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Abstract13

Human behavior and cognition result from a complex pattern of interactions between brain regions. The flexible14

reconfiguration of these patterns enables behavioral adaptation, such as the acquisition of a new motor skill. Yet, the15

degree to which these reconfigurations depend on the brain’s baseline sensorimotor integration is far from understood.16

Here, we asked whether spontaneous fluctuations in sensorimotor networks at baseline were predictive of individual17

differences in future learning. We collected functional MRI data from 22 participants prior to six weeks of training18

on a new motor skill. We found that visual-motor connectivity was inversely related to learning rate: sensorimotor19

autonomy at baseline corresponded to faster learning in the future. Using three additional scans, we found that20

visual-motor connectivity at baseline is a relatively stable individual trait. These results demonstrate that individual21

differences in motor skill learning can be reliably predicted from sensorimotor autonomy at baseline prior to task22

execution.23
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Introduction24

Adaptive biological systems display a common architectural feature that facilitates evolvability [1, 2, 3]. That feature25

is modularity, or near-decomposability [4], in which the system is composed of small subsystems (or modules) that each26

perform near-unique functions. This compartmentalization reduces the constraints on any single module, enabling27

it to adapt to evolving external demands relatively independently [2, 5, 6]. These principles relating modularity to28

adaptivity are evident across the animal kingdom, offering insights into phenomena as diverse as the developmental29

program of beak morphology in Darwin’s finches [7] and the heterochrony of the skeletal components of the mammalian30

skull [8].31

While an intuitive concept in organismal evolution, where genetic programs drive dynamics over long time scales, it32

is less clear how modularity might confer functional adaptability in neural systems whose computations are inherently33

transient and fleeting. To gain conceptual clarity, we consider synchronization: a foundational neural computation that34

facilitates communication across distributed neural units [9, 10]. Recent evidence from the field of statistical physics35

demonstrates that synchronization of a dynamical system is directly dependent on the heterogeneity of the associations36

between units [11]. Specifically, in systems where units with oscillatory dynamics are coupled in local modules, each37

module can synchronize separately [12], offering the potential for unique functionality and independent adaptability.38

These theoretical observations become intuitive when we consider graphs: visual representations composed of nodes39

that represent oscillators and edges that represent coupling between oscillators (Fig. 1a). Modules that are densely40

interconnected will tend to become synchronized with one another, and each module will therefore be unable to41

adapt its dynamics separately from the other module [12]. This highly constrained state decreases the potential for42

adaptability to incoming stimuli in a changing environment. Conversely, modules that are sparsely interconnected43

with one another will maintain the potential for adaptive, near-independent dynamics.44

Given these theoretical observations in oscillator networks, we hypothesize that human brains display a modular45

architecture for the explicit purpose of facilitating behavioral adaptability [13, 14]. Such a hypothesis is bolstered46

by evidence that neuronal cell distributions evolve differently in regions of the brain that code for simpler reflexive47

versus more complex adaptive functions [15]. The hypothesis also has specific implications for individual differences48

in cognitive ability across humans. Specifically, we expect that individuals that display greater modularity, or sparser49

connectivity, between neural units critical for task performance would also display more behavioral adaptability in50

the face of novel task demands [16, 17, 18] (Fig. 1b).51

To test these hypotheses, we study a cohort of healthy adult human subjects who learn a new motor skill from52

visual cues over the course of 6 weeks (Fig. 1c). We acquire resting state fMRI data from each participant prior to53

task practice and model these data as whole-brain functional networks, where regions of the brain are represented as54

network nodes and statistical similarities, or synchronization, in regional activity are represented as network edges55

