
 1 

The Human Thalamus is an Integrative Hub for Functional Brain Networks 

Kai Hwang, Maxwell Bertolero, William Liu, Mark D’Esposito 

Helen Wills Neuroscience Institute and Department of Psychology, University of California 
Berkeley, CA, USA 

 
Abstract – The thalamus is globally connected with distributed cortical regions, yet the 
functional significance of this extensive thalamocortical connectivity remains largely unknown. 
By performing graph-theoretic analyses on thalamocortical functional connectivity data collected 
from human participants, we found that the human thalamus displays network properties capable 
of integrating multimodal information across diverse cortical functional networks. From a meta-
analysis of a large dataset of functional brain imaging experiments, we further found that the 
thalamus is involved in multiple cognitive functions. Finally, we found that focal thalamic 
lesions in humans have widespread distal effects, disrupting the modular organization of cortical 
functional networks. This converging evidence suggests that the human thalamus is a critical hub 
region that could integrate heteromodal information and maintain the modular structure of 
cortical functional networks. 
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Introduction 
 
The cerebral cortex has extensive 

anatomical connections with the thalamus. Every 
cortical region receives projections from the 
thalamus, and in turn sends outputs to one or 
multiple thalamic nuclei (Jones, 2001). The 
thalamus is one of the most globally connected 
neural structures (Cole et al., 2010; Crossley et al., 
2013); thalamocortical projections relay nearly all 
incoming information to the cortex, as well as 
mediate cortico-cortical communication (Sherman 
and Guillery, 2013). The mammalian brain can 
therefore be conceptualized as a thalamocortical 
system. Thus, full insight into brain function 
requires knowledge of the organization and 
properties of thalamocortical interactions.  

The thalamus can be divided into two 
types of nuclei: first order and higher order 
thalamic nuclei (Sherman, 2007). First order 
thalamic nuclei, such as the lateral geniculate 
nucleus (LGN), ventral posterior (VP) and ventral 
lateral (VL) nuclei, receive inputs from ascending 
sensory pathways or other subcortical brain 
regions. In contrast, higher-order thalamic nuclei, 

such as the mediodorsal (MD) and the pulvinar 
nuclei, receive inputs predominately from the 
cortex. More than half of the thalamus comprises 
higher order thalamic nuclei, which have both 
reciprocal and non-reciprocal connections with 
multiple cortical regions. These connectivity 
profiles suggest that in addition to relaying 
sensory and subcortical information to the cortex, 
another principle function of the thalamus is to 
mediate the transfer of information between 
cortical regions through cortico-thalamo-cortical 
pathways (Sherman, 2016).  
 How a brain region processes and 
communicates information can be inferred by its 
connectivity pattern (Passingham et al., 2002). 
Graph-theoretic network analysis of resting-state 
functional MRI (rs-fMRI) data is well suited for 
exploring the network properties of the 
thalamocortical system (Bullmore and Sporns, 
2009). Functional connectivity analyses of rs-
fMRI data measures correlations of spontaneous 
fluctuations in blood oxygenation level dependent 
(BOLD) signals, which are not a direct proxy for 
anatomical connectivity but are largely 
constrained by anatomical connections 
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(Hermundstad et al., 2013; Honey et al., 2009). 
Functional connectivity between two brain regions 
likely represents the phase-locking of the two 
regions’ low-frequency oscillations or coherent 
activity of high-frequency neuronal activity 
(Scholvinck et al., 2010; Wang et al., 2012).  

Previous functional connectivity analyses 
of rs-MRI data have consistently revealed a 
modular organization of the human cerebral 
cortex, indicating that the cortex is composed of 
several specialized functional networks (Power et 
al., 2011; Yeo et al., 2011). Each of these 
networks is potentially involved in executing a 
discrete set of cognitive functions (Bertolero et al., 
2015; Smith et al., 2009). Graph-theoretic 
measures can be used to quantify topographic 
properties of each brain region and make 
inferences on each region’s network functions 
(Sporns et al., 2007). For instance, a brain region 

with many within-network connections has a 
strong “provincial hub” property (Guimera and 
Amaral, 2005), presumably to promote within-
network interactions for executing specialized 
functions of the network; whereas a brain region 
with many between-network connections has a 
strong “connector hub” property, presumably to 
mediate interactions between functional networks. 
Connector and provincial hubs have distinct 
contributions to modular organization. For 
example, a lesion study showed that damage to 
connector hubs, but not provincial hubs, causes 
more severe disruption of the network’s modular 
organization (Gratton et al., 2012), suggesting that 
focal lesions to connector hubs can have a 
widespread impact on network organization when 
between-network connections are disrupted. 
Finally, cortical connector hubs are involved in 
multiple cognitive tasks (Cole et al., 2013; Warren 
et al., 2014; Yeo et al., 2015), and exhibit 
increased activity when multiple functional 
networks are engaged by a behavioral task 
(Bertolero et al., 2015). These findings suggest 
that connector hubs are capable of multimodal and 
integrative processing through their extensive 
between-network connectivity (van den Heuvel 
and Sporns, 2013). 

The thalamus has been largely ignored in 
studies of brain network organization, and the 
topographic properties of the thalamocortical 
system are largely unknown. Previous graph-
theoretic studies of functional brain networks 
often exclude subcortical structures, or examine 
the thalamus with gross or no subdivisions. 
However, given its complex structure with 
multiple distinct nuclei, the thalamus is likely not 
uniformly interacting with the cortex. Different 
thalamic subdivisions have distinct structural 
connectivity with the cortex, and thus functional 
connectivity with the cortex (Arcaro et al., 2015; 
Behrens et al., 2003; Yuan et al., 2015). 
Traditionally, it is proposed that each thalamic 
subdivision functionally connects with cortical 
regions that belong to the same functional network 
for partially closed-loop, modality-selective 
processes (Alexander et al., 1986). Based on this 
hypothesis, thalamic subdivisions should exhibit 
strong provincial hub (within-network) properties 
(Figure 1A). Alternatively, if a thalamic 

Figure 1. Thalamus mediating cortico-cortical 
communication for functional brain networks. (A) As a 
provincial hub, the thalamus is connected with cortical 
regions that belong to the same cortical functional network 
(represented in solid blue circles). (B) As a connector hub, 
the thalamus is connected with cortical regions in multiple 
cortical functional networks (one network colored in blue 
and the other in green). 
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subdivision functionally interacts with cortical 
regions from multiple functional networks, it 
should exhibit strong connector hub (between-
network) properties (Figure 1B). These hypotheses 
are not mutually exclusive—the thalamus could 
contain subdivisions that are involved in both 
modality-selective and multimodal, integrative 
processes.   

