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Abstract	
	

Reproducing	experiments	is	vital	to	science.	Being	able	to	replicate,	validate	
and	extend	previous	work	also	speeds	new	research	projects.	Reproducing	
computational	biology	experiments,	which	are	scripted,	should	be	straightforward.	
But	reproducing	such	work	remains	challenging	and	time	consuming.	In	the	ideal	
world	we	would	be	able	to	quickly	and	easily	rewind	to	the	precise	computing	
environment	where	results	were	generated.	We	would	then	be	able	to	reproduce	
the	original	analysis	or	perform	new	analyses.	We	introduce	a	process	termed	
“continuous	analysis”	which	provides	inherent	reproducibility	to	computational	
research	at	a	minimal	cost	to	the	researcher.	Continuous	analysis	combines	Docker,	
a	container	service	similar	to	virtual	machines,	with	continuous	integration,	a	
popular	software	development	technique,	to	automatically	re-run	computational	
analysis	whenever	relevant	changes	are	made	to	the	source	code.	This	allows	results	
to	be	reproduced	quickly,	accurately	and	without	needing	to	contact	the	original	
authors.	Continuous	analysis	also	provides	an	audit	trail	for	analyses	that	use	data	
with	sharing	restrictions.	This	allows	reviewers,	editors,	and	readers	to	verify	
reproducibility	without	manually	downloading	and	rerunning	any	code.	Example	
configurations	are	available	at	our	online	repository	
(https://github.com/greenelab/continuous_analysis).	

	
The	Current	State	of	Reproducibility	

	
Leading	scientific	journals	have	targeted	reproducibility	to	increase	readers’	

confidence	in	results	and	reduce	retractions1–5.		In	a	recent	survey,	90%	of	
researchers	acknowledged	a	reproducibility	crisis6.	Research	that	uses	
computational	protocols	should	be	particularly	amenable	to	reproducible	
workflows	because	all	of	the	steps	are	scripted	into	a	machine-readable	format.	But	
written	descriptions	of	computational	approaches	can	be	difficult	to	understand	and	
may	lack	required	parameters.		Even	when	results	can	be	reproduced,	the	process	
often	requires	a	substantial	time	investment	and	help	from	the	original	authors.	
Garijo	et	al.7	estimated	it	would	take	280	hours	for	a	non-expert	to	reproduce	a	
paper	describing	a	computational	construction	of	a	drug-target	network	for	
Mycobacterium	tuberculosis8.	These	are	the	good	scenarios:	the	results	behind	most	
computational	papers	are	not	readily	reproducible7,9–11.	
	

The	practice	of	“open	science”	has	been	discussed	as	a	means	to	aid	
reproducibility3,12.	In	open	science	the	data	and	source	code	are	shared.	Sharing	can	
also	extend	to	intermediate	results	and	project	planning13.	Sharing	data	and	source	
code	is	currently	necessary	but	not	sufficient	to	make	research	reproducible.	Even	
when	code	and	data	are	shared,	it	remains	difficult	to	reproduce	results	due	to	
differing	computing	environments,	operating	systems,	library	dependencies	etc.	It	is	
common	to	use	one	or	more	open	source	libraries	on	a	project,	and	research	code	
quickly	becomes	dependent	on	old	versions	of	these	libraries	as	software	
advances14.	These	old	or	broken	dependencies	make	it	difficult	for	readers	and	
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reviewers	to	recreate	the	environment	of	the	original	researchers,	whether	to	
validate	or	extend	their	work.	
	
	 An	example	of	where	sharing	data	does	not	automatically	make	science	
reproducible	occurs	in	the	most	standard	of	places:	differential	gene	expression	
analysis.		Such	analyses	are	routine.	Our	understanding	of	the	genome,	including	
transcriptome	annotations,	have	improved	and	updated	probe	set	definitions	are	
available15.	Analyses	relying	on	unspecified	probe	set	definitions	cannot	be	
reproduced	using	current	definitions.	
	

