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Abstract 

Post-translational modifications by the Small Ubiquitin-like Modifier (SUMO) are essential for many 

eukaryotic cellular functions. Several large-scale experimental datasets and sequence-based predictions exist 

that identify SUMOylated proteins. However, the overlap between these datasets is small, suggesting many 

false positives with low functional relevance. Therefore, we applied machine learning techniques to a diverse 

set of large-scale SUMOylation studies combined with protein characteristics such as cellular function and 

protein-protein interactions, to provide integrated SUMO predictions for human and yeast cells (iSUMO). 

Protein-protein and protein-nucleic acid interactions prove to be highly predictive of protein SUMOylation, 

supporting a role of the modification in protein complex formation. We note the marked prevalence of 

SUMOylation amongst RNA-binding proteins. We predict 1,596 and 492 SUMO targets in human and yeast, 

respectively (5% false positive rate, FPR), which is five times more than what existing sequence-based tools 

predict at the same FPR. One third of the predictions are validated by an independent, high-quality dataset. 

iSUMO therefore represents a comprehensive SUMO prediction tool for human and yeast with a high 

probability for functional relevance of the predictions.   
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Introduction 

The covalent attachment of Small Ubiquitin-like Modifier (SUMO) is, based on its common occurrence and 

wide array of functions in eukaryotic cells, one of the most important post-translational modifications. 

SUMOylation has been studied from numerous perspectives since its discovery in 1997 (1). It is widely 

conserved across eukaryotes (2-4), and in many cases essential for the organismal viability (5, 6). 

SUMOylation resembles ubiquitination in terms of structure, enzymatic pathway, and it has a broad 

functional spectrum, ranging from chromatin organization (7), DNA damage repair (8), regulation of 

transcription (9), ribosome biogenesis (10), messenger RNA (mRNA) processing (11, 12), nucleus-

cytoplasm transport (13), to protein localization (14), proteolysis (where it cross-talks with 

ubiquitination)(15), stress responses (16) and other functions (17).  

Several computational approaches exist that predict SUMOylation based on the conserved amino acid 

sequence motif Ψ-K-X-D/E, where Ψ is a hydrophobic residue, K is the lysine being modified, X is any 

amino acid, and D/E is an acidic residue (18-21). However, these sequence-based predictions have many 

false positives and false negatives: when comparing them to experimental data, the intersection is only small. 

For example, half of the human proteins contain the above SUMOylation motif in their sequence, but the 

modification is verified for only a small fraction. In addition, recent experimental data suggests that 

SUMOylation may also act on motifs other than the one described above (22), highlighting the need for 

methods that move beyond use of sequence alone.  

Several experimental methods have been developed to identify SUMO-targets. For example, 

immunoprecipitation using antibodies against SUMOylated proteins reveals SUMO conjugation with high 

confidence (23), but the assay only works with a small number of proteins at a time. In comparison, mass 

spectrometry based methods sample a large fraction of the proteome and have by now identified thousands 

of SUMO targets in yeast and human (Figure 1). However, it is often unclear what the false-positive and 

false-negative identification rates of these approaches are. For example, a recent and in-depth screen of 

human SUMOylation targets using advanced technology identified only 1,606 proteins (22), and overlap 

between this and other studies is small (Figure 1). In comparison, when using sequence-based predictions, 

many more SUMO-targets have been identified, e.g. 8,272 of 17,741 human proteins (47%) are predicted to 

have a SUMOylation motif in their sequence.  

Overall, these findings suggest that our current computational and experimental methods contain large 

numbers of both false positives and negatives, without high confidence in their functional relevance. 
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Therefore, we present an approach to integrate various dataset to provide a comprehensive picture of 

SUMOylation that distinguishes between functional and non-functional SUMOylation events. We developed 

iSUMO that integrates protein sequence and functional annotations into a comprehensive prediction strategy. 

We describe iSUMO’s approach, its validation, and application to both yeast and human for a genome-wide 

assessment of SUMOylation.  

Materials and Methods 

Training data sets of experimentally observed SUMOylated proteins  

We assembled the results from 14 and six large-scale, experimental studies in human (24-37) and yeast (38-

43), respectively, which mapped SUMOylated proteins using mass spectrometry. Figure 1 summarizes the 

relationships between the datasets, and detailed description of the data can be found in Supplementary 

Tables S1. We obtained a total of 1,860 and 555 distinct human and yeast proteins, respectively.  