[19]. We extract the average activity in visual and motor regions that have previously been identified as key to evolving56

performance in this specific motor task [18], and quantify the functional integration between these two systems as57

the linear correlation between the two signals. We quantify motor skill learning as the reduction in the time required58
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to correctly execute a ten-element motor sequence, measured over the course of over 2000 trials per participant. We59

hypothesize that individuals who display a greater functional separation, or greater modularity, between motor and60

visual modules at rest are poised for enhanced adaptability, and therefore will learn faster over the 6 weeks of practice61

than individuals who display less functional separation between these modules. Further, we ask whether this baseline62

segregation between modules is a trait of an individual, consistently expressed over multiple scanning sessions, or a63

state of an individual, and therefore potentially vulnerable to external manipulation or internal self-regulation. The64

answers to these questions have direct implications for predicting and manipulating a human’s ability to adapt its65

behavior — or learn — in the future.66
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Figure 1: Network dynamics constrain adaptive learning behavior. (a) The degree of connectivity between
two modules imposes constraints on the types of dynamics that are possible. Lower degrees of statistical dependence
between the activity in two modules allow for greater flexibility in their dynamics. (b) Learning a new motor skill —
a sequence of finger movements — induces a progressive change in the connectivity between visual and somato-motor
cortices [18]. We hypothesize that individuals who display a greater functional separation, or greater modularity,
between motor and visual modules at rest are poised for enhanced adaptability, and therefore will learn faster over
the 6 weeks of practice than individuals who display less functional separation between these modules. (c) Time in
seconds required to correctly perform each sequence of finger movements (here referred to as movement time) for two
example human subjects over 6 weeks of training. We observe an exponential decay in the trial-by-trial movement
times for all participants (black lines), indicating that learning is occurring. The exponential drop-off parameter of
a two-term exponential fit (red line) quantifies how rapidly each participant learned. Left and right panels illustrate
the fits for an example slow and fast learner, respectively.
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Results67

Behavioral markers of learning68

Participants practiced a set of ten-element motor sequences in a discrete sequence-production (DSP) paradigm69

(Fig. S1). Training occurred over the course of 30 or more behavioral training sessions, spanning approximately70

42 days (Fig. S2). The time required to correctly perform each sequence (movement time) decayed exponentially over71

time, and the rate of this decay displayed remarkable individual variability (Fig. 1c, S5). To quantify this feature of be-72

havior, we defined the learning rate as the exponential drop-off parameter of the movement times, collated from home73

training sessions over the course of the entire experiment and averaged between two extensively practiced sequences74

(EXT sequences; see Methods) [18]. The learning rate – which quantifies how rapidly each participant converges to75

their own optimal performance – varied between 2.7 × 10−3 and 8.0 × 10−3 trial-1 (M = 5.2 × 10−3, SD = 1.6 × 10−3
76

trial-1). This indicates that the fastest learner converged to relatively steady performance approximately three times77

faster than the slowest learner (Fig. 1c).78

Sensorimotor initialization predicts future learning79

Next, we asked whether a modular architecture during resting state - an important correlate of underlying structural80

connectivity [20, 21] and a marker of prior experience [22, 23, 24] – is predictive of behavioral adaptability. More81

specifically, we hypothesized that functional connections previously shown to change during the learning process [18]82

would, at baseline, explain individual variability in future learning rate.83

To test this hypothesis, we measured spontaneous fluctuations in BOLD activity while participants underwent84

functional magnetic resonance imaging (fMRI), immediately prior to the initial task practice session. Our goal was85

to use these data to assess individual differences in the baseline strength of functional connections that displayed86

significant changes during task performance. We defined two modules and corresponding connections of interest87

(COI) based on task-based fMRI data from the same cohort. These two sets of regions, identified in prior work in a88

data-driven way [18], broadly corresponded to (i) early visual cortex (which has been referred to as the visual module;89

Fig. 2a) and (ii) primary and secondary somato-motor regions (somato-motor module; Fig. 2a). The two modules90

show significantly different time courses of blood oxygenation level-dependent (BOLD) activation during task practice,91

and become increasingly autonomous as a result of visuo-motor learning [18] (Table 1 shows region labels associated92

with the two modules). In order to verify whether these modules identified from task-based data were also effective93

modules at rest, we calculated the modularity quality of this partition during resting state (equation (2) in Methods).94

The value obtained for this partition was larger than the modularity calculated for all 10,000 partitions of equal size95

with randomly permuted regions (P < 0.0001), confirming that these sets of regions are also effective modules at rest.96