The goal of this study was to elucidate the 
thalamus’s network topological role in functional 
brain networks. To measure network properties of 
thalamocortical functional connectivity, we 
performed graph theoretic network analyses on rs-
fMRI data collected from healthy human 
participants. To relate network topology to 
cognitive functions, we analyzed task-related 
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Figure 2. Cortical functional networks and thalamic atlases. (A) Cortical functional networks and thalamic parcellation 
derived from functional connectivity analyses between the thalamus and each cortical network using rs-fMRI data. Network 
abbreviations (based on its most predominant anatomical location): default mode (DM), medial occipital (mO), somato-motor 
(SM), fronto-parietal (FP), superior fronto-parietal (sFP), cingulo-opercular (CO), temporal (T), lateral occipital (latO), medial 
temporal (mT). A detailed list of the specific ROIs for each network are provided in Supplementary Table 1 (B) Structural 
connectivity based segmentation of the thalamus using the Oxford-FSL atlas. Each thalamic subdivision was labeled based on 
the cortical region it is most structurally connected with. (C) Histology based thalamic parcellation using the Morel atlas. 
Abbreviations for thalamic nuclei: anterior nucleus (AN), intralaminar (IL), lateral posterior (LP), lateral geniculate nucleus 
(LGN), medial geniculate nucleus (MGN), medial dorsal (MD), medial pulvinar (PuM), inferior pulvinar (PuI), lateral pulvinar 
(PuL), anterior pulvinar (PuA), posterior (Po) nuclei, ventral posterior (VP), ventral anterior (VA), ventral medial (VM), 
Ventral lateral (VL). 
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activity of the thalamus using a meta-analysis of 
10,449 functional neuroimaging experiments from 
the BrainMap database (Laird et al., 2005; Yeo et 
al., 2015). Finally, we examined the thalamus’s 
contribution to cortical network organization by 
analyzing rs-fMRI data from human patients with 
focal thalamic lesions.    

 
Results 

 
Identification of Cortical Networks 
 
 To identify cortical functional networks, 
we first measured functional connectivity matrices 
between 333 cortical ROIs (Gordon et al., 2016), 
then performed a network partition analysis to 
estimate cortical network organization (see 
Methods). We found that the cerebral cortex can 
be decomposed into 9 functional networks (Figure 
2A), an organization scheme largely similar to 
previous studies (Bertolero et al., 2015; Gordon et 
al., 2016; Power et al., 2011; Yeo et al., 2011). 
 
Parcellation of the Thalamus 
 Given that the thalamus can be subdivided 
using different approaches, we performed our 
analyses using three different atlases based on data 
from rs-fMRI, diffusion tensor imaging (DTI), and 
postmortem histology (Figure 2 A-C; see Methods 
for details). Using RS-fcMRI data, we identified 
thalamic subdivisions that demonstrated the 
strongest functional connectivity with the different 
cortical functional networks reported above 
(Figure 2A; henceforth referred to as the 
functional parcellation atlas). We further 
replicated these results with an independent 
dataset, and found high correspondence between 
datasets (normalized mutual information = 0.69, z-
scored Rand coefficient =144.13, p < 10-5). The 
Oxford-FSL thalamocortical structural 
connectivity atlas (Figure 2B) subdivides the 
thalamus based on structural connectivity 
(estimated using probabilistic diffusion 
tractography on DTI data) to seven large cortical 
areas: primary motor, primary somatosensory, 
occipital, premotor, prefrontal (including medial 
and orbitofrontal cortices), parietal, and temporal 
cortices (Behrens et al., 2003). The Morel atlas 
(Figure 2C) subdivides the thalamus into smaller 

nuclei based on cyto- and myelo-architecture 
information from five postmortem brains (Krauth 
et al., 2010; Morel et al., 1997). We further 
classified each thalamic nucleus from the Morel 
atlas into first order or higher order thalamic 
nuclei (Sherman, 2016; Sherman and Guillery, 
2013).   
 
Network Properties of Thalamocortical 
Functional Connectivity 
 

To determine each thalamic subdivision’s 
network property, we measured functional 
connectivity between each thalamic voxel and 
every cortical ROI (see Methods) to generate a 
thalamic voxel to cortical ROI thalamocortical 
network graph. Graph metrics were calculated for 
every thalamic voxel, and pooled across voxels for 
different categories of thalamic subdivisions (i.e., 
first order and higher order nuclei, or subdivisions 
within the three different thalamic atlases). We 
also calculated graph metrics at the level of 
thalamic subdivision by first averaging BOLD 
signals within each subdivision, and then 
estimated each subdivision’s thalamocortical 
functional connectivity with cortical ROIs. Our 
goal was to examine the thalamus’s network 
topological properties in the context of large-scale 
functional brain networks. For example, if a 
thalamic subdivision is found to have strong 
connector hub properties, how does it compare to 
cortical ROIs that are connector hubs? Therefore, 
we further calculated graph metrics for each 
cortical ROI by analyzing patterns of cortico-
cortical functional connectivity.  