We	analyzed	the	fifteen	most	recently	published	papers	that	cite	Dai	et	al.,	a	
common	source	for	custom	chip	description	files	(CustomCDF),	that	were	accessible	
at	our	institution16–31.	We	identified	these	manuscripts	using	Web	of	Science	on	May	
31,	2016.	We	recorded	the	number	of	papers	that	cited	a	version	of	CustomCDF,	as	
well	as	which	version	was	cited.	We	expect	this	analysis	to	provide	an	upper	bound	
on	reproducible	work:	these	papers	specifically	cited	the	source	of	their	CDFs.	Of	
these	fifteen	papers,	nine	(60%)	specified	which	version	they	used.	These	nine	used	
versions	11,	15,	16,	17,	18,	and	19	of	the	BrainArray	CustomCDF.	
	

This	initial	analysis	was	performed	based	on	article	recency	without	regard	
to	article	impact.	To	determine	the	extent	to	which	this	issue	affects	high	impact	
papers,	we	performed	a	parallel	evaluation	for	the	ten	most	cited	papers32–41	that	
cite	Dai	et	al.	We	determined	the	ten	most	cited	papers	using	Web	of	Science	on	May	
31,	2016.	Of	these	ten	papers,	one38	(10%)	specified	which	version	of	the	
CustomCDF	was	used.	That	paper	used	version	11	of	the	BrainArray	CustomCDF.	
	
	 We	sought	to	determine	which	versions	were	currently	in	use	in	the	field.	We	
asked	three	individuals	who	performed	microarray	analysis	recently,	and	we	
accessed	and	evaluated	two	cluster	systems	used	for	processing	data.	We	found	that	
each	individual	had	one	of	the	three	most	recently	released	versions	installed	(18,	
19,	and	20),	and	versions	18	and	19	were	installed	on	cluster	systems.	
	
	 To	evaluate	the	impact	of	differing	CDF	versions,	we	downloaded	a	recently	
published	public	gene	expression	dataset	(GEO	Series	Ascension	number	
GSE47664).	This	experiment	examined	differential	expression	between	normal	
HeLa	cells	and	HeLa	cells	with	TIA1	and	TIAR	knocked	down42.	We	performed	a	
parallel	analysis	using	each	of	the	three	versions	that	we	found	installed	on	
machines	that	we	could	access	(18,	19,	and	20).	Each	version	identifies	a	different	
number	of	significantly	altered	genes	(Figure	1A),	demonstrating	the	challenge	of	
reproducible	analysis.	We	simulated	a	parallel	analysis	of	differential	expression	
using	Docker	containers	on	mismatched	machines43.	This	specifies	the	CDF	version	
and	produces	the	same	number	and	set	of	differentially	expressed	genes	for	a	given	
version	across	machines	(v18	example	in	Figure	1B).	Had	continuous	analysis	been	
used	for	papers	citing	the	BrainArray	CustomCDF	their	computational	results	would	
be	easily	replicated.	
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Figure	1.	Current	state	of	research	computing	vs.	container-based	approaches.	A.)	The	status	quo	
requires	a	reader	or	reviewer	to	find	and	install	specific	versions	of	dependencies.	These	
dependencies	can	become	difficult	to	find	and	may	become	incompatible	with	newer	versions	of	other	
software	packages.	Different	versions	of	packages	identify	different	numbers	of	significantly	
differentially	expressed	genes	from	the	same	source	code	and	data.	B.)	Containers	define	a	computing	
environment	that	captures	dependencies.	In	container-based	systems,	the	results	are	the	same	
regardless	of	the	host	system.		