We then asked whether gross interactions between these two modules at baseline were predictive of future learning97

rate. We extracted the average resting state time series across all regions from the visual module and across all98

regions from the motor module. We computed the Pearson correlation coefficient between these two time series, and99
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applied a Fisher r-to-z transformation. We refer to this z-value as the visual-motor connectivity. We observed that100

individual differences in visual-motor connectivity in the resting state prior to any task practice predicted participant’s101

future learning rate as estimated from the following 6 weeks of practice (Spearman’s rank correlation: ρ = −0.7158,102

P = 0.0008; Fig. 2b). These results suggest that baseline visual-motor connectivity can be thought of as a sensorimotor103

initialization parameter that constrains adaptive learning behavior.104

The relationship between resting visual-motor connectivity and future behavior was highly specific to learning105

rate, being unrelated to error rates, reaction time, or other parameters of the fitted movement time versus trials-106

practiced curve (Fig. S8). Moreover, the relationship remained significant even after regressing out the effect of107

initial performance (Spearman’s rank correlation: ρ = −0.7175, P = 0.0008); after regressing out the effect of final108

performance (Spearman’s rank correlation: ρ = −0.5596, P = 0.0141); or after regressing out the effects of both initial109

and final performances (Spearman’s rank correlation: ρ = −0.5632, P = 0.0135). Therefore, baseline visual-motor110

connectivity is specifically related to the rate of decay of movement time (learning rate).111

Visual module Somato-motor module
Left/Right intracalcarine cortex Left/Right precentral gyrus
Left/Right cuneus cortex Left/Right postcentral gyrus
Left/Right lingual gyrus Left/Right superior parietal lobule
Left/Right supracalcarine cortex Left/Right supramarginal gyrus, anterior
Left/Right occipital pole Left/Right supplementary motor area

Left parietal operculum cortex
Right supramarginal gyrus, posterior

Table 1: Brain areas in visual and somato-motor modules.

Regional specificity of predictor112

We then asked whether the predictive relationship between visual-motor connectivity and learning rate was regionally113

and behaviorally specific. Using a permutation procedure, we found that visual-motor connectivity was significantly114

more predictive of learning rate than connectivity between a randomized visual module and a randomized motor115

module (P = 0.00006; randomized modules are composed of random draws of brain regions — without replacement116

— of the same size as the real modules).117

Having established that baseline functional connectivity between broadly defined visual and somato-motor areas118

predicts individual differences in future learning rate, we next explored which specific subregions — or functional119

connections — within visual and somato-motor areas might be most responsible for driving this effect. Using a120

surface-based parcellation in standard atlas space [25], we observed a general trend for negative correlations between121

visual-motor connectivity and learning rate, as evident from the predominantly blue color in Fig. 3a (Spearman’s122

rank correlation between visual-motor connectivity and learning rate, using broad visual and somato-motor regions123

of interest from a surface-based parcellation, was: ρ = −0.5596, P = 0.0141). This indicates that the broader124

regions selected in surface space still retain the overall properties of the volumetric parcellation. To test whether125

some functional connections were significantly more correlated with learning rate than others, we used a bootstrap126
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Figure 2: Baseline Visual-Motor Connectivity Predicts Future Learning Rate. (a) Visual module (yellow)
and somato-motor module (purple), identified by time-resolved clustering methods applied to BOLD activity acquired
during execution of motor sequences [18]. The modules were defined in a data-driven manner and correspond broadly
but not exactly to putative visual and somato-motor modules. (b) Functional connectivity between visual and somato-
motor modules, estimated at rest and prior to learning, reliably predicts individual differences in future learning rate.
We define the learning rate as the exponential drop-off parameter of the participant’s movement time as a function of
trials practiced, and we define functional connectivity as the Fisher r-to-z transformation of the Pearson correlation
coefficient between regional average BOLD time series.
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procedure with 10, 000 subject samples with replacement to derive the sampling distribution of each correlation127

value in Fig. 3a. We observed that individual differences in future learning rate were most strongly predicted by128

functional connectivity between the premotor area adjacent to the right superior precentral sulcus and early-visual129

areas adjacent to the calcarine sulcus in both hemispheres (Left calcarine sulcus to right superior precentral sulcus:130

