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Abstract 

Post-translational modifications by the Small Ubiquitin-like Modifier (SUMO) are essential for diverse 

cellular functions. Large-scale experiment and sequence-based predictions have identified thousands of 

SUMOylated proteins. However, the overlap between the datasets is small, suggesting many false positives 

with low functional relevance. Therefore, we integrated ~800 sequence features and protein characteristics 

such as cellular function and protein-protein interactions in a machine learning approach to score likely 

functional SUMOylation events (iSUMO). iSUMO is trained on a total of 24 large-scale datasets, and it 

predicts 2,291 and 706 SUMO targets in human and yeast, respectively. These estimates are five times 

higher than what existing sequence-based tools predict at the same 5% false positive rate. Protein-protein and 

protein-nucleic acid interactions are highly predictive of protein SUMOylation, supporting a role of the 

modification in protein complex formation. We note the marked prevalence of SUMOylation amongst RNA-

binding proteins. We validdate iSUMO predictions by experimental or other evidence. iSUMO therefore 

represents a comprehensive tool to identify high-confidence, functional SUMOylation events for human and 

yeast.    
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Introduction 

The covalent attachment of Small Ubiquitin-like Modifier (SUMO) is, based on its common occurrence and 

wide array of functions in eukaryotic cells, one of the most important post-translational modifications. 

SUMOylation has been studied from numerous perspectives since its discovery in 1997 1. It is widely 

conserved across eukaryotes 2-4, and in many cases essential for the organismal viability 5. SUMOylation 

resembles ubiquitination in terms of structure, enzymatic pathway, and it has a broad functional spectrum, 

ranging from chromatin organization 6, DNA damage repair 7, regulation of transcription 8, ribosome 

biogenesis 9-10, messenger RNA (mRNA) processing 11-12, nucleus-cytoplasm transport 13, to protein 

localization 14, proteolysis (where it cross-talks with ubiquitination)15, stress response 16and other functions 
17.  

Several computational approaches exist that predict SUMOylation based on the conserved amino acid 

sequence motif Ψ-K-X-D/E, where Ψ is a hydrophobic residue, K is the lysine being modified, X is any 

amino acid, and D/E is an acidic residue 18-21. However, these sequence-based predictions have many false 

positives and false negatives: when comparing them to experimental data, the intersection is only small. For 

example, half of the human proteins contain the above SUMOylation motif in their sequence, but the 

modification is verified for only a small fraction. In addition, recent experimental data suggests that 

SUMOylation may also act on motifs other than the one described above 22, highlighting the need for 

methods that move beyond use of sequence alone.  

Several experimental methods have been developed to identify SUMO-targets. For example, 

immunoprecipitation using antibodies against SUMOylated proteins reveals SUMO conjugation with high 

confidence 23, but the assay only works with a small number of proteins at a time. In comparison, mass 

spectrometry based methods sample a large fraction of the proteome and have by now identified thousands 

of SUMO targets in yeast and human (Figure 1). However, it is often unclear what the false-positive and 

false-negative identification rates of these approaches are. For example, a recent and in-depth screen of 

human SUMOylation targets using advanced technology identified only 1,606 proteins 22, and overlap 

between this and other studies is small (Figure 1). In comparison, when using prediction tools that are sole 

based on sequence features, many more targets have been identified, e.g. 9,173 of 16,849 human proteins 

(54%) are predicted to have a SUMOylation motif in their sequence.  
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Overall, these findings suggest that interpreting large scale identification results remains challenging, as it is 

likely enriched in many false-positive identifications. To achieve a unified interpretation, we developed 

iSUMO, a random forest-based predictive model, exploiting the putative SUMOylated proteins discovered in 

large-scale experiments in their relationship to various protein annotations. iSUMO’s results not only 

provide a set of SUMOylation events that are likely functional, they also highlight properties common to 

SUMOylated proteins. In total, these results suggest that ~20% and ~10% of human and yeast proteins are 

SUMOylated.  