	

Continuous	Analysis	in	Computational	Workflows	
	

We	developed	continuous	analysis	to	produce	a	verifiable	end-to-end	run	of	
computational	research	with	minimal	start-up	costs.	In	contrast	with	the	status	quo,	
continuous	analysis	preserves	the	computing	environment	and	maintains	the	
versions	of	dependencies.	We	described	the	benefits	of	containerized	approaches	
above,	but	maintaining,	running	and	distributing	Docker	images	manually	would	
become	time	consuming.	Integrating	Docker	into	a	continuous	scientific	analysis	
pipeline	meets	three	criteria:	(1)	anyone	can	re-run	code	in	a	computing	
environment	matching	the	original	authors	(Supplemental	Figure	1);	(2)	readers	
and	reviewers	can	follow	exactly	what	was	done	in	an	“audit”	fashion	without	
running	code	(Supplemental	Figure	2	&	3);	and	(3)	the	solution	imposes	zero	to	
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Figure	2.	Continuous	analysis	can	be	set	up	in	three	primary	steps	(numbered	1,	2,	and	3).	(1)	The	
researcher	creates	a	Docker	container	with	the	required	software.	(2)	The	researcher	configures	a	
continuous	integration	service	to	use	this	Docker	image.	(3)	The	researcher	pushes	code	that	includes	
a	script	capable	of	running	the	analyses	from	start	to	finish.	The	continuous	integration	provider	runs	
the	latest	version	of	code	in	the	specified	Docker	environment	without	manual	intervention.		This	
generates	a	Docker	container	with	intermediate	results	that	allows	anyone	to	rerun	analysis	in	the	
same	environment,	produces	updated	figures,	and	stores	logs	describing	everything	that	occurred.	
Example	configurations	are	available	in	the	supplementary	materials	as	well	as	our	online	repository	
(https://github.com/greenelab/continuous_analysis).	Because	code	is	run	in	an	independent,	
reproducible	computing	environment	and	produces	detailed	logs	of	what	was	executed,	this	practice	
reduces	or	eliminates	the	need	for	reviewers	to	re-run	code	to	verify	reproducibility.	
	

minimal	cost	in	terms	of	time	and	money	on	the	researcher,	depending	on	their	
current	research	process.	
	
	 Continuous	analysis	extends	continuous	integration44,	a	common	practice	in	
software	development	and	deployment.	Continuous	integration	is	a	software	
development	workflow	that	triggers	an	automated	build	process	whenever	
developers	check	their	code	in	to	a	source	control	repository.	This	automated	build	
process	runs	test	scripts	if	they	exist.	These	tests	can	catch	bugs	introduced	into	
software.	Software	that	passes	tests	is	automatically	deployed	to	remote	servers.	
	

For	continuous	analysis	(Figure	2),	we	repurpose	these	services	in	order	to	
run	computational	analyses,	update	figures,	and	publish	changes	to	online	
repositories	whenever	relevant	changes	are	made	to	the	source	code.	When	an	
author	is	ready	to	release	code	or	publish	their	work	they	can	export	the	most	
recent	continuous	integration	run.	Because	this	process	generates	results	in	a	clean	
and	clearly	defined	computing	environment	without	manual	intervention,	reviewers	
can	be	confident	that	the	analyses	are	reproducible.		
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In	each	project	we	maintain	dependencies	with	the	free	open-source	

software	tool	Docker45.	Docker	defines	an	“image”	that	allows	users	to	download	
and	run	a	container,	a	minimalist	virtual	machine	with	a	predefined	computing	
environment.	Docker	images	can	be	several	gigabytes	in	size,	but	once	downloaded	
can	be	started	in	a	matter	of	seconds	and	has	minimal	overhead14.	In	addition,	
Docker	images	can	be	easily	tagged	to	coincide	with	software	releases	and	paper	
revisions.	At	the	time	of	submission,	authors	can	run	the	`docker	save`	command	to	
export	a	static	file	that	can	be	uploaded	to	services	such	as	Figshare	or	Zenodo	to	
receive	a	DOI.	For	example,	we	have	uploaded	our	continuous	analysis	environment	
for	the	examples	in	this	paper46.		