 
Provincial Hub Property Analyses  

Provincial hub properties can be measured 
by the graph theory metric called within module 
degree (WMD), which measures the number of 
within-network connections of a region, z-scored 
by the mean and standard deviation of within-
network connections of all regions in that network 
(Guimera and Amaral, 2005). Higher values 
reflect more within-network connections. Given 
that we assigned each thalamic voxel to a cortical 
functional network in the functional parcellation 
atlas, higher WMD values reflect more within-
network connections of the thalamic voxel with 
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the network it was assigned to (see Methods). We 
found that thalamic voxels in both first order and 
higher order thalamic nuclei exhibited higher 
WMD values than most cortical ROIs (Figure 3A). 
A two-sample Kolmogorov-Smirnov test showed 
that on average thalamic voxels had significantly 
higher WMD values when compared to cortical 
ROIs (mean WMD for thalamic voxels = 1.62, SD 
= 1.9; mean WMD for cortical ROIs = 0, SD = -
.89; D333,2227 = 0.45, p < 10-10). We further 
compared thalamic voxels’ WMD values to 

cortical provincial hubs, which was arbitrary 
defined as cortical ROIs with WMD values greater 
than 90% of all cortical ROIs (threshold: WMD = 
1.04). We found that on average thalamic voxels 
exhibited WMD values that were comparable to 
cortical provincial hubs (mean WMD for cortical 
provincial hubs = 1.35, SD = 0.26; mean WMD 
for voxels within first order thalamic nuclei = 
1.37, SD = 1.79, mean WMD for voxels within 
higher order thalamic nuclei mean WMD = 1.75, 
SD = 1.94). In addition to the voxel-wise analysis, 
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Figure 3. Nodal properties of the thalamus and cortical ROIs. (A) Kernel density plot of WMD values for thalamic 
voxels and cortical ROIs. Thalamic voxels were categorized into two categories of thalamic nuclei (Sherman, 2016; 
Sherman and Guillery, 2013). (B) Kernel density plot of cortical WMD values summarized by cortical functional 
networks. WMD values for each thalamic functional subdivision is represented by the black vertical bar. (C) Kernel 
density plot of PC values for thalamic voxels and cortical ROIs. Thalamic voxels were categorized into two categories of 
thalamic nuclei. (D) Kernel density plot of PC values summarized by cortical functional networks. PC values for each 
thalamic functional subdivision is represented by the ㄋblack vertical bar. First order thalamic nuclei included AN, LGN, 
MGN, VL, and VP. Higher order thalamic nuclei included IL, MD, LP, Po, Pulvinar, VA, and VM. Box plot percentiles. 
All graph metrics averaged across network densities (see methods). 
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we also calculated WMD values for each thalamic 
subdivision derived from the functional 
parcellation atlas (Figure 2A). We found that 
thalamic subdivisions associated with the cingulo 
opercular (CO), default mode (DM), frontoparietal 
(FP), medial temporal (mT), and superior 
frontoparietal (sFP) networks exhibited higher 
WMD values when compared to cortical 
provincial hubs (Figure 3B).  

 
Connector Hub Property Analyses 

 Connector hub properties can be measured 
by the graph theory metric called participation 
coefficient (PC), which is a measure of the 
strength of inter-network connectivity for each 
region normalized by their expected value 
(Guimera and Amaral, 2005). Higher values 
reflect more inter-network connections. For each 
thalamic voxel, we calculated its PC value based 
on it inter-network connectivity pattern to all 
cortical ROIs. We found that thalamic voxels in 
both first order and higher order thalamic nuclei 
exhibited higher PC values than most cortical 
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Figure 4. Spatial distribution of network metrics. (A) WMD and PC values of cortical ROIs. (B) WMD values of thalamic 
voxels. (C) PC values of thalamic voxels. (D) Location of voxels with strong connector (colored in dark navy blue), provincial 
(colored in dark green), or connector plus provincial hub properties (colored in gold) in the thalamus. In D, Only thalamic 
voxels that exhibited PC and/or WMD values greater than 90% of all cortical ROIs are displayed. All graph metrics averaged 
across network densities (see methods). 
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ROIs (Figure 3C). A two-sample Kolmogorov-
Smirnov test showed that thalamic voxels had 
significantly higher PC values compared to 
cortical ROIs (mean PC for thalamic voxels = 
0.76, SD = 0.12; mean PC for cortical ROIs = 
0.36, SD = 0.22; D333,2227 = 0.65, p < 10-10). We 
further compared thalamic voxels’ PC values to 
cortical connector hubs, which defined as cortical 
ROIs with PC values greater than 90% of all 
cortical ROIs (threshold: PC = 0.64). We found 
that on average voxels in both first order and 
higher order thalamic nuclei exhibited high PC 
values that were comparable to cortical connector 
hubs (mean PC for cortical connector hubs = 0.72, 
SD = 0.05; mean PC for voxels in first order 
thalamic nuclei = 0.74, SD = 0.13, mean PC for 
voxels in higher order thalamic nuclei = 0.77, SD 
= 0.11). We repeated our analysis by calculating 
PC values for each thalamic functional subdivision 
derived from the functional parcellation atlas 
(Figure 2A). We found that all functional thalamic 
subdivisions exhibited high PC values when 
compared to cortical ROIs (Figure 3D). 

 
Spatial Distribution of Connector and Provincial 
Hub Properties  

We found that cortical ROIs in the 
precuneus, medial frontal, inferior parietal, insular 
and middle frontal cortices exhibited high WMD 
values, whereas ROIs in anterior and inferior 
frontal, superior precentral sulcus, intraparietal 
sulcus, and lateral occipital cortices exhibited high 
PC values (Figure 4A). High PC and WMD values 
were found throughout the thalamus (Figure 4B-
C). To determine differences in the spatial 
distribution of connector and provincial hub 
properties in the thalamus, we identified thalamic 
voxels that exhibited WMD or PC values greater 
than cortical connector and provincial hubs. We 
found that anterior, medial, posterior, and dorsal 
parts of the thalamus exhibited both strong 
provincial and connector hub properties, whereas 
portions of the lateral thalamus also exhibited 
strong connector hub property (Figure 4D). A 
small portion of the ventral thalamus has only 
strong provincial hub property.  