Materials and methods 

Training data sets of experimentally observed SUMOylated proteins  

We assembled the results from 18 and 6 large-scale, experimental studies in human 22, 24-32 and yeast 33-38, 
respectively, which mapped SUMOylated proteins using mass spectrometry. Figure 1 summarizes the 

composition of consensus or unique findings among the studies, and detailed description of the data can be 

found in Supplementary Tables S1a and b. We obtained a total of 2,216 and 555 distinct, well-annotated 

human and yeast proteins, respectively, to construct a highly quality training dataset. 

To integrate the different datasets, we downloaded both reference proteomes from UniProt Reference 

Proteome database (Homo sapiens, UP000005640; Saccharomyces cerevisiae S288c, UP000002311), and 

only retained the subset that has been reviewed by Swiss-Prot database. We then filtered both reference 

proteomes to contain only one protein per gene, restricting unique identity across the combination of 

Ensembl Gene ID, National Center for Biotechnology Information (NCBI) Gene ID, and UniProt Knowledge 

Base (UniProtKB)39 Accession ID. To avoid introducing biases with dubious function annotations for human 

genes, we created a high-confidence dataset for the human proteome (>11,000 proteins, Suppl. Table S6a). 

We also present iSUMO predictions with the extended dataset (>16,000 proteins, Suppl. Table S6b). For 

yeast, we used ~6,700 proteins. Within these reference proteomes, we labeled the proteins as “SUMOylated” 

if they are discovered as SUMOylated in any of the 24 studies described above. 

Sequence-based prediction of protein SUMOylation  

For genome-wide prediction of SUMOylation based on protein sequence, we used the Group-based 

Prediction System-SUMO (GPS-SUMO) _19, 40 to predict consensus and non-consensus SUMOylation 

motifs and SUMO-interaction motifs (SIM) with the threshold set to ‘high’. 
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Function enrichment analysis 

GO enrichment analysis was carried out using gProfileR package 41-42. The query lists were defined as the 

union of all lists of observed SUMOylated proteins and the background lists are the respective reference 

proteomes. We set additional parameters to: 1) excluding the GO associations based only on electronic 

annotation; 2) using adjusted p-values that correct for multiple hypotheses testing; 3) non-ordered query list, 

thus adopting hypergeometric test. Next we only retained the significant enriched GO terms (false discovery 

rate<0.05), whose total size are less than 2,000 for human and size within 5 to 1,000 for yeast. Finally, we 

strictly excluded any term containing “sumo” in its name, case-insensitively, from subsequent modelling 

steps. 

Attribute selection for predictive modeling 

The attributes used for the modeling were taken from multiple sources. The full list of attributes used for 

predictive modeling is in Supplementary Table S2. The attributes include, for example, numbers of 

occurrences of sequence-based predictions of SUMOylation or SUMO-interaction motifs. These attributes 

are purely based on sequence predictions and were also used as baseline to compare our own iSUMO 

predictions. iSUMO also includes attributes derived from associations with Gene Ontology (GO) terms 

(Table 1). Besides, we also incorporated protein-protein interaction data from the STRING database  using 

only the “binding” type activity. We simplified its rich structure into the degree of proteins within this 

network 43-45. Since the taxonomy id 559292 is absent in STRING, we used the equivalent data of 4932 for 

yeast. Moreover, using the annotations from CORUM database of mammalian protein complex and Costanzo 

et al., 2016 for yeast 46, we counted the number of protein complexes to which each protein belongs and the 

average size of these complexes (size defined as the number of distinct protein species per complex). Finally, 

we included other PTM sites of a protein based on the annotations in PhosphoSitePlus for human and 

dbPTM for yeast 47-48, both experimentally supported only, summarizing the number of amino acids that are 

phosphorylated, acetylated, methylated, or ubiquitylated. 

Fitting, evaluating, and applying random forest model 

iSUMO models SUMOylation state of proteins as a binary classification task based on training data, which 

comprises categorical and numerical attributes described above. We used the H2O open source machine 

learning platform with its R interface. The core classification method is random forest. We split the full 

dataset into 65% training, 20% validation, and 15% testing. We attempted different settings for the training, 
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such as hard setting number of trees versus dynamic termination rule, and restricting different max numbers 

of tree depth. The model selection is based on the performances with validation set and 10-fold cross 

validation, considering metrics including area under the receiver operating curve (AUROC), and maximum 

F1 and F2 values. As training labels were strongly biased towards non-SUMOylated proteins, we also tried 

balancing the training examples by over sampling of the minority label. Plus, H2O measures relative 

importance of variables in random forest models by calculating how often a variable is selected at a split of a 

tree and the amount of improvement in squared error over all trees (http://www.h2o.ai). 