Spearman’s ρ = −0.8211, bootstrap: M = −0.7935, 95% CI = [−0.9365,−0.5434]; Right calcarine sulcus to right131

superior precentral sulcus: Spearman’s ρ = −0.8228, bootstrap: M = −0.7904, 95% CI = [−0.9043,−0.6060];132

Fig. 3b,c). Across all bootstrap samples, these two values were larger than 98% of the others, demonstrating that133

these connections are robustly more correlated with learning rate than other visual-motor connections.134
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Figure 3: Learning rate is best predicted by connectivity between early visual and dorsal premotor
areas. (a) Using a surface-based annotation encompassing broadly defined visual and somato-motor areas (inset in
lower left), we calculated the correlation between learning rate and the functional connectivity between each pair of
subregions (negative correlations are represented in blue; positive correlations are represented in red). Learning rate
was best predicted by connectivity between early-visual areas adjacent to the calcarine sulcus in both hemispheres and
the dorsal premotor area adjacent to the right superior precentral sulcus. (b) Regions whose connectivity were found
to have highest correlation with learning rates. Left : Left calcarine sulcus (yellow) and right superior precentral sulcus
(purple). Right : Right calcarine sulcus (yellow) and right superior precentral sulcus (purple). (c) Functional connec-
tivity between left calcarine sulcus and right superior precentral sulcus significantly predicted individual differences
in future learning rate (ρ = −0.8211, adjusted P = 0.0051; data points are indicated by left pointing triangles). Simi-
larly, functional connectivity between right calcarine sulcus and right superior precentral sulcus significantly predicted
learning rate (ρ = −0.8228, adjusted P = 0.0042; data points are indicated by right pointing triangles). P-values
adjusted with Bonferroni correction at α = 0.05.

Sensorimotor initialization versus online control135

The results described in the previous sections offer a parsimonious and simple explanation for individual differences in136

motor skill acquisition: namely that sensorimotor initialization constrains the flexible brain reconfiguration required137

for successful learning. Yet, such an explanation does not address the known role of higher-order cognitive processes138
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in sequence learning. Indeed, prior evidence suggests a critical role for online cognitive control – and its dynamic139

release [18] – during learning [26, 27] as well as adaptive behavior in general [28, 29]. Key control areas observed in140

motor skill learning include prefrontal cortex [26], anterior cingulate [18], and basal ganglia [30]. Are cognitive control141

processes only required during task performance, or can individual differences at baseline predict future learning?142

To address this question, we focused on a circuit of interest identified in a data-driven manner from BOLD data143

collected as participants performed the task inside the scanner, composed of connections whose change in module144

allegiance throughout learning significantly correlates with individual differences in learning rate [18] (see Methods).145

This circuit is largely composed of connections between regions in the frontal cortex, anterior cingulate and basal146

ganglia including the nucleus accumbens and putamen (Fig. 4a). We observed that individual differences in the mean147

baseline strength of functional connections in the circuit of interest was not significantly correlated with future learning148

rate (Spearman’s ρ = −0.3965, P = 0.0939, Fig. 4b). These results indicate that, while cognitive control is a critical149

driver of learning during task performance, baseline connectivity in this circuit of interest is statistically unrelated to150

future learning.151

Sensorimotor initialization: A state or a trait?152

Given the predictive nature of baseline visual-motor connectivity, one might wish to know whether this baseline varies153

from day to day, thereby playing the role of an online initialization system, or whether it remains relatively stable154

over the course of the 6-week experiment. That is, are we measuring a network property related to learning that155

varies from session to session (over the course of hours to days) or is this a consistent relationship over the entire156

experiment, indicative of a trait effect? The answer to this question could offer much needed insight into the potential157

neurophysiological mechanisms underlying the observed relationship between baseline connectivity and learning: for158

example, from stable trait markers of structure [20, 21] or prior experience [22, 23, 24] to dynamic state markers of159

arousal [31].160

To address this question, we measured spontaneous BOLD fluctuations in each of four resting state sessions161

conducted immediately prior to task execution and separated by 1.5–2 weeks over the 6 week training period. We162

calculated visual-motor connectivity and assessed the degree of inter-scan consistency using a random effects intraclass163

correlation coefficient, which we observed to be ICC(C, 1) = 0.2395 (P = 0.0110; Fig. 5a). These results indicate that164

approximately 24% of the observed variance in visual-motor connectivity was accounted for by differences between165

subjects (a trait marker), while 76% of the observed variance was accounted for by differences within subjects (which166

can include both measurement error and a potential state marker), varying from session to session. Importantly, there167

was no significant trend in the evolution of visual-motor connectivity across sessions (one-way analysis of variance,168