 
Connector and Provincial Hub Properties of Each 
Thalamic Subdivision  

We calculated the median WMD and PC 
values across voxels for each thalamic 
subdivision, and compared those values to cortical 
connector and provincial hubs. Based on the 
functional parcellation atlas, thalamic subdivisions 
that showed dominant functional coupling with 
CO, DM, FP, mT, and sFP networks exhibited 
high WMD values numerically comparable to 
cortical provincial hubs (Fig 5A). Based on the 
Oxford-FSL thalamocortical structural 
connectivity atlas, thalamic subdivisions with 
dominant structural connectivity with the 
prefrontal cortex and temporal cortices showed 
high WMD values comparable to cortical 
provincial hubs (Figure 5B). Based on the Morel 
histology atlas, thalamic subdivisions with high 
WMD values comparable to cortical provincial 
hubs included the anterior nucleus (AN), LGN, 
VL, intralaminar nuclei (IL), lateral posterior 
nucleus (LP), MD, medial pulvinar (PuM), and 
ventral anterior nucleus (VA) nucleus (Figure 5C). 
For connector hub properties, we found that all 
thalamic subdivisions exhibited high PC values 
comparable or higher than cortical connector hubs 
(Figure 5D-F). In addition to the voxel-wise 
analysis, we also calculated graph metrics for each 
thalamic subdivision. Subdivision-level graph 
metrics were similar to results from voxel-wise 
graph metrics (Figure 5A, 5D-F, as indicated by 
the colored horizontal bar in each individual box-
whisker). Note that WMD values were only 
calculated for the functional parcellation atlas 
because WMD was defined in relation to a 
specific cortical functional network, a relation that 
only exists in the functional parcellation atlas.  

 
Replication of results  

We replicated the WMD and PC analyses 
using an independent rs-fMRI dataset; the spatial 
correlation values across both cortical ROIs and 
thalamic voxels between the test and replication 
datasets for PC and WMD scores were 0.74 
(degrees of freedom = 2558, p < 10-5) and 0.78 
(degrees of freedom = 2558, p < 10-5), 
respectively. We also replicated our results using a 
different cortical ROI definition template that 
consists of 320 cortical ROIs (Craddock et al., 
2012), the thalamic voxel-wise spatial correlation 
values for PC and WMD scores were 0.63 
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(degrees of freedom = 2225,  p < 10-5) and 0.78 
(degrees of freedom = 2225, p < 10-5), 
respectively. Finally, to ensure our results were 
not specific to calculating graph metrics on 
weighted networks, we recalculated PC values 
using binary networks, and obtained similar 
results. The spatial correlation of PC values 
between weighted and binary networks was 0.98 
(degrees of freedom = 2225, p < 10-5).  

 

Connectivity Patterns of Specific Thalamic 
Nuclei  
 

Based on the Morel histology atlas, we 
found that AN, LGN, VL, IL, LP, MD, PuM, and 
VA exhibited both strong provincial and connector 
hub properties comparable to cortical hubs. To 
further probe their connectivity patterns, for each 
nucleus we calculated its mean functional 
connectivity strength with each of the 9 cortical 
functional networks (using partial correlations, see 
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Figure 5. Graph metrics of each thalamic subdivision. (A-C) Box plots summarizing WMD values (A-C) and PC values 
(D-F) for all thalamic voxels for each thalamic subdivision in each thalamic atlas. The horizontal blue dashed line represents 
WMD or PC values of cortical provincial or connector hubs (defined as greater than 90% of all cortical ROIs). The horizontal 
gold bar in each individual box plot represents the graph metrics calculated on the level of thalamic subdivision. Abbreviations 
for the Oxford-FSL atlas: motor (M), occipital (O), prefrontal (PFC), parietal (PL), premotor (pM), somatosensory (S), 
temporal (T). Box plot percentiles (5th and 95th for outer whiskers, 25th and 75th for box edges) calculated across voxels for 
each thalamic subdivision. All graph metrics averaged across network densities (see methods). 
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Methods), and divided by the nucleus’s summated 
total connectivity strength with all networks. If a 
nucleus is diffusely interacting with all functional 
networks, then it should devote ~11% (1/9 = 0.11) 
of its total connectivity for each network. In 
contrast, if a nucleus only interacts with a 
selective network, the majority of its connectivity 
strength should be devoted to that network, while 
connectivity with other networks should be 
considerably lower. Consistent with its strong 
connector hub properties, we found that each of 
these thalamic nuclei exhibited a diffuse 
functional connectivity pattern, with strong 
connectivity (>11% of its total connectivity 
strength) with multiple cortical functional 
networks (Figure 6).   

 
 
 

Meta-Analysis of the BrainMap Database 
 

We found that multiple thalamic 
subdivisions exhibited both strong provincial and 
connector hub properties, suggesting that the 
thalamus is capable of mediating information 
communication both within and between multiple 
functional brain networks. Given that individual 
cortical functional networks are putatively 
associated with distinct cognitive functions 
(Bertolero et al., 2015; Smith et al., 2009), it is 
likely that any individual thalamic nucleus with 
distributive connectivity with multiple cortical 
functional networks is involved in multiple 
cognitive functions. We tested this hypothesis that 
by analyzing results from a published meta-
analysis of 10,449 functional neuroimaging 
studies (Yeo et al., 2015). This published meta-
analysis derived latent variables—an ontology of 
cognitive functions or “cognitive components”—
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Figure 6.  Distributive pattern of 
thalamocortical connectivity for 
thalamic nuclei. Cortical functional 
networks most strongly connected with 
the following thalamic nuclei: AN, LGN, 
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that best described the relationship between 83 
behavioral tasks and corresponding brain activity. 
From this data, a “cognitive flexibility score” can 
be estimated by summing the number of cognitive 
components that are engaged by every brain 
region (Yeo et al., 2015). Here, a brain region with 
high cognitive flexibility score is assumed to be 
involved in more cognitive functions. We have 
previously demonstrated that cortical connector 
hubs exhibit high cognitive flexibility scores 

(Bertolero et al., 2015; Yeo et al., 2016). We 
hypothesize that thalamic subdivisions that are 
recruited by multiple cognitive components likely 
serve as integrative connector hubs, whereas 
thalamic subdivisions that are recruited by a 
limited number of specific functions are likely 
involved in domain general processes. 