Results 

Many large-scale studies of the SUMOylated proteome exist, but their overlap is small 

To obtain a comprehensive training dataset of true-positive SUMOylated proteins, we integrated 18 and six 

large-scale, experimental studies for human and yeast, respectively. These studies identified individually 

between ten to >1,600 SUMOylated human proteins, and 13 to 271 SUMOylated yeast proteins. When 

mapped to the selected reference proteome, we retained a total of 2,270 and 527 SUMO targets for the two 

species, respectively. About half (45%) of these proteins were identified by two or more studies. In yeast, 

only one third (30%) of the 527 total SUMOylated proteins were identified by more than one study (Figure 

1). The lack of overlap between individual studies indicates that the individual studies many have false-

positive identifications which are not biologically functional. 

SUMOylated human and yeast proteins bind and process nucleic acids  

Table 1 shows representative, highly significant Gene Ontology (GO) enrichments for both the human and 

yeast SUMOylated proteins at a (false discovery rate <e-40). The complete results are in the Suppl. Table 

S2. Functions related to DNA processing and metabolism were enriched in both human and yeast 

SUMOylated proteins, including chromatin organization, DNA damage response, mitosis cell cycle, and 

transcription; cellular compartments including nucleus, nucleoplasm, nuclear body, and nucleolus. These 

functions are consistent with our current understanding of SUMOylation’s important role in gene expression 

regulation 49-50. More than two thirds of the 174 human involved in viral gene expression are SUMOylated, 

which is consistent with the process in which viruses take advantage of host cell SUMOylation to optimize 

viral gene expression 51. 
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SUMOylated proteins were enriched in functions related to RNA processing, often more significantly than 

those concerning DNA processing (Table 1). The effect was stronger in human than in yeast. The enriched 

functions included RNA processing, translation elongation and termination, cellular compartments like 

nucleolus, ribonucleoprotein complex, spliceosomal complex, cytoplasmic ribosomes, and molecular 

functions like RNA binding – all related to various steps of RNA synthesis and processing. 

Large protein-RNA complexes are extensively SUMOylated 

One distinct pattern of SUMOylation was the simultaneous modification of several subunits, probably 

assisting with organized recruitment of complex components, for instance in proteins in DNA double strand 

break repair by homologous recombination 52. Thus, we first tested if SUMOylated proteins are more often 

part of any stable protein complex than non-SUMOylated complexes. Indeed, this is the case in both human 

and yeast (unadjusted hypergeometric test p-value at 1E-132 and 9E-58, respectively). 

Next, we tested as if the complexes were enriched in specific functions (Table 2). Since most complexes 

have few subunits, we limited this analysis to the complexes with size larger than 20. The top SUMO-

enriched complexes function in, for example, the pre-rRNA complex, involved in ribosome biogenesis, 

splicing, translation, protein degradation (proteasome), and centromere chromatin complex. We also 

observed cases whose SUMOylation has so far received little attention. For example, three-quarters (86/110) 

of the human proteins annotated as part of the signal recognition particle and its co-translational protein 

targeting to membranes are SUMOylated – which has, to the best of our knowledge, not yet been reported in 

literature.  

For both organisms, we found the sizes of complexes tend to be significantly larger when the complex 

contains both RNA binding and SUMOylated proteins (Figure 2A). We then plot the number of 

SUMOylated subunits against the number of RNA binding proteins per complex, with the size of points 

corresponding to the size of the complexes (Figure 2B). While there are some outliers, there is a clear 

positive correlation between number of RNA binding and SUMOylated proteins among the largest 

complexes for both organisms.  

One of the outlying groups is high in SUMOylation but has few RNA binding proteins, represented by 

human PA700-20S-PA28 complex, proteasome, and yeast RSC (chromatin structure remodeling) complex 

(Figure 2B). They both consist of multiple different subunits which may legitimize the extensive 

SUMOylation observed across studies, while neither has RNA binding function. Another outlier contains 
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many RNA-binding proteins but little SUMOylation. An example is the human 55S mitochondrial ribosome, 

contrasted by the 60S cytoplasmic ribosome, which is almost entirely SUMOylated. This may be the result 

of non-random subcellular localization of SUMOylation enzymes, or systematic bias in the high-throughput 

capture assays. 