	
To	set	up	continuous	analysis,	a	researcher	needs	to	do	three	things.	First	

they	must	create	a	Dockerfile,	which	specifies	a	list	of	dependencies.	Second,	they	
need	to	connect	a	continuous	integration	service	to	their	version	control	system	and	
provide	the	commands	to	run	their	analysis.	Finally,	they	need	to	commit	and	push	
changes	to	their	version	control	system.	Many	researchers	already	perform	the	first	
and	third	tasks	in	their	standard	workflow.	

	
The	continuous	integration	system	will	automatically	rerun	the	specified	

analysis	with	each	change,	precisely	matching	the	source	code	and	results.	It	can	
also	be	set	to	listen	and	run	only	when	changes	are	marked	in	a	specific	way,	e.g.	by	
committing	to	a	specific	‘staging’	branch.	For	the	first	project,	this	process	can	be	
put	into	place	in	less	than	a	day.	For	subsequent	projects,	this	can	be	done	in	under	
an	hour.		
	
Setting	up	Continuous	Analysis		

	
We	have	created	a	GitHub	repository	with	instructions	for	paid,	local,	and	

cloud-based	continuous	analysis	setups47.	These	are	fully	detailed	in	the	
supplementary	materials	and	online	repository.	Here	we	describe	how	continuous	
analysis	can	be	setup	using	the	free	and	open	source	Drone	software	on	a	
researcher’s	personal	computer	and	connected	to	the	GitHub	version	control	
service.	This	setup	is	free	to	users.	
	

1. Install	Docker	on	the	computer.	
2. Pull	the	Drone	image	via	docker:		

sudo	docker	pull	drone/drone:latest	
	 	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 11, 2016. ; https://doi.org/10.1101/056473doi: bioRxiv preprint 

https://doi.org/10.1101/056473
http://creativecommons.org/licenses/by/4.0/


	
Figure	3.	Register	a	new	application	for	the	Drone	continuous	integration	server.	Set	the	
homepage	URL	to	be	the	IP	address	of	the	Drone	computer.	Set	the	callback	URL	to	the	same	
IP	address	followed	by	/authorize.	

	

	
	

3. Create	a	new	application	in	GitHub	(Figure	3).		
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Figure	4.	Register	a	new	application	for	the	Drone	continuous	integration	server.	The	payload	URL	
should	be	in	the	format	of	your-ip/api/hook/github.com/client-id	
	

	
	

4. Add	a	webhook	to	the	GitHub	project	(Figure	4).	This	will	notify	the	
continuous	integration	server	of	any	updates	pushed	to	the	repository.	

	
5. Create	a	configuration	file	on	the	Drone	computer	at	/etc/drone/dronerc	

filling	in	the	client	information	provided	by	GitHub	
	
REMOTE_DRIVER=github	
REMOTE_CONFIG=https://github.com?client_id=....&client_secret=....	

	
6. Run	the	drone	container		

	
sudo	docker	run	drone/drone:latest	

	
Continuous	analysis	can	be	performed	with	dozens	of	full	service	providers	

or	a	private	installation	on	a	local	machine,	cluster	or	cloud	service47.	Full	service	
providers	can	be	set	up	in	minutes	but	may	have	computational	resource	limits	or	
monthly	fees.	Private	installations	require	configuration	but	can	scale	to	a	local	
cluster	or	cloud	service	to	match	the	computational	complexity	of	all	walks	of	
research.	With	free,	open-source	continuous	integration	software48,	computing	
resources	are	the	only	associated	costs.	
	
Using	Continuous	Analysis		
	
	 After	setup,	running	continuous	analysis	is	simple	and	fits	into	existing	
research	workflows	that	use	source	control	systems.	We	have	used	continuous	
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analysis	in	our	own	work49.	We	have	also	prepared	three	example	repositories	
(detailed	in	supplemental	materials):		

1. An	example	demonstrating	the	setup	of	continuous	analysis	with	a	wide	
variety	of	services	and	configurations	(highlighted	below).	

