19	
population, we estimated the optimal number of principal components by incremental inclusion of components 20	
until the overall test statistic inflation is minimized, as previously described [36] (see Supplementary 21	
Information). We included the top two principal components for YRI, ten for LWK and 20 for MKK as optimal 22	
corrections for population stratification. 23	

 24	

Identifying trans-eQTLs by cross phenotype meta-analysis  25	
Previous strategies to identify trans-eQTLs rely on either identifying significant associations to a single 26	
transcript [37,38], or associating variance components affecting multiple transcripts with genetic markers as 27	
surrogate phenotypes [25,39]. We have previously described a second-level significance testing approach [28] 28	
to assess evidence of multiple associations at a genomic marker [27]. At each marker we test for over-29	
dispersion of association –log(p) values across all probe sets with a null hypothesis that -log(p) should be 30	
exponentially distributed, with a decay parameter 𝜆 = 1. Under the joint alternative hypothesis, where a subset 31	
of association statistics are non-null, 𝜆 ≠ 1. We compare the evidence for these hypotheses as a likelihood 32	
ratio test for our cross-phenotype meta-analysis (CPMA), where the statistic SCPMA is defined as:  33	

𝑆!"#$ =  −2 × 𝑙𝑛
𝑃 𝐷𝑎𝑡𝑎 𝜆 = 1
𝑃 𝐷𝑎𝑡𝑎 𝜆 = 𝜆

   ~ 𝜒!"!!!  

where 𝜆 is the observed exponential decay rate in the data. Thus we need only estimate a single parameter, 𝜆, 34	
so that the test has a single degree of freedom. 35	
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We account for the extensive correlation between t probeset levels across individuals by empirical significance 1	
testing. We simulate eQTL association statistics under the null expectation of no association to any marker 2	
given the observed correlation between probe sets association statistics from a multivariate normal distribution 3	
(using the MASS package in R [40]). We perform an eigen-decomposition: 4	

𝐂 = 𝐐𝚲𝑸𝑻 

Where the covariance matrix C has entries ci,j = cov(ai,aj) where ai and aj are vectors of scaled z-scores for the 5	
ith and jth probesets across all markers in the genome. All three sample covariance matrices thus have 6	
dimension 9085; because they are calculated from the probeset x SNP matrix of eQTL Z statistics rather than 7	
the probeset x individual matrix of expression levels, we find all three are positive definite (data not shown). 8	
To account for the correlation between transcript expression levels, we generate the empirical null distribution 9	
Z* of association statistics using: 10	

𝑍∗ =  𝜇 + 𝑄 Λ𝑧 

Where z is a vector of i.i.d. standard normal values (N(0,1)) and μ a vector of mean eQTL Z statistics of the 11	

9085 probe sets.  12	
We calculate p values from this null distribution, calculate SCPMA  and determine empirical significance as: 13	

𝑃!"#$ =  
(𝑆! > 𝑆!)!

!!! + 1
𝑁 + 1

 

where Sn is SCPMA for the nth iteration of the null simulation, S0 is the observed SCPMA and N is the number of  14	
permutations (here, N = 5,000,000). 15	
 16	
We investigate the overlap of signal across populations using hypergeometric tests (hint v 0.1-1) of the 17	
independent SNPs (see below) at FDR α levels 0.5, 0.4, 0.3, 0.2, 0.1 and 0.05 [41]. We also investigate the 18	
enrichment across populations using Wilcoxon sum-rank test at different α levels.  19	
 20	
Meta-analysis of CPMA statistics 21	
We combined empirical CPMA statistics from the three African populations using sample-size weighted meta-22	
analysis [42]. To identify independent effects across the genome, we clumped these meta-analysis results at r2 23	
< 0.2 [34]. 24	
 25	
Analytical validation of trans-eQTLs 26	
To validate the detected trans-eQTLs, we perform two secondary analyses: we test if the trans-eQTL is 27	
associated to the same probesets in the three populations, and if the directions of effect are consistent across 28	
the three populations. This information is not used in the CPMA and meta-analysis calculations, and thus offers 29	
an independent validation analysis on these data. 30	
 31	
We first empirically assess evidence that a trans-eQTL is associated to the same probesets across 32	
populations. In a pair of populations P1 and P2, we observe N1 and N2 probesets with an eQTL p <= 0.05 at a 33	
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trans-eQTL, with an intersect No = (N1 ∩ N2). We construct the expected distribution of No using the N1 and N2 1	
most associated probesets at all M independent SNPs across the autosomes, and compute empirical 2	
significance Po as: 3	

𝑃! =  
𝑁!,! > 𝑁!!