Integrating diverse protein annotations substantially boosts prediction of SUMOylation 

(iSUMO) 

The wide range of characteristics of SUMOylated proteins (see above) along with just a handful of SUMO 

E3 ligases highlight the need for tools that include more than sequence information to predict the 

SUMOylation state of proteins. To this end, we developed iSUMO, which employs a random forest model to 

make use of the intricate information in various protein annotations, ranging from basic molecular weight, 

SUMO-specific sequence motif, to biological functions, and connectivity in the protein-protein interaction 

network. This group of algorithms performs well with binary attributes which comprise much of the training 

set. In total, iSUMO integrates 638 and 293 attributes for human and yeast proteins, respectively (Suppl. 

Table 1). To show the benefit of incorporating protein annotations, we compared iSUMO to the same 

training method but with only sequence motif predictions from the well-established GPS-SUMO tool 53. We 

split the data into 65% training, 20 % validation, and 15% testing subsets, and recorded training, 10-fold 

cross validation, validation performance metrics for model selection. Training methods varied with respect to 

termination condition, fixed number of trees, the maximum depth of trees, and whether we applied balancing 

of the training labels. We then chose the model with the highest area under the receiver-operator-

characteristic (ROC) curve, and high F1, F2 values in validation and cross validation. In case of a tie, we 

chose the model with the shortest training time. To avoid overfitting, we also examined the model’s 

performance on test set. We accepted the model choice if it was close to training and validation metrics. 

Overall, iSUMO showed a substantial improvement over predictions based on sequence alone (Figure 3A). 

For example, iSUMO’s average area underneath the ROC is 0.88 and 0.84 for human and yeast, respectively, 

compared to the sequence-based areas of 0.58 and 0.58. Further, at a 5% false positive rate (FPR), iSUMO’s 

true positive rate is about five-fold higher than that of the sequence-based predictions in human with 53% vs. 

9%, respectively. This 5% FPR corresponds to an iSUMO score cutoff of 0.19 and 0.18 for human and yeast, 

respectively, which in turn predict 2,291 and 706 SUMOylated human and yeast proteins. The complete 

predictions, including for the extended human dataset, are available in the Suppl. Table S6.  
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Predictive features of SUMOylation in yeast and human 

Next, we analyzed the iSUMO models for attributes that are highly predictive (Figure 3B). From the random 

forest model training, we can estimate the relative importance of individual features by the frequency of 

being chosen at the split and the reduction of squared error it introduces. First, a protein’s connectivity in the 

PPI network (“ppiDegree”) ranks top in human model and fourth in yeast. Similarly, the complex size 

(“avgCompSz”) and number of complex memberships of a protein (“nComp”) rank fourth and fifth in the 

yeast model, respectively, and “avgCorumSz” and “nCorum” rank seventh and eleventh in the human model. 

These observations are consistent with the putative role of SUMOylation in supporting non-covalent protein-

protein interactions and complex assembly and is likely common across eukaryotic organisms. 

Second, the most important GO terms in both models are centered around DNA or RNA processing 

pathways, molecular function, or cellular localization (Figure 3B). As before, RNA binding and related 

functions are much more important in the human than in the yeast model. This finding suggests an increasing 

role of SUMOylation from transcriptional to post-transcriptional regulation in higher eukaryotes.  

Third, unique to the human model, the numbers of ubiquitylation, acetylation, and phosphorylation sites in a 

protein are three highly predictive features, while they are much less important in the yeast model. This 

result is in line with numerous pieces of evidence on the extensive cross-talk between SUMOylation and 

other PTMs 22, 54. However, the pattern is less prevalent in yeast, perhaps because more data is available for 

human than yeast and the extent of post-translational modifications increases in higher organisms.  