F (3, 72) = 1.1624, P = 0.3301).169

How does the trait versus state nature of visual-motor connectivity impact prediction accuracy? We explicitly170

estimated the stable trait component by averaging an individual’s visual-motor connectivity values over all four171

scanning sessions, and we observed that this trait component significantly predicts learning rate over the 6 weeks of172
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Figure 4: Mean baseline connectivity within cognitive control areas does not correlate significantly with
learning rate. (a) Mean strength of areas from the circuit of interest, identified as the set of connections whose
modulation over the course of the training period were significantly correlated (p < 0.05, uncorrected) with individual
differences in learning rate [18]. This circuit largely corresponds to cognitive control areas, including regions in the
frontal cortex, anterior cingulate and basal ganglia. (b) Mean baseline connectivity in connections from the circuit
of interest prior to learning do not significantly correlate with individual differences in learning rate (Spearman’s
ρ = −0.3965, P = 0.0939; Pearson’s r = −0.0191, P = 0.9381). A robust regression (using iteratively reweighted
least squares with a bisquare weighting function) also indicated that the relationship was not significant (P = 0.9484),
suggesting that the lack of correlation was not solely driven by outliers.
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training (Spearman’s ρ = −0.5228, P = 0.0233; Fig. 5b). Yet, there is clearly additional variance that is not explained173

by this trait component, as evidenced by session-to-session variability in visual-motor connectivity (Fig. 5a, S7).174

To assess the potential predictive role of state dependent components of visual-motor connectivity, we asked175

whether visual-motor connectivity estimated from a single baseline scan predicts learning rate in a temporally adjacent176

training session more so than in temporally distant training sessions. Because of its exponentially decaying profile,177

learning rate is more robustly estimated early in training (see Fig. S9 for a demonstration). Therefore, we estimated178

a session-specific learning rate from movement times of minimally trained sequences. These trials were performed179

during scan sessions, in runs immediately following the resting state scans. While the individual correlations between180

session-specific learning rate and session-specific visual-motor connectivity were not statistically significant, their181

average (ρ̄ = −0.29543) was the largest of all possible pairings of resting state scans and task execution sessions (24182

permutations, P = 0.0400). Importantly, the same result was obtained when the trait component was regressed out183

from the visual-motor connectivity at each session, indicating that the state component of visual-motor connectivity184

has a high temporal specificity. These results demonstrate that visual-motor connectivity contains both a trait and a185

state component, the former predicting a stable task aptitude and the latter predicting temporally-specific measures186

of learning.187
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Figure 5: Visual-motor connectivity as a trait and as a state. (a) Between-session variability of visual-motor
connectivity. For each participant, dots represent visual-motor connectivity measured at each of four resting state
scans conducted immediately prior to task execution. Despite large variability between sessions, approximately 24%
of the observed visual-motor connectivity variance was accounted for by a trait marker, representing between-subject
variability. (b) By definition, the trait marker is the component of visual-motor connectivity that remains stable
across time, with the variability from session to session here termed the state component. The average visual-motor
connectivity across all four sessions, an estimator of the trait component of visual-motor connectivity, significantly
predicted overall learning rate (ρ = −0.5228, P = 0.02333). (c) Left: Spearman’s correlation coefficients between
session-specific learning rate, estimated from trials performed inside the scanner immediately following resting state
scans, and session-specific visual-motor connectivity. Right : Spearman’s correlation coefficients for all 24 permutations
of resting state scans to task sessions, between visual-motor connectivity and session-specific learning rates. The
actual pairing of resting state scans to task sessions had the strongest average correlation from all possible pairings
(P = 0.0400), indicating that the state component of visual-motor connectivity has a high temporal specificity.
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Discussion188