!!!

𝑀 + 1
 

 4	
Similarly, we assess consistency of effect direction for NO probesets with an association p <= 0.05 to a trans-5	
eQTL in a pair of populations P1 and P2. To allow for alternate linkage disequilibrium patterns in different 6	
populations (where effects can be opposite with respect to a detected trans-eQTL) we define the overlap in 7	
directionality as Ndir = max( (N1,p ∩ N2,p) ∪ (N1,n ∩ N2,n), (N1,p ∩ N2,n) ∪ (N1,n ∩ N2,p)) where N1,p are the number of 8	
probe sets with increasing expression given the number of alleles of the SNP, and N1,n those with decreasing 9	
expression. We construct the null distribution of Ndir of the targets of each trans-eQTL by computing it for all M 10	
independent SNPs across the autosomes and compute empirical significance Pdir as:  11	

𝑃!"# =  
𝑁!"#,! > 𝑁!"#!

!!!

𝑀 + 1
 

 12	
We used hypergeometric tests to assess the significance of the intersections between all three populations [41] 13	
(R package hint v. 0.1-1). 14	
 15	
Defining high-confidence trans-eQTL targets 16	
We used a meta-analytic approach to define consensus target gene sets for the ten high-confidence trans-17	
eQTLs. For each candidate trans-eQTL, we meta-analyzed eQTL association statistics for each of the 9,085 18	
probesets across the three populations using sample-size weighted fixed effect meta-analysis [34,42], and 19	
then defined the group of target probesets as those with FDR < 0.01. This approach differs from the meta-20	
analysis of the aggregate CPMA statistics above, where we are combining overall evidence of a trans-eQTL 21	
rather than for association to specific probeset levels. 22	
 23	
Functional enrichment analyses of trans-eQTL target probesets 24	
For each set of trans-eQTL target transcripts, we calculated enrichment of proximal transcription factor binding 25	
events using publicly available chromatin immunoprecipitation/sequencing (ChIPseq) data for 50 factors in 26	
lymphoblastoid cell lines from the ENCODE consortium [3,43]. We were able to annotate 2405/7984 unique 27	
HGNC genes corresponding to the 9085 probesets in our analysis with at least one transcription factor binding 28	
event from these data. We observed TFo, the number of binding events for each transcription factor in the 29	
target probesets of each trans-eQTL, and assessed significance empirically by resampling probesets with 30	
similar expression intensity over N=1,000 iterations:  31	

𝑃 =  
𝑇𝐹! > 𝑇𝐹! + 1!

!!!

𝑁 + 1
 

where TFn is the number of binding events for a transcription factor in the nth iteration. 32	
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 1	
To test for functional categories over-represented in each set of trans-eQTL target transcripts, we looked for 2	
enrichment of Gene Ontology biological process annotations with the hypergeometric approach implemented 3	
in BioConductor [30], which accounts for the dependencies in the hierarchical structure of the ontology. We 4	
only considered terms where at least 10 genes were observed. 5	
 6	
To establish if each set of trans-eQTL target transcripts represent biological networks we used our previously 7	
described Protein Interaction Network Tissue Search (PINTS) framework [44] (R packages PINTS v. 0.1, 8	
igraph v. 1.44.1 and BioNet v. 1.29.1). Briefly, for each trans-eQTL we first collapse target probesets onto 9	
HGNC genes, and then project these onto a protein-protein interaction network. We detect the largest 10	
subnetwork of target genes using the prize-collecting Steiner tree algorithm, and assess significance by 11	
permuting the network 100 times and assessing the size and connectivity of the largest subnetwork in the 12	
observed data. For any subnetworks showing significant excess in either size or connectivity, PINTS then tests 13	
for preferential expression across a tissue atlas [44]. 14	
 15	