2. An	easy	to	follow	basic	phylogeny	tree	building	example,	combining	
sequence	alignment	using	MAFFT50,	format	conversion	using	EMBOSS	
Seqret51,	and	tree	calculation	and	drawing	using.	

3. An	RNA	expression	analysis	workflow	examining	organoid	models	of	
pancreatic	cancer	in	mice	based	on	work	from	Boj	et	al.52	using	details	and	
source	code	published	by	Balli53.	This	example	shows	the	ability	of	
continuous	analysis	to	scale	to	large	computations.	This	example	uses	
kallisto54,	limma55,56,	and	sleuth57	to	analyze	150GB	of	gene	expression	data	
and	approximately	480	million	reads.	
	

To	demonstrate	the	setup	process	and	different	configurations	of	continuous	
analysis	we	show	a	simple	example	of	continuous	analysis	with	kallisto.	The	
recently	published	software	tool	kallisto	quantifies	transcript	abundance	in	RNA-
seq	data.	Our	example	re-runs	the	examples	provided	in	kallisto	with	each	commit	
to	a	repository.	
	

1. Add	a	script	file	to	re-run	custom	analysis.	For	Drone,	this	is	a	.drone.yml	
file	that	specifies	commands	to	run	each	step	of	the	analysis.	An	example	
configuration	is	available	in	the	continuous	analysis	GitHub	repository	as	
well	as	the	supplemental	materials.	

2. Commit	changes	to	the	source	control	repository.	
3. Push	changes	to	GitHub.	
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Figure	5.	Audit	logs	from	a	continuous	integration	run	with	the	service	Shippable	for	the	kallisto	
example.	
		
	 The	configured	continuous	integration	service	automatically	runs	the	
specified	script.	We	configured	this	to	rerun	the	analysis,	regenerate	the	figures,	and	
commit	updated	versions	to	the	repository.	The	service	provides	a	complete	audit	
log	of	what	was	run	in	the	clean	continuous	integration	environment	(Figure	5).		By	
generating	and	pushing	updated	figures,	this	process	also	generates	a	complete	
change	log	for	each	result	(Figure	6).		Interactive	development	tools,	such	as	
Jupyter58,59,	RMarkdown60,61	and	Sweave62	can	be	incorporated	to	present	the	code	
and	analysis	in	a	logical	graphical	manner.	For	example,	we	recently	used	Jupyter	
with	continuous	analysis	in	our	own	publication63	and	corresponding	repository49.	
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Figure	6.	Resulting	figures	from	the	run	are	committed	back	to	Github	where	changes	between	runs	
can	be	viewed.	A.)	The	effect	of	adding	an	additional	gene	(HumanTw2)	to	a	phylogenetic	tree-
building	example.	B.)	The	effect	of	adding	an	additional	gene	(mt8)	to	an	RNA-seq	differential	
expression	experiment	PCA	plot.	

	
In	summary,	continuous	analysis	provides	the	results	of	a	verifiable	end-to-

end	run	in	a	“clean”	environment.	Because	continuous	analysis	runs	automatically	in	
the	background,	no	transition	is	needed	between	the	exploration	and	publication	
phases	of	a	scientific	project.		The	audit	trail	provided	by	continuous	analysis	allows	
reviewers	and	editors	to	provide	sound	judgment	on	reproducibility	without	a	large	
time	commitment.		If	readers	or	reviewers	would	like	to	re-run	the	code	on	their	
own	(e.g.	to	change	a	parameter	and	evaluate	the	impact	on	results),	they	can	easily	
do	so	with	the	Docker	container	containing	the	final	computing	environment	and	
intermediate	results.	Version	control	systems	provide	the	capability	to	watch	for	
updates.	Readers	can	“star”	or	“watch”	a	repository	on	services	such	as	Github,	
Gitlab,	and	Bitbucket	to	be	automatically	notified	of	changes	and	updated	runs.	Wide	
adoption	of	these	systems	throughout	the	publication	process	could	allow	reviewers	
and	editors	to	automatically	be	notified	of	updated	results. 
	