Consistent with our hypothesis, the 
thalamus was found to be involved in multiple 
cognitive components (Figure 7A). A two-sample 

0.0

0.1

0.2

0.3

0 2 4 6
Cognitive Flexibility

Ke
rn

el
 D

en
si

ty

0

2

4

6

First Order 
Thalamic Nuclei

Higher Order 
Thalamic Nuclei

Cortical 
Connector Hubs

Cortical 
Provincial Hubs

Cortical 
Non Hubs

Co
gn

itiv
e 

Fl
ex

ib
ilit

y

C1 C8

C9C2

C12

A

B
Ventrolateral
Nucleus

First order 
thalamic nuclei

Higher order 
thalamic nuclei

Cortical ROIs

Figure 7. Cognitive flexibility 
score and cognitive components. 
(A) kernel density plot and box-
plots of cognitive flexibility scores 
for thalamic voxels and cortical 
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categorized into two categories of 
thalamic nuclei. Box plot 
percentiles (5th and 95th for outer 
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type.  (B) Spatial distribution of 
brain activity engaged by each 
cognitive components recruited by 
the thalamic nucleus VL. 
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Kolmogorov-Smirnov test showed that thalamic 
voxels have higher cognitive flexibility scores 
when compared to cortical ROIs (mean for 
thalamic voxels = 3.67, SD = 1.71; mean for 
cortical ROIs = 0.36, SD = 0.22; D333,2227 = 0.54, p 
< 10-10). We further examined the specific 
cognitive components (C1-C12, see ref 19 for 
details) that recruited each of the thalamic 
subdivisions. As an example, VL, with projections 
to motor and premotor cortices (Alexander et al., 

1986), is recruited by components C1 and C2 that 
predominately recruit motor cortices (Figure 7B). 
However, VL also participates in other cognitive 
components that recruit lateral prefrontal, medial 
prefrontal, and parietal cortices (C8, C9, C12, 
Figure 7B). 
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Thalamic lesions have Global and Distal Effects 
on Cortical Network Organization 
 
 Modularity is a metric that quantifies the 
extent to which the brain is differentiated into 
separable sub-networks, and is an essential 
property found in many complex systems (Sporns 
and Betzel, 2016). Based on our findings from a 
study of patients with focal cortical lesions 
(Gratton et al., 2012), we predict that if thalamic 
subdivisions serve as connector hubs for 
functional brain networks, lesions to those 
subdivisions should reduce modular organization 
of these networks. Modularity can be measured by 
Newmanʼs modularity Q (Newman, 2006), a 
comparison between the number of connections 
within a module to the number of connections 
between modules. In four patients with focal 
thalamic lesions (Figure 8A; one patient has 
bilateral lesions, three have unilateral lesions), we 
examined the effect of a thalamic lesion on 
cortical modularity across the whole cerebral 
cortex, the lesioned hemisphere, and the intact 
hemisphere (Figure 8B). Each patient’s Q score 
was converted to a z-score using the mean and 
standard deviation of healthy controls (see 
Methods). In all four patients, whole-brain 
modularity was lower (as indicated by negative z-
scores). In patients with unilateral thalamic 
lesions, lower modularity was found in both the 
lesioned and nonlesioned hemispheres, suggesting 
that a unilateral thalamic lesion impacts modular 
organization of both hemispheres.  
 
 
Discussion 

 
In this study, we provide evidence 

suggesting that the human thalamus is a critical 
integrative hub for functional brain networks. 
First, we found that the thalamus exhibited 
distributive functional connectivity with multiple 
cortical regions. Importantly, all thalamic 
subdivisions exhibited strong between-network 
connectivity, indicating that a single thalamic 
subdivision not only connects with multiple 
cortical regions, but also with multiple cortical 
functional networks. From a meta-analysis of 
10,449 neuroimaging experiments, we further 

found that the thalamus is engaged by multiple 
cognitive functions, supporting a role in 
multimodal information processing. Finally, we 
found that focal thalamic lesions cause a 
disruption of the modular structure of cortical 
functional networks, further underscoring the 
critical contribution of thalamic function to brain 
network organization.  

The human brain is composed of modular 
functional networks (Bertolero et al., 2015), which 
comprise provincial hubs — brain regions 
important for within network communication — 
and connector hubs — brain regions important for 
communication between networks. Here, we used 
graph-theoretic measures to estimate provincial 
and connector hub properties of the thalamus. 
Consistent with traditional interpretations of 
thalamic function, multiple thalamic subdivisions 
exhibited strong provincial hub properties. 
Moreover, both first order and higher order 
thalamic nuclei exhibited distributive between-
network connectivity patterns and strong 
connector hub properties (Figure 3-6). These 
results suggest that individual thalamic nuclei, 
which traditionally were thought to be only 
connected to a single functional network, in fact 
have extensive connectivity with multiple 
functional networks, a pattern that is similar to 
cortical connector hubs. Cortical connector hubs 
are proposed to integrate information across 
segregated functional brain networks (Bertolero et 
al., 2015; Cole et al., 2013; van den Heuvel and 
Sporns, 2013; Yeo et al., 2015). Thalamic nuclei’s 
widespread connectivity pattern allows the 
thalamus to send and access information across 
diverse cortical functional networks. Via 
convergence of information, the thalamus may 
serve as an integrative hub that subserves multiple 
cognitive functions. Although it has previously 
been proposed that the thalamus is not simply a 
relay station but serves to mediate cortical to 
cortical communication (Sherman, 2016), the 
notion that the thalamus also plays integrative role 
interacting with multiple functional brain 
networks has received less attention in studies of 
thalamic function. 