Results 16	

Replicable trans-eQTLs affect many genes 17	
We sought evidence of trans-eQTLs affecting the expression levels of many target genes by assessing if there 18	
is excess eQTL association at common autosomal variants compared to chance expectation [27] across three 19	
African HapMap populations [20]. We analyzed population structure-corrected eQTL data for 9085 probe sets 20	
at 737,867 autosomal markers from the MKK, LWK and YRI HapMap populations (135, 83 and 107 individuals 21	
respectively [20]), empirically assessing significance to account for the correlation between eQTL statistics. We 22	
first compared the three cohort analyses to assess consistency in marker statistics indicative of replication, and 23	
find overlap between all three populations (Table 1 and S1) suggesting the presence of true trans-eQTL. To 24	
further explore these results, we meta-analyzed our CPMA statistics across the three cohorts (Supplementary 25	
Figure 5), and found 16,484/178,464 (9.2%) pairwise-independent SNPs with meta-analysis pmeta < 0.05, 26	
though none reached genome-wide significance (minimum pmeta = 7.2 x 10-7 at rs10842750).  27	
 28	
We next sought to prioritize high-confidence trans-eQTLs from the 16,484 candidates with additional 29	
independent criteria, which CPMA does not consider. We expect true trans-eQTLs to fulfill two predictions: the 30	
genes they influence should be the same across populations; and the direction of effect should be consistent 31	
between the populations for these genes. A major technical issue to testing these predictions is the extensive 32	
correlation between gene expression levels (and therefore between eQTL association statistics), so we assess 33	
significance for both these predictions empirically (see methods) in pairwise comparisons of populations. Of 34	
the 16,484 trans-eQTLs, we found that 1,692 (10.2%; YRI and MKK), 1,851 (11.2%; YRI and LWK) and 1,892 35	
(11.5%; MKK and LWK) show nominal significance of target overlap (empirical overlap P < 0.05; Figure 1). 36	
Furthermore, 62 trans-eQTLs have significant target overlaps across all three pairwise comparisons (22 37	
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overlaps expected by chance, hypergeometric p = 4.5 x 10-13). This suggests the presence of multiple trans-1	
eQTLs affecting the same target genes across populations. 2	
 3	
To test our second prediction, we sought evidence that the direction of effect is consistent across two 4	
populations. We find that 5,743 (34.8%; YRI and MKK), 5,762 (35.0%; YRI and LWK) and 5,498 (33.4%; MKK 5	
and LWK) of 16,484 candidate trans-eQTLs show nominal significance for consistent effects, and it is the same 6	
trans-eQTLs generating these signals (Figure 1). Furthermore, 1,062 trans-eQTLs are significant across all 7	
three pairwise comparisons (670 overlaps expected by chance, hypergeometric p = 8.1 x 10-64). We also find 8	
the target overlap and directionality overlap statistics are significantly correlated (Figure S6 p < 2.2 x 10-16), 9	
indicating the presence of trans-eQTLs affecting the same target transcripts in the same way. Thus, our results 10	
provide several lines of evidence for trans-eQTLs replicating across multiple populations.  11	
 12	
Target genes of trans-eQTLs are co-regulated  13	
We identified a high-confidence set of ten trans-eQTLs that are nominally significant in our CPMA meta-14	
analysis and in all the above pairwise tests of target overlap and directionality, including two with a small 15	
number of targets, which we excluded from further consideration (Table 2). For each trans-eQTL, we defined a 16	
consensus set of target transcripts (FDR < 0.01) by meta-analyzing eQTL statistics for individual probesets 17	
across the three populations, rather than defining consensus sets by overlapping putative target lists at 18	
arbitrary thresholds from the individual populations (Figures 2, 3 and Supplementary Figures 7A-F).  19	
 20	
We predict that if the target transcripts of our eight high-confidence trans-eQTL are co-regulated, they should 21	
represent a limited number of biological pathways. We therefore looked for enrichment of transcription factor 22	
binding events upstream of each of the eight target gene groups, using chromatin immunoprecipitation and 23	
sequencing (ChIPseq) data from lymphoblasoid cell lines profiled by the ENCODE project [3,43]. We found 24	
significant enrichment for at least one transcription factor in four out of the eight trans-eQTLs (Table 2), 25	
suggesting that trans-eQTL target genes are regulated by the same cellular mechanisms. 26	
 27	
We next assessed pathway enrichment using of Gene Ontology annotations and found strong enrichment for 28	
all eight trans-eQTL gene target sets, with 20-100 biological processes significant in each set (Table S2 lists 29	
the 10 most significant biological processes of each trans-eQTL). Notably, we find that target sets are enriched 30	
for fundamental biological processes including cell cycle control, metabolism and assembly of cellular 31	
machinery. To further characterize these functional connections, we assessed if the target gene sets form 32	
interacting protein networks, and find that three out of the eight trans-eQTL target sets form interaction 33	
networks larger and more densely connected than expected by chance [44] (Table 2). We also find that these 34	
subnetworks are preferentially expressed in particular tissues: the largest subnetwork of rs6899963 target 35	
genes (network permutation tests: size P = 0.03; number of edges P < 0.001; connectivity coefficient P < 36	
0.001; overall eQTL statistic load P = 0.02; Figure 2) is preferentially expressed in fetal tissues and inducible 37	
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pluripotent stem cells. The largest subnetwork of rs10520643 target genes (network permutation tests: size P = 1	
0.23; number of edges P < 0.001; connectivity coefficient P < 0.001; overall eQTL statistic load P = 0.18; 2	
Figure 3), is preferentially expressed in a similar pattern across fetal tissues and inducible pluripotent stem 3	
cells. Collectively, these results show that trans-acting eQTLs modulate transcriptionally coherent groups of 4	
genes involved in basic cellular processes.  5	
 6	