While an understanding of many higher-level cognitive functions requires one to study the brain during effortful189

thought [32], some basic organizational principles and constraints can be observed while the brain idles at baseline.190

Consistent evidence from multiple imaging modalities and subject cohorts demonstrate that the brain’s resting baseline191

is characterized by a modular [33, 14, 34], or near-decomposable nature [4], and that these modules are composed192

of brain regions that tend to perform similar cognitive functions [35, 36, 37, 38]. Yet, how this modular architecture193

supports the sequential and dynamic integration of the many high-level cognitive functions required during motor skill194

learning remains far from understood [39]. Here we observe that individuals who display lower values of correlation195

between their resting baseline activity in motor and visual regions learn faster in the following 6 weeks of task196

practice. That is: more modular architecture at rest is benefitial for learning in the future. This result complements197

both empirical and theoretical lines of inquiry recently demonstrating that modular architecture confers robustness198

as well as evolvability simultaneously [40], helps organisms evolve new skills without forgetting old skills [41], and –199

in the motor-visual systems – increases as learning occurs [18].200

The Benefits of Independence. While the baseline separation between entire motor and visual modules was201

predictive of individual differences in future learning behavior over 6 weeks of task practice, we also observed that202

the regional associations that drove this prediction most were the functional connections between the contralateral203

superior precentral sulcus and the bilateral calcarine sulcus. In classical models of motor processing and control, the204

superior precentral sulcus is thought of as the dorsal premotor area [42], and activation in this area is related to the205

performance of visuomotor hand/arm conditional responses [43]. It is well know that this region plays a central role206

in mapping visual cues to spatial motor responses in both human and non-human primates [44, 45, 46, 47, 48]. Given207

this specific role in motor-visual integration, it is interesting that individuals with the weakest baseline connections208

between this area and early visual cortices learn the fastest. One simple interpretation of these findings builds on the209

notion that the learning process is one in which the task of the brain is to develop direct motor-motor associations210

[49, 50]: each finger movement directly triggers the next, without the need for visual cues. Individuals with low211

connectivity between dorsal premotor and visual areas – and therefore more independence or autonomy of visual and212

motor processes [18] – are able to develop motor-motor associations faster.213

Such an explanation suggests the presence of a broader competitive process that may play a role in other cognitive214

tasks: individuals that display greater integration between cognitive processes at rest may be less able to disengage215

such processes from one another during task execution. This hypothesis is indeed supported by preliminary evidence in216

both healthy and clinical cohorts. For example, in healthy adult subjects, increased modularity (decreased integration)217

of resting state functional connectivity networks has been shown to be positively correlated with improvement in218

attention and executive function after cognitive training [51]. Similarly, individuals with greater negative correlation219

between default mode and working memory networks exhibited better behavioural performance on a working memory220

task [52]. Conversely, in subcortical vascular mild cognitive impairment, increased integration between modules in the221
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inferior and superior parietal gyrus at rest has been shown to be associated with impaired cognitive performance [53].222

Finally, such a broad competitive process is supported by recent work in normative neurodevelopment showing that223

individuals with weaker sensorimotor integration at rest tended to display better cognitive performance (N = 780 in224

the Philadelphia Neurodevelopmental Cohort) [54].225

Drivers of Baseline Architecture. A growing literature demonstrates the absolutely fundamental role of base-226

line network architecture in explaining individual differences in cognition and behavior. The strength of individual227

functional connections, or larger sets of connections, have been observed to correlate with individual differences in IQ228

[55], visual orientation discrimination [56], working memory [52, 57], color knowledge [58], auditory stimulus detection229

[59], pursuit rotor performance [60], and the ability to learn foreign sounds [61] and probabilistic regularities [62]. Yet,230

it is unclear what neurophysiological or develpmental factors drive these individual differences at baseline.231