Higher order thalamic nuclei, which 
receive inputs predominately from the cortex, are 
hypothesized to provide trans-thalamic routes to 
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support cortico-cortical interactions within a 
functional network that receive its projections 
(Saalmann et al., 2012; Sherman, 2016). For 
example, the posterior nucleus transfers 
information from primary area to secondary 
somatosensory areas (Theyel et al., 2010). 
Likewise, the pulvinar has extensive reciprocal 
connections with striate and extrastriate visual 
cortices (Adams et al., 2000), and is thought to 
modulate information communication between 
visual areas (Saalmann and Kastner, 2011; 
Saalmann et al., 2012). In contrast, first order 
thalamic nuclei, which receive projections from 
peripheral sensory organs or other subcortical 
structures, have projections to primary cortices, 
and are thought to act as modality-selective relays 
to relay a limited type of afferent signal to the 
cortex. Our graph-theoretic analyses of 
thalamocortical functional connectivity provide 
evidence suggesting that both first order and 
higher order thalamic nuclei not only participate in 
information exchange between cortical regions 
that they project to, but also further interact with 
multiple cortical functional networks.  

Thalamic nuclei project to and receive 
projections from multiple brain regions that 
belong to different functional brain networks. For 
example, higher order nuclei have higher 
concentration of “matrix” thalamocortical cells 
that show diffuse thalamocortical projections 
unconstrained by the boundaries of cortical 
topographic representations, and receive non-
reciprocal cortico-thalamic innervations from 
multiple cortical regions (Jones, 2001; McFarland 
and Haber, 2002). The inhibitory thalamic 
reticular nucleus, rich in GABAergic cells, also 
receives input from the cortex and the basal 
ganglia, and further modulate activity in both first 
order and higher order thalamic nuclei (Sherman 
and Guillery, 2013). Thalamic nuclei could also 
have dense reciprocal connections with cortical 
connector hubs that in turn are connected with 
multiple cortical functional networks. A rodent 
fMRI study further demonstrated that the mouse 
thalamus has extensive inter-network connectivity 
with multiple functional sub-networks in the 
rodent brain (Liska et al., 2015). These findings 
suggest that thalamocortical functional 
connectivity has an anatomical substrate capable 

of simultaneously receiving and transmitting 
signals between multiple cortical functional 
networks.  

Consistent with its extensive connectivity 
with multiple cortical functional networks, we 
found that the thalamus is one of the most 
“cognitively flexible” brain regions, indicating 
that the thalamus is involved in a diverse range of 
behavioral tasks. This observation derived from 
our meta-analysis of the BrainMap database is 
further supported by several representative 
empirical studies demonstrating that the thalamus 
mediates interactions between higher order 
cognitive processes (e.g., attention and working 
memory) and more elementary sensorimotor 
functions (de Bourbon-Teles et al., 2014; 
Saalmann et al., 2012; Zhou et al., 2016). For 
example, a non-human primate electrophysiology 
study found that deactivating the pulvinar reduced 
the attentional effects on sensory-driven evoked 
responses recorded in V4 (Zhou et al., 2016). 
Also, optogenetically perturbing thalamic activity 
in rodents impaired animals’ ability to select 
between conflicting visual and auditory stimuli 
(Wimmer et al., 2015). Finally, VL lesions in 
humans impair their ability to utilize a memorized 
cue in working memory to guide visual search of 
multiple visual stimuli (de Bourbon-Teles et al., 
2014). Together, results from our graph analyses 
of thalamocortical functional connectivity and 
meta-analysis of task-related thalamic activity 
patterns suggest that the thalamus participates in 
interactions between multiple functional cortical 
networks, networks that are putatively involved in 
distinct cognitive functions. Based on our 
empirical results, future task-based studies can test 
this hypothesis regarding the role of the thalamus 
in integrative functions.        

Previous studies suggest that connector 
hubs are critical for maintaining the modular 
architecture of functional brain networks (Gratton 
et al., 2012). Mathematically, whole brain 
modularity is inversely related to between-
network connectivity, therefore a loss of connector 
hub should increase modularity. However, 
consistent with our previous work with patients 
with focal cortical lesions (Gratton et al., 2012), 
we found that thalamic lesions reduce cortical 
functional networks’ modularity. This suggests 
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that thalamic connector hub damage not only 
decreases between-network connectivity, but also 
alters the large-scale organization of cortical 
networks. This finding is also consistent with a 
TMS study in healthy subject that found that 
disruption of connector hub function increased 
between-network connectivity (Gratton et al., 
2013). Thus, the effect of a thalamic lesion is not 
constrained only to cortical regions it directly 
projects to, but further causes “connectomal 
diaschisis” in cortical functional networks 
(Carrera and Tononi, 2014). In summary, in 
addition to playing a role in functional integration 
of cortical networks, the thalamus is also likely 
necessary for maintaining the modular structure of 
functional brain networks. 

 
 

Methods 
 
Datasets 

For the main analyses, we analyzed 
publically available resting-state fMRI (rs-fMRI) 
data from 303 subjects (mean age = 21.7, STD = 
2.87, age range =19-27, 131 males) that were 
acquired as part of the Brain Genomics 
Superstruct dataset (Holmes et al., 2015). For each 
subject, two runs (6.2 minutes each) of rs-fMRI 
data were collected using a gradient-echo echo-
planar imaging sequence with the following 
parameters: relaxation time (TR) = 3000 ms, echo 
time (TE) = 30 ms, flip angle = 85 degrees, 3 mm3 
isotropic voxels with 47 axial slices. Structural 
data were acquired using a multi-echo T1-
weighted magnetization-prepared gradient-echo 
(MPRAGE) sequence (TR = 2,200 ms, TE= 1.54 
ms for image 1 to 7.01 ms for image 4, flip angle 
= 7 degree, 1.2 mm3 isotropic voxel). We 
replicated our main analyses with publically 
available rs-fMRI data from 62 healthy adults 
(mean age = 22.59, SD = 2.45, age range =19-27, 
26 males) that were acquired as part of the NKI-
Rockland sample (Nooner et al., 2012). For each 
subject, 9 minutes and 35 seconds of rs-fMRI data 
were acquired using a multiband gradient-echo 
echo-planar imaging sequence (TR = 1400 ms, 
echo time = 30 ms, multiband factor = 4, flip 
angle = 65 degrees, 2 mm3 isotropic voxels with 
64 axial slices). Structural data were acquired 

using a MPRAGE (TR = 1900 ms, TE= 2.51 ms, 
flip angle = 9 degree, 1 mm3 isotropic voxel). For 
both datasets, subjects were instructed to stay 
awake and keep their eyes open. 