For the Gene Ontology (GO) enrichment analysis, the human reference proteome was downloaded from 

European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI) release 2014_04, 

based on Universal Protein Resource (UniProt) release 2014_04, Ensembl release 75, and Ensembl Genome 

release 21 (http://www.ebi.ac.uk/reference_proteomes). The yeast reference proteome data was from 

Saccharomyces Genome Database (SGD), based on S288c reference genome release R64-1-1. We then 

filtered both reference proteomes to contain only one protein per gene, restricting the protein status in 

UniProt to ‘reviewed’. The filtering resulted in 22,242 and 6,619 distinct genes/proteins for human and yeast, 

respectively.  

To integrate the various datasets, we adopted different gene identifiers and filtered the reference lists to 

retain only the genes and proteins that had unique identity across the combination of Ensembl Gene ID, 

National Center for Biotechnology Information (NCBI) Gene ID, and UniProt Knowledge Base (UniProtKB) 

Accession ID. Also, we restricted the proteins’ review scores in UniProtKB to five out of five, thus ensuring 

reliability of the gene annotations. As a result, the final datasets comprised 17,741 and 6,609 human and 

yeast proteins, respectively. Of these proteins, 1,742 and 530 were labeled as experimentally observed 

SUMOylated, respectively (Figure 1). 

Sequence-based prediction of protein SUMOylation  

For genome-wide prediction of SUMOylation based on protein sequence, we used the Group-based 

Prediction System-SUMO (GPS-SUMO)(19, 44) to predict both canonical SUMOylation motifs and SUMO-
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interaction motifs (SIM). The threshold was set to ‘high’, allowing for detection of both Type-I (covalent 

modification motif) and Type-II (SIM) motifs.  

Function enrichment analysis 

GO enrichment analysis was carried out using gProfileR tool (45, 46). The background lists were defined as 

the union of all lists of observed SUMOylated proteins as described above. We set additional parameters to: 

1) only report p-values smaller than E-10; 2) use adjusted p-values that correct for multiple hypotheses 

testing. 

Attribute selection for predictive modeling 

The attributes used for the modeling were taken from multiple sources. The full list of attributes used for 

predictive modeling is in Supplementary Table S2. The attributes include, for example, sequence-based 

predictions that identify SUMOylation-specific conserved sequence motifs type I and II which are grouped 

by type and are reported both as a binary event (predicted yes/no) or a quantitative event (number of 

predicted sites per protein). The resulting four attributes are purely based on sequence predictions and were 

also used as baseline to compare our own iSUMO predictions. iSUMO also includes attributes derived from 

Gene Ontology (GO) terms, i.e. those terms with significant enrichment (Table 1). Enriched GO terms were 

filtered for redundancy, removing terms with a pairwise Jaccard indices larger than 0.75. 

For the human data, we also incorporated information from the BioGrid interaction database (47) which 

records protein-protein interactions extracted from both high- and low-throughput experimental studies. We 

simplified its rich structure into one binary attribute called ‘isBioGridInteractor’ (yes/no) to represent the 

presence of a protein in any of the recorded physical interactions (48-50). Similarly, we constructed an 

attribute called ‘isCORUMsubunit’ (yes/no) to indicate a protein’s membership in stable protein complex (51, 

52). Moreover, we included phosphorylation or acetylation of a protein based on the annotations in 

UniProtKB, resulting in the two attributes ‘phosphoProt’ and ‘acetylProt’. Finally, we also used probable 

evolutionary origin of the human proteins and constructed a corresponding feature ‘ancestry’ as obtained 

from reference (53). 

Alternating decision tree-based multi-step ensemble learning strategy 

iSUMO models SUMOylated proteins as a binary classification task based on training data, which is a 

mixture of categorical and numerical attributes described above. For all learning, we used the Waikato 

Environment for Knowledge Analysis (WEKA), version 3.6.1 and the R-WEKA interface(54). The core 

classification method is an alternating decision tree induced by logistic boosting algorithm, implemented in 

WEKA as LADTree. Alternating decision trees, as suggested by the name, consist of two types of nodes, 
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decision nodes and prediction nodes, connected in alternating fashion. An instance traverses all the possible 

nodes that satisfy feature values and sums up the prediction scores as the output. In the LADTree model, the 

output score is between 0 and 1, and in our case, a prediction score of 1 represents ‘SUMOylated’, while 0 

represents a ‘non-SUMOylated’ protein. As training labels were strongly biased towards non-SUMOylated 

proteins, we used a ‘split and recombine’ strategy to balance true positives and negatives. We randomly 

partitioned human non-SUMOylated proteins into nine non-overlapping subsets, each of the similar size of 

the set of SUMOylated proteins, and learned the model nine times independently, using the method 

described above. The prediction scores from these models were averages as described in the Results section. 