Fourth and last, basic molecular characteristics like length and weight as well as sequence motifs (consensus, 

non-consensus, and interaction) are far more dominant features in the yeast than in the human model (Figure 

3B). This result gives a hint on how SUMOylation achieves it substrate specificity with a limited number of 

E3 ligases compared to, for example, kinases and ubiquitination enzymes. It is tempting to speculate that in 

the simpler yeast, SUMOylation only requires sequence specificity, but in the more complex mammalian 

system, SUMOylation requires cross-talk with other proteins and other protein modifications. Again, the 

trend might also be due to human data being complemented by a large number of additional information.  

Validation and application of iSUMO predictions  

We used iSUMO with the high-quality reference proteomes that we created (Method) to provide a 

quantitative prediction of SUMOylation events in human and yeast that are highly enriched in functional 

SUMOylation events (Suppl. Table 6a-c). For high-confidence predictions, we restricted the analysis to 
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well-annotated human genes and extracted predictions with the false positive rate (FPR) smaller than 0.05. 

The FPR was determined based on the model’s performance with a e part of data unseen during training. At 

the 5% FPR threshold, iSUMO predicts 2,291 and 706 in human and yeast, respectively (Suppl. Tables S6a, 

S6c). Interestingly, the number is very similar to the combined number of experimentally determined 

SUMOylation events in the two organisms (2,270 and 527, respectively, Suppl. Table S7).  Given a total 

size of the proteomes used for the study, ~19% and ~11% of the human and yeast proteome appears to be 

SUMOylated, respectively. This number is robust to the use of an extended dataset in human (Suppl. Table 

6b). 

At 5% FPR, iSUMO predicts SUMOylation of 467 human and 303 yeast proteins that were never observed 

in any of the 24 experimental datasets used for this study (Suppl. Table S7). To further validate these 

predictions, we searched other databases and literature for evidence of these SUMOylation of the top best 

predictions in human (Table 3). All ten proteins show some evidence for the prediction to be true. The yeast 

homolog of the ribosomal protein RRP1 is known to be SUMOylated 55, and for four proteins (ISY1, 

HIST2H2AB, TUBA3C, NSD1), other large-scale databases report SUMOylation events (Table 3). For other 

proteins, we found indirect evidence. For example, three of the proteins (SF3A3, ISY1, SNRPA) are part of 

RNA splicing, and the spliceosomal complex is known to depend on SUMOylation 56.  Other proteins are 

part of chromatin reorganization and segregation during cell division (CHAF1B, ANAPC5, TUBA3C), 

which also involves many SUMOylation events 57. SUMOylation also plays a role in rRNA maturation and 

assembly of the 60S subunit 9, supporting the predicted SUMOylation of UTP15. Finally, plenty of literature 

supports SUMOylation of histones and histone methyltransferases 58-59, supporting the predicted 

modification of HIST2H2AB and NSD1. In sum, we argue that even these new predictions which had a high 

iSUMO score but were absent from the experimental training data, are highly enriched in true positives, i.e. 

functional modification events.  

Discussion 

A major question arising from these comparative studies concerns the total number of SUMOylated proteins. 

Here, we present iSUMO, an integrated SUMOylation prediction framework that outperforms methods based 

on sequence features alone (Figure 3). We apply iSUMO to both human and yeast proteins, predicting 

2,291(19%) and 706 (11%) of SUMOylated proteins, respectively. Encouragingly, this number is close to a 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 5, 2017. ; https://doi.org/10.1101/056564doi: bioRxiv preprint 

https://doi.org/10.1101/056564
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

11 

recent estimate by Hendriks et al. which, combining several experimental studies, predicted a total set of 

~3,600 (15%) of SUMOylated human proteins 60.  

However, a remaining challenge in these analyses is the small overlap between the individual large-scale 

studies, suggesting that each experiment produces many false positive identifications (Figure 1). 

Alternatively, our current methods might be unable to capture the complete SUMO space and only detect 

small subsets. Therefore, the next goal should be to identify the true positive SUMOylation events amongst 

the many detected ones. iSUMO offers a solution to this problem by integrating sequence and protein 

functional features to learn computationally the properties of SUMOylated proteins. It outperforms 

prediction tools that are solely based on sequence features and produces a list of high-confidence predictions. 

In total, 1,824 (15%) and 403 (6%) proteins in human and yeast, respectively, are positive iSUMO 

predictions and occur in the experimental datasets (Suppl. Table S7) – these proteins are most likely to be 

truly functional.  