Current theories of resting state drivers can be summarized along two key dimensions: genetically-encoded struc-232

ture, and prior or current experience. First, resting state functional connectivity is related to some degree to underlying233

large-scale structural connectivity as estimated by white matter tractography [20, 63, 64, 21, 65]: two brain areas234

that are connected by a large number of white matter streamlines also tend to display strong correlations in their235

resting BOLD activity. These structural patterns may form a constraint on resting state dynamics, at least partially236

driven by the genetic codes underlying module formation [66]. Yet, structural connectivity can only be a partial237

explanation, as resting state functional connectivity varies appreciably over time scales in which structure remains238

constant [67, 68, 69, 70]. It will be interesting in future to determine whether structural differences among individuals239

might explain some of the predictive relationship between resting state functional connectivity and future learning240

behavior.241

The second key driver of resting state functional connectivity is experience. Over short time scales, resting state242

patterns are altered for up to 20 minutes following task performance [71], being modulated by cognitive processes243

as diverse as short term memory [72] and visuomotor learning [73]. Moreover, resting state connectivity can be244

altered over longer time scales with cognitive training [51], mindfulness training [22, 74], progressive neurological245

disorders [75], and aging [76]. While recent and more distant experience can play a role, perhaps the more tantalizing246

observation is that a person’s arousal state is also directly linked to their resting state functional connectivity [77].247

This finding is particularly interesting in light of our results from the state-trait analysis, which indicate that visuo-248

motor connectivity is more correlated with learning occurring in the immediately following trials than with trials249

performed in a different session. These state-dependent predictors of future learning are consistent with recent work250

demonstrating that arousal systems may directly regulate learning by coordinating activity in the locus coeruleus and251

anterior cingulate cortex [31]. Future work is necessary to determine the degree to which arousal state – as opposed252

to prior training – might manipulate the pattern of resting state connectivity, priming the system to optimally learn253

in the immediate future.254
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Baseline Initializations vs. Transient, Online Control. While cognitive control is a critical driver of learning255

during task performance [78, 26, 79, 18], we observe that baseline functional connections within this circuit do not256

significantly correlate with individual differences in future learning. This finding nuances our understanding of the257

relative importance of (i) baseline architecture, which represents the initialization of the brain, and (ii) task-elicited258

dynamics, which represents transient, online control. In combination with prior literature, our results suggest that259

the relative autonomy of sensorimotor systems at rest is followed by flexible alterations in the functional circuitry of260

cognitive control regions as the task is executed [18], strengthening the motor-motor associations that enable automatic261

performance [49, 50].262

Methodological Considerations. There are several important methodological and conceptual considerations rel-263

evant to this work. First, while we use the term modularity, we do not mean the tradition notion of pure encapsulation264

of function as propounded by Fodor in his historic contribution to the field: “Modularity of Mind” [80]. Instead, we265

use the term as mathematically defined in [81] to mean separation or segregation without requiring complete indepen-266

dence. Second, it is important to determine the specificity of the findings. We note that the degree of connectivity267

between visual and somato-motor areas predict learning rate but not other metrics of task performance, and that this268

effect does not generalize to a cognitive control circuit defined a priori from task-based fMRI data collected while269

the same participants performed the DSP paradigm. Third, it is important to be clear about what the estimate of270

learning rate used here measures and what it does not measure. Critically, the learning rate is independent of initial271

performance, a measurement of experience on similar tasks, and is independent of final performance, a measurement272

of finger mechanics. Finally, in this work, we utilize large-scale non-invasive human recording of BOLD signals across273

cortical, subcortical, and cerebellar areas. It would be interesting in future to determine whether the sensorimotor274

autonomy that we describe here is related to competitive sensorimotor interactions reported at the neuronal level [82].275

Implications for Educational and Clinical Neuroscience. We have shown that baseline visuo-motor connec-276

tivity is a strong predictor of learning rate specifically in a DSP paradigm, but it is possible that these results would277

generalize to other motor skills, or that baseline separation between relevant cognitive systems is, in general, beneficial278

for other classes of learning in perceptual, cognitive or semantic domains. Predicting individual differences in future279

learning has massive implications for neurorehabilitation (in those who are aging, injured or diseased) and neuroed-280

ucation (in children or older trainees). Predictors drawn from behavioral performance or from brain images acquired281

during behavioral performance necessarily have limited applicability in rehabilitation and education domains where282

subjects may be unable to perform the task, or be unable to lie still in a scanner during task performance. Predictors283

drawn from resting state scans offer the possibility for direct translation to the clinic and classroom. Moreover, our284

delineation of state and trait components of sensorimotor initialization predictors suggests the possibility of directly285

manipulating subject state, for example with non-invasive stimulation [26, 83], neurofeedback, or task priming [84] to286

enhance future performance, thereby optimizing rehabilitation or training.287
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Methods288