For yeast, every step is carried out in the same way, except we divided the negative examples into eleven 

random subsets. 

Each model from the ‘split and recombine’ strategy was built and evaluated using ten-fold cross-validation 

using ten independent random re-samplings of the training data.  In other words, after balancing the original 

data with respect to positive and negative instances, we applied bagging LADTree to each of the balanced 

partition of the data and used the average prediction scores as the final output. A representative example tree 

is shown in Figure 4.  

We recorded the average measures of accuracy, precision, recall, and receiver operating characteristics (ROC) 

using the ROCR package(55). We compared the proteins’ prediction scores given by each model to ensure 

agreement across sub-datasets. All R or Python scripts are available upon request; input and output data files 

are provided in the Supplementary Material. 

Estimation of the total number of SUMylated proteins 

This calculation is independent of iSUMO predictions, as it only takes experimental datasets into account. In 

brief, the method uses an approximation of the hypergeometric distribution to estimate the total size of the 

population (SUMO-‘ome’) from the sizes and intersections of two ‘samples’ (experiments) drawn from the 

population. We adapted this approach from reference (56), in which the total number of protein-protein 

interactions was estimated from several large-scale data. When we estimated the total number of 

SUMOylated proteins in the entire human genome, the pairwise analysis of all 14 human datasets provided a 

median of 1,241 and a mean of 1,610 SUMOylated proteins.  
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Results 

Integrating large-scale studies of SUMOylated proteome 

To obtain a comprehensive training dataset of true-positive SUMOylated proteins, we integrated 14 and six 

large-scale, experimental studies for human and yeast, respectively (Figure 1). In human, these studies 

identified between eleven to 841 proteins, and a total of 1,862 SUMO targets. About half (45%) of these 

proteins were identified by two or more studies. In yeast, only one third (30%) of the 555 total SUMOylated 

proteins were identified by more than one study. The lack of overlap between individual studies indicates 

that the individual studies suggests that many have false-positive identifications which are not biologically 

functional.  

SUMOylated human and yeast proteins primarily have nucleic acid related functions 

Table 1 shows representative, highly significant Gene Ontology (GO) enrichments for both the human and 

yeast SUMOylated proteins at an FDR cutoff of E-40. The complete results are in the Supplementary 

Tables. Both human and yeast were enriched in functions related to DNA use and metabolism, including 

chromatin organization, DNA damage response, mitosis cell cycle, and transcription; cellular compartments 

including nucleus, nucleoplasm, nuclear body, and nucleolus. These functions are consistent with our current 

understanding of SUMOylation’s important role in gene expression regulation (57, 58). Interestingly, we 

found more than half of the 163 proteins that work in viral transcription annotated as SUMOylated, which is 

consistent with the notion that viruses take advantage of host cell SUMOylation to optimize viral gene 

expression (59). 

In addition, GO terms relating to RNA use and metabolism were highly enriched, often even more 

significantly than those concerning DNA (Table 1). These functions included RNA processing, translation 

elongation and termination, cellular compartments like nucleolus, ribonucleoprotein complex, spliceosomal 

complex, cytoplasmic ribosomes, and molecular functions like RNA binding – all link to RNA functions at 

various levels. The function enrichment towards RNA metabolism was even stronger in human than in yeast, 

perhaps due to the expanded role of post-transcriptional regulation, e.g. via splicing, in human.  

Further, SUMOylated proteins were preferably part of protein complexes, consistent with the hypothesis that 

SUMOylation helps with complex assembly and stabilization of protein-protein interactions (60). 

SUMOylation of protein complexes is discussed more in detail below (Table 2). We also observed enriched 

functions which have so far received less attention in connection with SUMOylation. For example, three-

quarters (86/110) of the human proteins annotated as part of the signal recognition particle and its co-
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translational protein targeting to membranes are SUMOylated – which has, to the best of our knowledge, not 

yet been reported in literature.  