In addition, our study also highlighted protein characteristics strongly connected to SUMOylation. For 

example, SUMOylated proteins often bind nucleic acids (e.g. RNA or DNA) and are part of large complexes 

(Table 2)22. Specifically, there is strong correlation between SUMOylation, the size of a complex, and the 

number of subunits that are RNA-binding (Figure 2). Overall, two fifths (654 of 1,536) of the human RNA-

binding proteins are SUMOylated, while this is the case for less than 10% of the total human proteome -- 

suggesting that SUMOylation might play a role specifically in mediating protein-RNA binding, beyond its 

known function as a facilitator of protein-protein interactions. Whether SUMOylation modifies the structure 

of the RNA-binding protein, or affects its surface charge to enable the interaction with the nucleic acid 

remains subject to future studies.  

It is tempting to speculate on the reasons for the prevalence for SUMOylation amongst RNA-binding 

proteins. Perhaps, with the expansion of RNA-based regulatory pathways in mammals compared to yeast, the 

well-established, extensive role of SUMOylation of DNA-binding proteins was simply transferred. 

Alternatively, SUMOylation might be essential for the correct assembly of large complexes, which are very 

often involved in RNA-related processes, and the prevalence of SUMOylation for RNA-binding proteins 

might be a side-effect of its role in complexes. A third intriguing hypothesis arises from two observations: 

SUMO is one of the most soluble of all known proteins 61 and RNA-binding proteins are major components 

of RNA-protein granules whose aggregation forms the molecular bases of many neurodegenerative disorders 
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62. Therefore, SUMOylation may act to prevent such aggregation in these densely packed cellular structures 

– a hypothesis supported by some experimental work 63.  
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Figures and Tables  

(high resolution figures are submitted separately) 

Figure 1. Large-scale experimental datasets for SUMOylated proteins.  

We assembled 18 and six datasets with mass spectrometry-based identifications of SUMOylated proteins in 

(A) human and (B) yeast, respectively, which are used as training data in the iSUMO prediction tool. Each 

column represents a published dataset. Colored entries represent proteins observed as SUMOylated by the 

respective dataset. Datasets are lists in full in Suppl. Tables S1.  
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Figure 2. Correlation between protein SUMOylation, the total number of distinct subunits per 

complex, and the number subunits that bind RNA.  

Complex information was taken from the CORUM database 64. Dot size is proportional to the total number 

of distinct subunits of the complexes. Complexes that are both SUMOylated and contain many RNA-binding 

proteins are larger than other complexes. A. The columns are annotated as Is-RNA-binding-

protein(TRUE/FALSE). Is-SUMOylated-protein(TRUE/FALSE). Protein complexes with RNA-binding 

members are more often SUMOylated than others. B. Relationship between SUMylation and RNA-binding 

proteins.  
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Figure 3. iSUMO predictions outperform sequence-based predictions   

A., B. Receiver operator characteristics of iSUMO predictions trained on integrated sequence and 

annotation-based features (red) versus sequence-based features only (blue). Gray lines are the original 10-

fold cross validation runs for different sets of non-overlapping, randomly chosen true negative entries. 

Balancing the number of positive and negative labels ensures learning quality and fair ROC evaluation. 

C., D. Frequencies of the most predictive attributes in human and yeast, measured as the number of 

occurrences in the different models. Suppl. Table S4 lists all attributes used.  ‘Depth’ marks the level in the 

decision tree and is displayed in different colors. The more frequent a feature is selected at low tree depth, 

the more predictive of SUMOylation it is. 
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Table 1. SUMOylated proteins are biased in their functions. 

We tested for function enrichment using hypergeometric tests of Gene Ontology (GO) term in human and 

yeast, respectively. ‘Domain’ codes indicate the three main branches of Gene Ontology: biological processes 

(BP), cellular compartment (CC), and molecular function (MF). ‘Term size’ refers to the total number of 

genes associated with the term in the GO database, and ‘Intersection size’ is the intersection with 

SUMOylated proteins. The ‘Adjusted p-value’ has been corrected for multiple hypotheses testing. The 

entries are sorted according to the adjusted p-value. Extended data is in Suppl. Table S2.  