For the lesion analyses, we analyzed rs-
fMRI data from four patients with focal thalamic 
lesions  (ages: S1 = 81 years, S2 = 49 years, S3 = 
55 years, S4 = 83 years all males, all were scanned 
at least 6 months after their stroke). Two runs of 
rs-fMRI data were collected (10 minutes each; TR 
= 2000 ms, echo time = 30 ms, flip angle = 72 
degrees, 3.5 mm2 in plane resolution with 34 axial 
4.2 mm slices). Structural images were acquired 
using a MPRAGE sequence (TR = 2,300 msec, TE 
= 2.98 msec, flip angle = 9°, 1 mm3 voxels). 
Patients were instructed to stay awake and keep 
their eyes open. Informed consent was obtained 
from all patients in accordance with procedures 
approved by the Committees for Protection of 
Human Subjects at the University of California, 
Berkeley. 
 
Functional MRI Data Preprocessing  
 
 Image preprocessing was performed the 
software Configurable Pipeline for the Analysis of 
Connectomics (Sikka et al., 2014). First brain 
images were segmented into white matter (WM), 
gray matter, and cerebral spinal fluid (CSF). Rigid 
body motion correction was then performed to 
align each volume to a temporally averaged 
volume, and a boundary-based registration 
algorithm was used to register the EPI volumes to 
the anatomical image. Advanced Normalization 
Tools (ANTS) was used to register the images to 
MNI152 template using a nonlinear normalization 
procedure (Avants et al., 2008). We then 
performed nuisance regression to further reduce 
non-neural noise and artifacts. To reduce motion-
related artifacts, we used the Friston-24 regressors 
model during nuisance regression (Friston et al., 
1996). WM and CSF signals were regressed using 
the CompCor approach with five components 
(Behzadi et al., 2007). Linear and quadratic drifts 
were also removed. Because the physical 
proximity between the thalamus and the ventricles 
could result in blurring of fMRI signal, we further 
regressed out the mean signal from CSF, WM, and 
gray matter that were within 5 voxels (10 mm) 
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from the thalamus. After regression, data were 
bandpass filtered from 0.009–0.08 Hz, and scaled 
to a whole-brain mode value of 1000. No spatial 
smoothing was performed.  
 
Identifying Cortical Functional Networks 
 
 Following preprocessing, mean rs-fMRI 
time-series were extracted from 333 cortical ROIs 
(Gordon et al., 2016), and concatenated across 
runs for subjects with multiple rs-fMRI scans. 
Cortico-cortical functional connectivity was 
assessed in each subject by computing Pearson 
correlations between all pairs of cortical ROIs, 
resulting in a 333 x 333 correlation matrix. This 
correlation matrix was then thresholded at 
different density thresholds to retain the strongest 
percentages of functional connections. For each 
subject, putative cortical functional networks were 
then identified in individuals and then average 
across subjects using a recursive InfoMap 
algorithm to partition the matrix into modules by 
integrating results across thresholds (Bertolero et 
al., 2015).  We started by identifying networks in 
individuals. First, we identified functional 
networks using the InfoMap algorithm (Rosvall 
and Bergstrom, 2007) at a threshold of density = 
0.15. A consensus matrix (a value of 1 where the 
two ROIs are in the same module and a value of 0 
elsewhere; (Lancichinetti and Fortunato, 2012) 
was formed based on this result. The threshold 
was then decreased by density = 0.001, and the 
InfoMap community detection was ran again. The 
consensus matrix was then updated for the new 
partition, except for rows and columns for which 
the node had no edges in the current version of the 
graph or the node was not in a network with at 
least 5 ROIs. This procedure continued until to the 
minimal threshold of density = 0.01. Thus, the 
consensus matrix represents the community 
assignments for each pair of nodes at their sparsest 
level possible (i.e., before they become 
disconnected from the graph). We then aggregated 
individual subjects’ module organization by 
averaging these consensus matrices across 
subjects. This averaged matrix was then submitted 
to the same recursive method to identify group-
level cortical functional networks. Networks with 
5 or fewer ROIs were eliminated from further 

analyses, and ROIs that were not clustered into 
networks were excluded from further graph 
analyses. 
 
Thalamus Parcellation 
 

To localize the thalamus, the Morel Atlas 
(Krauth et al., 2010) was used to define its spatial 
extent (2227 2 mm3 voxels included in the atlas). 
To identify thalamic subdivisions, three different 
thalamic atlases were utilized. We first performed 
a custom winner take all functional parcellation 
using rs-fMRI data. We calculated partial 
correlations between the mean BOLD signal of 
each cortical functional network and the signal in 
each thalamic voxel, while partialing out signal 
variance from other functional networks. Partial 
correlations were then averaged across subjects, 
and each thalamic voxel was labeled according to 
the cortical network with the highest partial 
correlation. The Morel atlas identified thalamic 
nuclei based on cyto- and myelo-architecture in 
stained slices of post-mortem tissue collected from 
five postmortem brains (Morel et al., 1997), and 
further transformed to MNI space (Krauth et al., 
2010). The Oxford-FSL thalamic structural 
connectivity atlas defined thalamic subdivisions 
based on its structural connectivity with different 
cortical regions estimated from diffusion imaging 
data (Behrens et al., 2003).  
 