Large protein-RNA complexes in human are heavily SUMOylated 

To test if SUMOylation is a property for all large complexes, we mapped stable human complexes reported 

in the CORUM (the Comprehensive Resource of Mammalian Protein Complexes) database to the 

SUMOylation data. Table 2 (upper part) shows the complexes in descending order of significance of SUMO 

enrichment. The complexes function in, for example, the pre-rRNA complex, involved in ribosome 

biogenesis, splicing, translation, protein degradation (proteasome), and centromere chromatin complex 

(CEN). Interestingly, complexes which are depleted of SUMO (Table 2, lower part) often involve RNA 

polymerization which involves DNA-binding, but not necessarily RNA-binding; other non-SUMOylated 

complexes are localized to the mitochondria. When we plotted the number of RNA-binding proteins versus 

the number of SUMOylated subunits (Figure 2), we observed, with the exception of the mitochondrial 

ribosome, that the number of RNA-binding subunits and the number of SUMOylated subunits were strongly 

correlated. The probability to be SUMOylated was therefore linked to the number of protein interactions and 

the complex size.  

Predicting SUMOylation is improved by integration of diverse annotations 

The wide range of characteristics of SUMOylated proteins highlight the need for tools that include more than 

sequence information to predict SUMOylation. We developed such a tool, called iSUMO, employing 

machine learning algorithms, i.e. boosting tree-based predictive models. This group of algorithms performs 

well with binary attributes which comprise much of our training set. iSUMO integrates a total of 105 and 77 

attributes for human and yeast, respectively, which are listed in the Supplementary Tables. These attributes 

include the function biases discussed above, information on protein interactions, and sequence-based 

predictions derived from the GPS-SUMO tool(19). Since the training set (Figure 1) contains ten-fold more 

negatives than positives, i.e. non-SUMOylated and SUMOylated proteins, respectively, we employed a ‘split 

and recombine’ strategy that randomly split the set of negatives into multiple subsets of the same size as the 

positives, and then averaged over the resulting separate training results. Training and learning was carried 

out using bagging multiple LADTrees (61) as this algorithm outperformed other algorithms that we tested 

(not shown). For each dataset with equal instances of positives and negatives, we fitted a Bagging LADTree 

using the WEKA environment(54). To evaluate the success of the learning, we then performed ten-fold 

cross-validation which, in ten iterations, used 90% and 10% of the data for training and testing, respectively. 

The results of this testing were then presented in Receiver-Operator-Curves (ROC).  
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Overall, iSUMO showed a substantial improvement over predictions based on sequence alone (Figure 2). 

For example, iSUMO’s average area underneath the ROC is 0.86 and 0.76 for human and yeast, respectively, 

compared to the sequence-based areas of 0.58 and 0.58. Further, at a 5% false positive rate (FPR), iSUMO’s 

true positive rate is about five-fold higher than that of the sequence-based predictions in human with 53% vs. 

9%, respectively. This 5% FPR corresponds to an iSUMO score cutoff of 0.77 and 0.74 for human and yeast, 

respectively, which in turn predict 1,596 and 492 SUMOylated human and yeast proteins. The complete 

predictions, including average scores and standard deviations are available in the Supplementary Tables.  

Protein-protein interactions are predictive of SUMOylation 

Next, we analyzed the iSUMO models for attributes that are highly predictive across separate round of 

learning (Figure 3). A representative example tree is shown in Figure 4. As the underlying model was a 

decision tree, the level of ‘depth’ at which an attribute occurred was indicative of its importance: the smaller 

the depth, the more important the attribute.  

The decision tree in Figure 4 shows the ‘isBioGridInteractor’ attribute which describes the protein having at 

least one protein interaction partner listed in the BioGrid database(47-50). This attribute nearly always 

occurred at depth 1 which confirmed the importance of protein-protein interactions when predicting 

SUMOylation events. A SUMOylated human protein is highly likely to interact with other proteins – and 

vice versa.  