Discussion 7	

In this work we present evidence for trans-eQTLs by identifying SNPs simultaneously associated to the levels 8	
of many transcripts. We are able to show that these replicate across populations, and associate to the same 9	
genes in the same direction. Furthermore, we show that the target gene sets for eight high-confidence trans-10	
eQTLs are bound by the same transcription factors, are enriched for pathway annotations and form significant 11	
interacting networks. Thus we conclude that trans-eQTLs can be identified even in studies of limited sample 12	
size. 13	
 14	
trans-eQTLs have proven challenging to detect in human data, despite the substantial heritability of gene 15	
expression attributed to them [7]. This difficulty is driven both by the modest effect sizes of trans-acting variants 16	
[21,23] and the systematic noise in gene expression assays [18]. Whilst both issues can be addressed by 17	
increasing sample size to boost statistical power [45] and the emergence of more technically robust assays like 18	
RNA sequencing [37], the cost and logistics of ascertaining large cohorts remains economically daunting, 19	
especially when considering multiple tissues [46]. Our approach, like many other novel analytical methods 20	
[25,32], can help maximize the insights gleaned from current resources.  21	
 22	
We note that our approach is geared towards detecting trans-eQTLs influencing many genes, at the cost of low 23	
power to detect effects on single genes or a small number of targets [22,23,45]. However, larger sample sizes 24	
will be required to estimate the relative contributions of trans-eQTLs affecting many genes and those affecting 25	
few targets to the overall heritability of transcript levels, so we cannot yet gauge how widespread variation in 26	
large transcriptional control networks may be. Our results are, however, consistent with precise regulation of 27	
biological processes at such a large scale, particularly for basic homeostatic mechanisms. These observations 28	
further support the notion that regulation of basic cell processes is highly orchestrated and occurs on several 29	
levels simultaneously [47]. Applying this approach to eQTL datasets from diverse tissues under different stimuli 30	
will yield rich insights into tissue-specific regulatory circuits driving diverse cellular processes. Finally, we note 31	
that biological exploration and dissection of these pathways will require new experimental tools, which can 32	
address the subtleties of quantitative regulatory changes in large numbers of genes.  33	
 34	
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Figures 1	

Figure 1. Hundreds of putative trans-eQTLs across the genome affect the same genes in the same 2	
direction across three African Hapmap populations. We considered all autosomal variants with nominal 3	
evidence of association to multiple transcript levels (Pcpma < 0.05). We find that they tend to target the same 4	
transcripts (top, empirical assessment of trans-eQTL target overlap between pairs of populations); and that the 5	
allelic effects are consistently in the same direction (bottom, empirical assessment of trans-eQTL sign tests 6	
between pairs of populations).   7	
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Figure 2. A trans-eQTL at rs6899963 on chromosome 6 affects the expression levels of many genes 1	
across three African HapMap populations. (A) Meta-analysis p-values for 9,085 transcript eQTLs at 2	
rs6899963. (B) Effect directions are consistent across the three populations. In each population (x axis), we 3	
select SNPs where the minor allele increases (left) and decreases (right) expression, respectively, and show 4	
the direction of effect in the other two populations as violin plots. The overwhelming majority of effects are 5	
consistent across all three populations. (C) The target genes of the rs6899963 trans-eQTL form a large 6	
subnetwork, which is enriched for multiple Gene Ontology biological processes. Here, we show the interplay 7	
between the top two enriched terms: GO:0007088 (regulation of mitotic nuclear division) and GO:1901564 8	
(organonitrogen compound metabolic process). 9	