Thalamic and Cortical Nodal Properties 
 

To formally quantify the network 
properties of thalamocortical functional 
connectivity, for each subject, we first extracted 
signal from the thalamus by either taking each 
voxel’s preprocessed signal, or averaged voxel-
wise BOLD signal within each thalamic 
subdivision. We then calculated the partial 
correlation between the mean BOLD signal of 
each cortical ROI and thalamic voxel or 
subdivision. Partial correlation was calculated by 
partialing out signal variance from all other 
cortical ROIs. Given the large number of cortical 
ROIs, a dimension reduction procedure using 
principal component analysis was performed on 
signals from cortical ROIs not included in the 
partial correlation calculation, and eigenvectors 
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that explained 95% of variance were entered as 
additional nuisance regressors in the model. We 
chose partial correlations over full correlations 
because past studies have shown that detailed 
thalamocortical connectivity patterns could be 
obscured without accounting for shared variance 
between cortical regions (Zhang et al., 2008). Note 
that no correlations were calculated between 
thalamic voxels. This resulted in two 
thalamocortical connectivity matrices: voxel-wise 
and subdivision-wise. Thalamocortical 
connectivity matrices were then averaged across 
subjects, thresholded by network density to retain 
top 1% to top 15% strongest percentages of 
functional connections, and submitted to graph 
analyses. For cortical ROIs, we calculated Pearson 
correlations between all pair-wise cortical ROIs to 
obtain cortico-cortical connectivity matrices. 
Matrices were averaged across subjects and 
submitted to graph analyses. All graph metrics 
were calculated across a range of density 
thresholds. 

For each thalamic voxel, subdivision, and 
cortical ROI, we calculated participation 
coefficient (PC) and within module degree 
(WMD) (Guimera and Amaral, 2005). PC value 
region i is defined as: 

 

𝑃𝐶 = 1−   
𝐾!"
𝐾!

!!!

!!!

 

 
where 𝐾!is the sum of connectivity weight of i and 
𝐾!"is the sum of connectivity weight between i and 
cortical network s. NM is the total number of 
networks. If a region has connections uniformly 
distributed to all cortical networks, then its PC 
value will be close to 1; on the other hand, if its 
connectivity is concentrated within a specific 
cortical network, its PC value will be close to 0.  
We further divided PC values by its theoretical 
upper limit based on the number of functional 
networks, so that the highest possible PC value 
given the network architecture would be 1. For 
comparison, we also calculated PC using binary 
networks by setting weights above the threshold to 
1. 

To calculate WMD, correlation matrices 
were first binarized by setting weights above the 

threshold to 1. Weights were binarized to equate 
the connectivity weights between thalamocortical 
and cortico-cortical networks. WMD is calculated 
as:  

 

𝑊𝑀𝐷 =   
𝐾! − 𝐶𝑊!
𝜎𝐶𝑊!

 

 
where 𝐶𝑊! is the average number of connections 
between all cortical ROIs within cortical network 
s, and 𝜎𝐶𝑊!  is the standard deviation of the 
number of connections of all ROIs in network s. 
𝐾! is the number of connections between i and all 
cortical ROIs in network s. Because our goal was 
to understand the thalamus’s contribution to 
cortical network organization, thalamus’s WMD 
scores were calculated using the mean and 
standard deviation of within-network degree 
(number of intra-network connections) for each 
cortical functional network.  
  For all patients, rs-fMRI volumes with 
framewise displacement (FD) that exceeded 0.5 
mm were removed from further analysis 
(scrubbed) after band-pass filtering (mean 
percentage of frames scrubbed for patients = 
13.34%, SD = 9.32%). Lesion masks were 
manually traced in the native space according to 
visible damage on a T1-weighted anatomical scan, 
and further guided by hyperintensities on a T2-
weighted FLAIR image. Lesion masks were then 
warped into the MNI space using the same non-
linear registration parameters calculated during 
preprocessing.  
 
Modularity 
 
 Modularity can be measured by Newmanʼs 
modularity Q (Newman, 2006), defined as: 
 
𝑄 =      (𝑒!! − 𝑎!!)!

!!!   
 
Where 𝑒!!  is the fraction of connectivity weight 
connecting ROIs within a cortical functional 
network i,  𝑎! is the fraction of connectivity 
weight connecting ROIs in cortical functional 
network i to other cortical networks, and m is the 
total number of cortical functional networks. 
Network partition from Figure 2A was used. 
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Modularity was calculated for the whole-brain 
(including all cortical ROIs) and each individual 
hemisphere by constructing independent networks 
restricted to only one hemisphere. Note no 
thalamic subdivision was included into this 
analysis. For lesions analyses, the mean and 
standard deviation of Q calculated from all healthy 
controls were used to normalize Q values (whole 
brain, damaged and intact hemispheres) from each 
patient (Gratton et al., 2012): 
  
 𝑍 =   !!!

!
   

 
Q is the patient ‘smodurlaity score, 𝑄  is the 
average modularity score of healthy controls, 
and  𝛿 is the standard deviation in modularity of 
healthy controls. Modularity calculations were 
performed separately for each density threshold 
(from 0.01 to 0.15). 
 
Meta-Analysis of Functional Neuroimaging 
Experiments in the BrainMap Database 

 
We reanalyzed data presented in a 

previously published meta-analysis of the 
BrainMap database (Yeo et al., 2015). In the meta-
analysis, a hierarchical Bayesian model was used 
to derive a set of 12 cognitive components that 
best describe the relationship between behavioral 
tasks and patterns of brain activity in the 
BrainMap database (Laird et al., 2005). 
Specifically, each behavioral task (e.g., Stroop, 
stop-signal task, finger tapping) engages multiple 
cognitive components, and in turn each cognitive 
component is supported by a distributed set of 
brain regions. To determine whether or not a 
thalamic voxel is recruited by a cognitive 
component, a threshold of p = 10-5 was used. This 
is an arbitrary yet stringent threshold that was used 
in two prior studies (Bertolero et al., 2015; Yeo et 
al., 2015). Critically, there is potential spatial 
overlap between components. Therefore, brain 
regions that can flexibly participate in multiple 
cognitive components could be identified by 
calculating the number of cognitive components 
each brain region engages. The number of 
cognitive components was summed for each voxel 

and cortical ROIs, and defined as a “cognitive 
flexibility” score (Yeo et al., 2015). 
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