The next most common attribute was ‘localization to exosomes’ (Figure 3). This annotation is non-trivial to 

interpret, since two types of exosomes exist with very different functions. In one definition, an exosome is a 

multiprotein complex that exists in the cytosol and nucleus, and degrades RNA using different endo- and 

exonucleases. This complex therefore has many RNA-binding proteins which would explain the high degree 

of SUMOylation. In the second use, exosomes are membrane-enclosed microvesicles that are secreted and 

contain miRNA, RNA, and proteins. Recent work has shown that the RNA-binding protein hnRNPA2B1, 

which is responsible for sorting miRNAs into the exosome vesicles, is SUMOylated (62).  

Other common attributes with high predictive power included ‘RNA binding’, nucleolus’, ‘nucleoplasm’, 

‘chromosome’, ‘macromolecule complex subunit organization’, ‘isCORUMsubunit’, and ‘ancestry’ (Figure 

3). Notably, being part of a protein complex (‘isCORUMsubunit’) is different from a simple protein-protein 

interaction (‘isBioGridInteractor’), as not all protein-protein interactions necessarily lead to stable complexes.  

In comparison, the most common attribute in the yeast models was the sequence-based SUMO prediction 

‘countTypeIpred’, which is the number of covalent SUMO modification motif predicted within the protein 

sequence using a software tool (19, 44). This observation suggested that sequence-based predictions in yeast 
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proteins are quite successful, but SUMOylation may have acquired more complex roles in humans that are 

not encoded in sequence.  

Validation and application of iSUMO predictions  

To validate the iSUMO predictions independently, we compared the results to a publication by Hendriks et al. 

which reports SUMOylation sites for >1,600 human proteins (22). This study was not part of iSUMO’s 

training dataset. Figure 5 shows the kernel densities of the iSUMO prediction scores for all human proteins, 

separated into proteins observed by Hendriks et al. and those not observed in the independent study. The 

higher the iSUMO prediction score, the higher the fraction of proteins confirmed by Hendriks et al. For 

example, at an iSUMO prediction score cutoff of 0.77 (5% FPR), of the 1,596 proteins predicted to be 

SUMOylated, one third (458) were validated by the independent dataset.  

Table 3 lists ten human proteins with the highest iSUMO prediction scores, but which were not reported in 

the original 14 training datasets. Four of the ten proteins were validated by independent large-scale studies 

(Table 3), three are listed in the recent study by Hendriks et al. (PSMA1, DGCR8, NUFIP1)(22). Seven 

proteins are also ubiquitinated – and given that the ubiquitin and SUMO often co-occur, this observation 

strengthens the prediction. One of highly predicted proteins is microprocessor complex subunit DGCR8, an 

RNA-binding component of the microprocessor complex which is responsible for cleaving pri-miRNA to 

precursor miRNA. DGCR8’s SUMOylation has recently been confirmed in a targeted study: SUMO at lysine 

707 stabilizes the protein by preventing ubiquitination and subsequent degradation through ubiquitin 

proteosomal system (63). The same study also showed that SUMO affects DGCR8’s affinity to pri-miRNAs, 

ensuring their repression of the mRNA targets.  

Discussion 

Despite the availability of several large-scale experimental datasets that identify SUMOylated proteins in 

human and yeast cells, the studies only partially intersect with each other, suggesting many false positive 

identifications (Figure 1). To predict the true-positive SUMOylation events that are likely biologically 

functional, we used 14 and 6 large-scale studies from human and yeast, respectively, and integrated the data 

with sequence-based SUMOylation predictions and other protein characteristics. Using these overrepresented 

characteristics and the experimental training data, we constructed iSUMO, an integrated search engine which 

predicts about five times more proteins in the training data than sequence-based predictions alone (at 5% 

false positive rate) – and one third of these predictions are validated by an independent, high-quality study 

that has been published recently (Figure 5).  
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iSUMO predicted a total of 1,596 SUMO targets in human - a number which is very close to the total size of 

the human SUMO-‘ome’ which we estimated based on a published method that analyzes the overlap 

between different experimental datasets (56). This similarity in numbers suggests that we are perhaps close 

to having identified the entirety of SUMOylated proteins, and that iSUMO balances prediction depth 

(coverage) with accuracy.  

The validity of iSUMO predictions is further illustrated when examining human proteins that were not part 

of our training set (of 14 experimental studies), but scored highly in our framework (Table 3). Seven of the 

ten proteins have reported ubiquitination events – a modification that often coincides with SUMOylation. 