Continuous	analysis	provides	an	audit	trail	for	reproducible	analyses	of	closed	
data.	
	
	 Continuous	analysis	can	be	even	more	powerful	when	working	with	closed	
data	that	cannot	be	released.	Without	continuous	analysis,	reproducing	
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computational	analyses	based	on	closed	data	is	dependent	on	the	original	authors	
completely	and	exactly	describing	each	step,	a	process	that	may	be	an	afterthought	
and	relegated	to	extended	methods.	Readers	must	then	diligently	follow	complex	
written	instructions	without	intermediate	confirmation	they	are	on	the	right	track.	
The	containers	produced	during	continuous	analysis	include	a	matching	
environment	for	replication	as	well	as	intermediate	results.	This	allows	readers	to	
determine	where	their	results	diverge	from	the	original	work	and	to	determine	
whether	divergence	is	due	to	software-based	or	data-based	differences.	
	
Best	practices	with	continuous	analysis	
	
 We	suggest	a	development	workflow	where	continuous	analysis	runs	only	on	
a	single	branch	(Supplemental	Figure	4).	Researchers	can	push	to	this	branch	when	
they	believe	they	are	ready	for	a	release	to	avoid	running	the	full	process	during	
incomplete	updates.	If	the	updates	to	this	branch	succeed,	the	changes	are	then	
automatically	carried	over	to	the	master	or	production	branch	and	released.		We	
recommend	exporting	both	the	before	and	after	processing	Docker	images	and	
uploading	to	an	archival	service	like	Figshare	or	Zenodo.	The	archived	images	can	
then	be	cited	to	guide	readers	to	the	version	used	in	the	manuscript46.	For	
convenience,	the	images	can	also	be	shared	through	the	Docker	Hub	registry.		
	
								 It	may	currently	be	impractical	to	use	continuous	analysis	for	generic	
preprocessing	steps	involving	very	large	data	or	analyses	requiring	particularly	high	
computational	costs.	In	particular,	steps	that	take	days	to	run	or	incur	substantial	
costs	in	computational	resources	may	not	be	amenable	with	existing	providers64.	
One	day,	continuous	analysis	systems	specifically	designed	for	scientific	workflows	
may	facilitate	reproducible	workflows	in	these	settings.	For	now,	researchers	may	
need	to	use	discretion	when	preprocessing	via	continuous	analysis,	as	it	may	be	
computationally	intractable	to	reanalyze	after	each	commit	to	a	staging	branch.	
Researchers	may	elect	to	run	only	the	final	workflow	through	this	process,	or	may	
elect	to	employ	continuous	analysis	after	standard	but	computationally	expensive	
preprocessing	steps	are	completed.	
	
	 For	small	datasets	and	less	intensive	computational	workflows	it	is	easiest	to	
use	a	full	service	continuous	integration	service.	These	services	have	the	smallest	
setup	times.	With	private	data	or	when	data	size	and	computational	complexity	
scale	it	becomes	necessary	to	setup	a	local	privately	hosted	continuous	integration	
server.	Cluster	or	cloud	based	continuous	integration	servers	can	handle	the	largest	
workflows.		
	
The	impact	of	reproducible	computational	research	
	

Reproducibility	can	have	wide-reaching	benefits	for	the	advancement	of	
science.	For	authors,	easily	reproducible	work	is	a	sign	of	quality	and	credibility.	
Continuous	analysis	addresses	the	reproducibility	of	computationally	analyses	in	
the	narrow	sense:	generating	the	same	results	from	the	same	inputs.	It	does	not	
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solve	reproducibility	in	the	broader	sense:	how	robust	results	are	to	parameter	
settings,	starting	conditions	and	partitions	in	the	data.	Continuous	analysis	lays	the	
groundwork	needed	to	address	reproducibility	and	robustness	of	findings	in	the	
broad	sense.	
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