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 5, 2017. ; https://doi.org/10.1101/056564doi: bioRxiv preprint 

https://doi.org/10.1101/056564
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

20 

 

A. Homo sapiens 
Domain Term name Term 

size 
Intersect
ion size 

Adjusted 
P-value 

BP 

RNA processing 620 380 9.17E-119 
mRNA metabolic process 479 293 2.87E-89 

ribonucleoprotein complex biogenesis 311 213 5.90E-77 
ribosome biogenesis 202 149 1.18E-59 

rRNA processing 170 134 1.57E-59 
RNA splicing 294 187 4.30E-59 

mRNA splicing, via spliceosome 238 162 5.51E-57 
ncRNA metabolic process 382 216 8.65E-56 

chromatin organization 457 230 1.74E-47 
regulation of transcription, DNA-templated 1849 610 5.25E-47 

SRP-dependent cotranslational protein targeting to membrane 83 77 4.40E-44 

CC 

chromosome 604 337 4.22E-88 
ribonucleoprotein complex 470 288 6.77E-88 

nuclear chromosome 388 227 1.14E-62 
nucleolus 558 282 7.94E-60 

nucleoplasm part 491 258 1.02E-58 
chromatin 310 180 3.46E-48 

MF 

nucleic acid binding 1949 1014 4.45E-281 

poly(A) RNA binding 906 596 3.42E-220 

RNA binding 1093 665 1.07E-219 

DNA binding 963 428 3.95E-72 

B. Saccharomyces cerevisiae 
Domain Term name Term 

size 
Intersect
ion size 

Adjusted 
P-value 

BP 

transcription, DNA-templated 678 163 3.98E-34 
organic cyclic compound biosynthetic process 918 194 1.64E-33 

nucleobase-containing compound biosynthetic process 823 181 4.25E-33 
chromatin organization 325 106 9.56E-33 

heterocycle biosynthetic process 883 188 1.24E-32 
macromolecular complex subunit organization 867 173 1.6E-25 

CC 

nuclear lumen 764 168 4.58E-30 
nucleoplasm 272 78 4.41E-19 

chromatin 141 52 2.74E-17 
SWI/SNF superfamily-type complex 59 33 4.82E-17 

MF 

nucleic acid binding 879 160 1.81E-18 

DNA binding 376 75 7.31E-09 

macromolecular complex binding 203 47 5.42E-07 

RNA binding 524 88 1.43E-06 
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poly(A) RNA binding 255 53 2.65E-06 
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Table 2. Large protein complexes are heavily SUMOylated. 

The table shows the subunit compositions of stable protein complexes in human.  The upper and lower tables 

show the largest complexes that are SUMOylated and not SUMOylated, respectively, as determined by the 

adjusted p-value. The complexes are sorted by descending total number of subunits. The adjusted p-value 

reports the bias with respect to SUMOylation of the complex subunits. Even complexes with only few RNA-

binding subunits, like PA700-20S-PA28 can be SUMOylated. 

 

Complex name Comple
x size 

Number of 
RNA-binding 

subunits 

Number of 
SUMOylated 

subunits 

Adjusted P-
value, SUMO 
enrichment 

SUMOylated complexes     
Spliceosome 143 116 106 4.37E-29 

Nop56p-associated pre-rRNA complex 104 96 95 1.46E-41 
Ribosome, cytoplasmic 81 77 71 4.83E-28 
C complex spliceosome 80 69 65 1.52E-21 

60S ribosomal subunit, cytoplasmic 47 46 42 4.44E-17 
CEN complex 37 9 25 1.09E-04 

PA700-20S-PA28 complex 36 4 28 7.12E-08 
17S U2 snRNP 33 30 29 4.27E-11 

40S ribosomal subunit, cytoplasmic 31 30 28 1.82E-11 
CDC5L complex 30 23 23 4.68E-06 

Non-SUMOylated complexes     
55S ribosome, mitochondrial 78 46 1 1.00E+00 

39S ribosomal subunit, mitochondrial 48 28 0 1.00E+00 
Mediator complex 32 0 6 1.00E+00 

28S ribosomal subunit, mitochondrial 30 18 1 1.00E+00 
MLL1-WDR5 complex 27 4 15 7.86E-01 

BRCA1-RNA polymerase II complex 26 9 9 1.00E+00 
TNF-alpha/NF-kappa B signaling complex 

5 25 4 10 1.00E+00 

RNA polymerase II holoenzyme complex 24 8 8 1.00E+00 
Emerin complex 32 22 2 14 1.25E-01 

RNA polymerase II complex 19 2 6 1.00E+00 
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Table 3. Highest-scoring, newly predicted SUMOylation targets are likely true events.   