Four of the proteins in Table 3 were reported in other SUMOylation studies, three of these in a recent high-

quality dataset by Hendriks et al. (22). Most excitingly, one protein has been validated by a targeted 

experimental study – namely DGCR8 whose SUMOylation at lysine 707 stabilizes the protein by preventing 

ubiquitination at the same residue (63). 

In addition to providing high-quality predictions, our study also highlighted several characteristics that 

appear to be strongly connected to SUMOylation. For example, SUMOylated proteins often bind nucleic 

acids (e.g. RNA or DNA) and are part of large complexes (Table 2)(22). Specifically, there is strong 

correlation between SUMOylation, the size of a complex, and the number of subunits that are RNA-binding 

(Figure 2). Overall, two fifths (654 of 1,536) of the human RNA-binding proteins are SUMOylated, while 

this is the case for less than 10% of the total human proteome -- suggesting that SUMOylation might play a 

role specifically in mediating protein-RNA binding, beyond its known function as a facilitator of protein-

protein interactions. Whether SUMOylation modifies the structure of the RNA-binding protein, or affects its 

surface charge to enable the interaction with the nucleic acid remains subject to future studies.  

It is tempting to speculate on the reasons for the prevalence for SUMOylation amongst RNA-binding 

proteins. Perhaps, with the expansion of RNA-based regulatory pathways in mammals compared to yeast, the 

well-established, extensive role of SUMOylation of DNA-binding proteins was simply transferred. 

Alternatively, SUMOylation might be essential for the correct assembly of large complexes, which are very 

often involved in RNA-related processes, and the prevalence of SUMOylation for RNA-binding proteins 

might be a side-effect of its role in complexes. A third intriguing hypothesis arises from two observations: 

SUMO is one of the most soluble of all known proteins (64) and RNA-binding proteins are major 

components of RNA-protein granules whose aggregation forms the molecular bases of many 

neurodegenerative disorders (65). Therefore, SUMOylation may act to prevent such aggregation in these 

densely packed cellular structures – a hypothesis supported by some experimental work (66).  
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These considerations also link to the biomedical relevance of SUMOylation, in particular with respect to 

neuronal diseases (67-69). Indeed, we find that abnormalities of the nervous system amongst SUMOylated 

proteins (HPO (70), p-value < 1E-7). Further, one of the highest-scoring iSUMO predictions in human, 

NUFIP1, interacts with a major neuronal regulator protein, the Fragile X Mental Retardation protein 1 

(FXR1), and might therefore be linked to this neuronal disease (Table 3). 
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Figures and Tables 

Figure 1. Large-scale experimental datasets for SUMOylated proteins.  

We assembled 14 and six datasets with mass spectrometry-based identifications of SUMOylated prote

(a) human and (b) yeast, respectively, which are used as training data in the iSUMO prediction tool.

column represents a published dataset; each row one human or yeast protein. Grey entries represent pr

observed as SUMOylated by the respective dataset. Numbers at the top of the column are the total num

SUMOylated proteins reported by the study. Datasets are lists in full in Supplementary Tables S1.  
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Figure 2. Correlation between protein SUMOylation, the total number of distinct subunit

complex, and the number subunits that bind RNA.  

Complex information was taken from the CORUM database (52). Dot size is proportional to the total nu

of distinct subunits of the complexes. 
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Figure 3. iSUMO predictions outperform sequence-based predictions   

a, b) Receiver operator characteristics of iSUMO predictions trained on integrated sequence and annotation-

based features (red) versus sequence-based features only (blue). Gray lines are the original 10-fold cross 

validation runs for different sets of non-overlapping, randomly chosen true negative entries. Balancing the 

number of positive and negative labels ensures learning quality and fair ROC evaluation. 

c, d) Frequencies of the most predictive attributes in (c) human and (d) yeast, measured as the number of 

occurrences in the different models. ‘Depth’ marks the level in the decision tree and is displayed in different 

colors. The more frequent a feature is selected at low tree depth, the more predictive of SUMOylation it is. 
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Figure 4. Representative iSUMO decision tree to predict SUMOylation 

Example of an alternating decision tree. The red circles are decision nodes, each containing an attribute

The blue rectangles are the prediction nodes, which generate scores whenever an instance satisfi

attribute value. The total scores are reported as the iSUMO prediction scores which range between 0 

SUMOylated) and 1 (SUMOylated).  
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Figure 5. iSUMO predictions are independently validated. 