 10	
 11	
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Figure 3. A trans-eQTL at rs10520643 on chromosome 15 affects the expression levels of many genes 1	
across three African HapMap populations. A. Meta-analysis p-values for 9,085 transcript eQTLs at 2	
rs10520643. B. Effect directions are consistent across the three populations. In each population (x axis), we 3	
select SNPs where the minor allele increases (left) and decreases (right) expression, respectively, and show 4	
the direction of effect in the other two populations as violin plots. The overwhelming majority of effects are 5	
consistent across all three populations. C. The target genes of the rs10520643 trans-eQTL form a large 6	
subnetwork, which is enriched for multiple Gene Ontology biological processes. Here, we show the term 7	
GO:0046483 (heterocycle metabolic process). 8	

 9	
  10	
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Tables 1	

 2	
Table 1. CPMA statistics are consistent across populations, indicating the presence of true trans-3	
eQTLs. We observe strong overlap between variants with modest CPMA statistics across the three 4	
populations, indicating the presence of many trans-eQTL effects across the genome. Our results indicate 5	
limited power to detect any single trans-eQTL, likely due to limited sample size, suggesting that substantially 6	
larger sample sizes than the 322 in our current dataset will be required to power discovery.  7	

CPMA α	 Expected	 Observed	 Hypergeometric	
P	value	

0.5	 37,942	 39,479	 3.6x10-40	
0.4	 20,459	 21,361	 1.7x10-18	
0.3	 9,048	 9,350	 8.2x10-5	
0.2	 2,815	 2,787	 0.73	
0.1	 362	 361	 0.54	

 8	
  9	
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Table 2. Eight trans-eQTLs affect hundreds of transcripts across the genome. We identified a subset of 1	
trans-eQTLs with nominally significant CPMA meta-analysis statisticsa; pairwise tests of target overlapb; and 2	
pairwise tests of directionalityc across three populations. For each trans-eQTL, we defined a consensus set of 3	
target transcriptsd (FDR < 0.01) by meta-analyzing eQTL statistics for individual probesets across the three 4	
populations, and find significant enrichment of transcription factor binding events at their promoterse. These 5	
targets also form significant protein-protein interaction subnetworksf. 6	

trans-eQTL	 position	 Within	
gene	

CPMAa		
(Pmeta)	

Target	
overlapb	

(P)	

Effect	
directionc	

(P)	

Target	
genesd	

TF	motifs	
enrichede	

Network	
enrichmentf	

(P)	
rs7694213	 chr4:	53157184	 SCFD2	 1.6x10-2	 1.7x10-4	

4.0x10-2	
3.1x10-3	

5.6x10-6	
2.0x10-4	
5.6x10-6	

417	 	 0.18	

rs6899963	 chr6:	104048696	 	 1.9x10-2	 3.5x10-2	
5.1x10-3	

2.0x10-2	

5.6x10-6	
1.7x10-5	
3.9x10-5	

393	 SRF,	STAT3	 <10-3	

rs9406332	 chr6:	169317960	 	 3.7x10-2	 3.4x10-2	
2.8x10-2	
3.9x10-2	

3.4x10-5	
1.1x10-5	
5.3x10-4	

77	 	 0.21	

rs10107976	 chr8:	62689355	 NKAIN3	 7.9x10-3	 1.7x10-3	
3.4x10-2	
7.7x10-3	

1.7x10-5	
5.6x10-6	
5.6x10-6	

116	 USF1,	USF2,	
MAX,	RFX5,		

ZZZ3	

0.19	

rs4773419	 chr13:	111658732	 RP11-
65D24.

2	

2.4x10-2	 5.6x10-3	
2.6x10-2	
1.3x10-2	

5.6x10-6	
1.2x10-4	
1.2x10-4	

166	 SP1,	PBX3,	
FOS,	NRF1,	
BRCA1	

0.37	

rs11621120	 chr14:	29324177	 RP11-
562L8.1	

1.9x10-2	 8.5x10-4	
8.2x10-3	
4.9x10-3	

5.6x10-6	
5.7x10-4	
7.8x10-5	

228	 	 0.19	

rs10520643	 chr15:	86859175	 AGBL1	 2.4x10-3	 4.5x10-3	

2.3x10-2	
1.3x10-2	

5.6x10-6	
5.6x10-6	
3.9x10-5	

833	 NR2C2	 <10-3	

rs7281608	 chr21:	23675283	 	 4.5x10-2	 2.8x10-2	
4.8x10-3	

7.1x10-3	

1.5x10-2	
1.1x10-2	
4.5*10-4	

97	 	 1x10-2	

 7	
 8	
 9	

  10	
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