The table lists human proteins that have high iSUMO scores, but were not part of the training dataset. The 

annotation - through independent databases and literature search - shows that their SUMOylation is highly 

likely. The protein names are the primary common names as used by UniProtKB 

(http://www.ebi.ac.uk/reference_proteomes). The average iSUMO prediction scores range from 0 to 1, and is 

the higher, the higher the probability for SUMOylation. Function annotation is from GeneCards.org. * - 

SUMO site reported in PhosphoSitePlus 65; # - SUMO site reported in BioGrid 66.  Suppl. Table S6 shows 

the complete version of this table.  

 

Gene 
name 

iSUMO 
score  

Protein name Protein function Evidence for SUMO from literature 

SF3A3 
(SAP61) 

0.82 Splicing factor 3A 
subunit 3 

Subunit of the splicing factor 
SF3A (spliceosomal complex) 
required for 'A' complex 
assembly.  

SUMOylation of spliceosomal protein 
complex is required for function 56.   

RRP1 
(NNP1, 
RRP1A) 

0.82 Ribosomal RNA 
processing protein 
1 homolog A 

Plays a critical role in the 
generation of 28S rRNA. 

Yeast homolog is SUMOylated 55.  

UTP15 0.71 U3 small nucleolar 
RNA-associated 
protein 15 
homolog 

Ribosome biogenesis factor, 
involved in nucleolar 
processing of pre-18S 
ribosomal RNA. 

SUMOylation, in particular via SENP3, 
plays a role in rRNA maturation and 
assembly of the 60S subunit 9. 

ISY1 
(KIAA116
0) 

0.71# May play a role in 
pre-mRNA splicing 

May play a role in pre-mRNA 
splicing. 

SUMOylation of spliceosomal protein 
complex is required for function 56.  
Sumoylation detected under heat stress  
67. 

CHAF1B 
(CAF1A, 
MPP7) 

0.57 Chromatin 
Assembly Factor 1 
Subunit B 

Complex that is thought to 
mediate chromatin assembly 
in DNA replication and DNA 
repair. 

SUMO-2 target identified in screen. 
SUMOylation essential spindle 
organization, chromosome congression, 
and chromosome segregation 57 50.   

SNRPA 0.55 Small Nuclear 
Ribonucleoprotein 
Polypeptide A 

Component of the 
spliceosomal U1 snRNP, 
which is essential for 
recognition of the pre-mRNA 
5' splice-site and the 
subsequent assembly of the 
spliceosome.  

SUMOylation of spliceosomal protein 
complex is required for function 56.  
SUMOylation known for SNRPA1. 
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HIST2H2
AB 

0.54#* Histone H2A type 
2-B 

Core component of 
nucleosome.  

Histones are heavily SUMOylated, in 
particular histone H3 and H4 58.  

ANAPC5 
(APC5) 

0.53 Anaphase-
promoting complex 
subunit 5  

Tetratricopeptide repeat-
containing component of the 
anaphase promoting 
complex/cyclosome (APC/C), 
a large E3 ubiquitin ligase that 
controls cell cycle 
progression. 

SUMOylation essential for spindle 
organization, chromosome congression, 
and chromosome segregation 57 . 
SUMO regulates mitosis and APC 
function in yeast 68.  

TUBA3C 
(TUBA2) 

0.53* Tubulin alpha-
3C/D chain  

Major constituent of 
microtubules.  

SUMOylation (especially also of tubulin) 
essential for spindle organization, 
chromosome congression, and 
chromosome segregation during cell 
division 57 69 57.   

NSD1 0.51* Histone-lysine N-
methyltransferase 

Methylates 'Lys-36' of histone 
H3 and 'Lys-20' of histone H4 
(in vitro).  

SUMO regulates some methyl-
transferases 59.  
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