The plot validates iSUMO predictions with independent, high-quality data by Hendriks et al. which w

part of the training data used here (22)(solid red line). Importantly, at high iSUMO scores, the fracti

proteins that iSUMO predicts to be SUMOylated but are not part of the Hendriks dataset (blue dashed li

very small. A 5% false positive rate (FPR) corresponds to an iSUMO prediction score of 0.77, as ind

by the black dotted line. Of the 1,596 proteins predicted to be SUMOylated at this threshold, one third 

were validated by the Hendriks study (22).  
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Table 1. SUMOylated proteins have significant function biases.  

We tested for function enrichment using hypergeometric tests of Gene Ontology (GO) term in (a) human and 

(b) yeast, respectively. ‘Domain’ codes indicate the three main branches of Gene Ontology: biological 

processes (BP), cellular compartment (CC), and molecular function (MF). ‘Term size’ refers to the total 

number of genes associated with the term in the GO database, and ‘Intersection size’ is the intersection with 

SUMOylated proteins. The ‘Adjusted p-value’ has been corrected for multiple hypotheses testing. The 

entries are sorted according to the adjusted p-value. Extended information is in the Supplementary Table 

S2.  
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(a) Homo sapiens 
Domain Term name Term size Intersection size Adjusted p-value 

BP RNA processing 680 267 3E-102 

 SRP-dependent co-translational protein targeting to 
Membrane 110 86 1E-64 

 DNA metabolic process 971 267 1E-62 
 Translation 111 83 2E-59 
 Cytoplasmic transport 824 224 1E-50 
 Viral transcription 163 93 1E-50 
 Protein complex disassembly 194 98 6E-47 
 Chromatin organization 620 184 7E-47 
 Mitotic cell cycle 890 223 7E-44 

CC Ribonucleoprotein complex 625 275 2E-120 
 Nucleolus 685 252 1E-88 
 Chromosome 695 243 8E-80 
 Nucleoplasm part 643 214 4E-65 
 Cytosolic ribosome 95 71 2E-50 
 Spliceosomal complex 145 84 3E-46 
 Nuclear body 303 121 9E-45 

MF Poly(A) RNA binding 1155 580 0 
 RNA binding 1536 654 4E-304 
 DNA binding 2356 474 1E-67 

 
(b) Saccharomyces cerevisiae 
Domain Term name Term size Overlap size Adjusted p-value 

BP 
Transcription 

Chromatin modification 
474 
93 

108 
36 

2E-23 
8E-15 

 Protein-DNA complex subunit organization 61 24 7E-10 
 Nucleosome organization 31 17 1E-9 
 Translation 345 62 4E-08 

CC Nucleoplasm 122 39 8E-13 
 Protein complex 901 129 3E-10 
 Chromatin 70 26 4E-10 
 Ribonucleoprotein complex 458 78 3E-09 
 Nucleolus 155 33 8E-06 

MF Nucleic acid binding 910 158 1E-21 
 DNA binding 460 96 1E-17 
 Protein binding 879 120 6E-08 
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Table 2. Subunit compositions of stable protein complexes in human.  

The upper and lower tables show the largest complexes that are SUMOylated and not SUMOylated, 

respectively, as determined by the adjusted p-value. The complexes are sorted by descending total number of 

subunits. The adjusted p-value reports the bias with respect to SUMOylation of the complex subunits.  

 

CORUM protein complex Total number of 
subunits 

Number of 
SUMOylated subunits 

Number of RNA-
binding subunits 

Adjusted p-
value 

High SUMOylation     

Spliceosome 143 94 113 1E-64 

Nop56p-associated pre-rRNA 
complex 104 95 96 2E-91 

Ribosome, cytoplasmic 81 71 79 5E-65 

CEN complex 37 22 9 3E-13 

PA700-20S-PA28 complex 36 28 4 2E-22 

17S U2 snRNP 33 28 28 1E-24 

CDC5L complex 30 23 22 5E-18 

26S proteasome 22 19 4 5E-17 

Large Drosha complex 20 19 20 3E-19 

SNW1 complex 18 16 12 8E-15 

Low SUMOylation     

55S ribosome, mitochondrial 78 2 48 1 

39S ribosomal subunit, 
mitochondrial 48 1 30 1 

Respiratory chain complex I 
(holoenzyme), mitochondrial 44 2 1 1 

Mediator complex 32 3 0 1 

28S ribosomal subunit, 
mitochondrial 30 1 18 1 

BRCA1-RNA polymerase II complex 26 5 8 1 

RNA polymerase II holoenzyme 
complex 24 4 7 1 
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Table 3. Highest-scoring iSUMO-predicted SUMOylation targets that are not reported in 

training datasets.  

The protein names are the primary common names as used by UniProtKB 

(http://www.ebi.ac.uk/reference_proteomes). The average iSUMO prediction scores range from 0 to 1, and is 

the higher, the higher the probability for SUMOylation. None of the proteins listed here have been reported 

as SUMOylated in the 14 training datasets. Function annotation is from GeneCards.org. * - Independent 

validation of SUMOylation by observation in Hendriks study (22). ** - SUMOylation observed in other 

large-scale studies as reported by BIOGRID (47). # - Ubiquitinated as reported by BIOGRID (47). The 

extended version of this table is presented in Supplementary Table S6. Ref. - references 
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Protein common 

names 

iSUMO 

score 

Function Evidence for SUMOylation Ref. 

40S ribosomal 

protein S19 

RPS19 

0.97 Part of ribosome 

complex 

No direct evidence for SUMOylation. However, during 

ribosome biogenesis, pre-ribosomal particles are 

SUMOylated - mainly during 60S, but also 40S 

biogenesis. Many translation initiation and elongation 

factors are also SUMOylated. 

(71) 

Proteasome 

subunit alpha 

type-1*,**,#, 

PSMA1 

0.96 Part of proteasome 

complex 

No direct evidence for SUMOylation. The proteasome 

is not known to interact with nucleic acids directly, but 

one particle (PA200 in human, Blm10 in yeast) 

regulates DNA/expression via interaction with histones.  

(12, 47, 

72, 73) 

E3 ubiquitin-

protein ligase#, 

HUWE1 

0.96 Protein ubiquitination 

for proteasomal 

degradation 

No direct evidence for SUMOylation. HUWE1 interacts 

with the proteasome and the DNA-binding CTCF 

complex. CTCF is SUMOylated.  

(74) 

Cleavage 

stimulation factor 

subunit 3#, CSTF3 

0.96 Part of cleavage factor 

stimulation complex 

promoting 

polyadenylation and 

cleavage of pre-mRNAs 

No direct evidence for SUMOylation, neither for 

CSTF3, nor for other complex members.  

n/a 

Renal Carcinoma 

Antigen#, NY-REN-

24, CACTIN 

0.96 Part of spliceosome 

complex, RNA binding 

Not direct evidence for SUMOylation. However, 

spliceosome and splicing factors are known to be 

SUMOylated.  

(12, 

47) 

Microprocessor 

complex subunit*, 

DGCR8 

0.95 Part of microprocessor 

complex which 

mediates biogenesis of 

miRNAs 

Direct validation of SUMOylation of DGCR8 in a recent 

publication: DGCR8 is modified at K707 by SUMO1 

which is thought to stabilize the protein via blocking 

ubiquitination at the same site and preventing 

degradation. SUMOylation also enhances the affinity of 

DGCR8 to pri-miRNAs. DGCR8 SUMOylation is linked 

to tumorignesis and tumor cell migration.  

(63, 

75) 

Cyclin-T1**,#, 

CCNT1/CDK9 

0.95 Part of transcription 

elongation factor p-

TEFb (complex) 

No direct evidence for SUMOylation. However, 

SUMOylation affects many transcription factors and 

parts of the transcription initiation and elongation 

complex.  

(47, 

76) 

Exportin-5#, XPO5 0.95 Nuclear export of small 

RNAs and RNA-binding 

proteins 

No direct evidence for SUMOylation, but many nuclear 

export factors are SUMOylated.  

(12, 

47) 
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Nuclear fragile X 

mental 

retardation-

interacting protein 

1*,#, NUFIP1 

0.95 Nuclear, RNA-binding 

protein that interacts 

with the fragile X 

mental retardation 

protein 

Not direct evidence for SUMOylation.   n/a 

40S ribosomal 

protein S28, 

RPS28 

0.95 Part of ribosome 

complex 

See RPS19 above.  n/a 
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