Participants289

Twenty-two right-handed participants (13 females and 9 males; mean age of 24 years) volunteered to participate in290

this study. All volunteers gave informed consent in writing, according to the guidelines of the Institutional Review291

Board of the University of California, Santa Barbara. Three participants were excluded: one failed to complete the292

experiment, one had excessive head motion, and one had a functional connectivity profile whose dissimilarity to those293

obtained from other participants was more than three standard deviations away from the mean, potentially due to294

sleep (Fig. S4). Therefore, the final cohort included 19 participants who all had normal or corrected vision and no295

history of neurological disease or psychiatric disorders.296

Experimental setup and procedure297

In a discrete sequence-production (DSP) task, participants practiced a set of ten-element motor sequences either298

on a laptop keyboard, responding to sequential visual stimuli using their right hand (Fig. S1). The visual display299

contained a horizontal array of five square stimuli, each corresponding to one finger. Mapped from left to right, the300

thumb corresponded to the leftmost stimulus and the smallest finger corresponded to the rightmost stimulus. The301

square corresponding to the current button press was highlighted in red, changing to the next square immediately302

following a correct button press. Only correct button presses advanced the sequence, and the time for completion was303

not limited. Participants were instructed to respond quickly and to maintain accuracy.304

Six different ten-element sequences were used in the training protocol, with three possible levels of exposure: two305

sequences were extensively trained (EXT; 64 trials per session); two sequences were moderately trained (MOD; 10306

trials per session); and two sequences were minimally trained (MIN; 1 trial per session). The same sequences were307

practiced by all participants. In each sequence, each of the five possible stimulus location was presented twice and308

included neither immediate repetitions (e.g. “1-1”) nor regularities such as trills (e.g., “1-2-1”) or runs (e.g., “1-2-3”).309

A sequence-identity cue indicated, on each trial, what sequence the participant was meant to produce: EXT sequences310

were preceded by either a cyan (EXT-1) or a magenta (EXT-2) circle, MOD sequences were preceded by either a red311

(MOD-1) or a green (MOD-2) triangle, and MIN sequences were preceded by either an orange (MIN-1) or a white312

(MIN-2) star. No participant reported any difficulty viewing the identity cues. The number of error-free sequences313

produced and the mean time required to complete an error-free sequence was presented after every block of ten trials.314

See Fig. S3 for the number of trials performed for each sequence type.315

Participants were scanned on the first day of the experiment (scan 1) and on three other occasions (scans 2–4)316

spaced approximately 1.5–2 weeks from one another. The entire experiment spanned approximately a 42-day period317

(Fig. S2). A minimum of ten home training sessions was completed in between any two successive scanning sessions,318

for a total of at least 30 home sessions. Home training sessions were performed on personal laptop computers using a319

training module installed by the experimenter.320
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Before the first scanning session, the experimenter provided a brief introduction to participants in which he321

explained the mapping between the fingers and the DSP stimuli, as well as the significance of the identity cues. Next,322

fMRI data was acquired as Subjects rested quietly in the scanner prior to any task performance. Finally, fMRI data323

was acquired as subjects performed a series of trials on the DSP task spread over five scan runs, using a 5-button324

button box with distances between keys similar to placement on a standard 15in laptop. Each scan run acquired during325

task performance contained 60 trials grouped in blocks of ten, and similarly to home training sessions, performance326

feedback was given at the end of every block. Each block contained trials belonging to a single exposure type (EXT,327

MOD or MIN), and included five trials for each of the two sequences. Therefore, an equal number of trials from each328

sequence was performed during scan sessions (50 trials per sequence, for a total of 300 trials per scan session; Fig. S3).329

Trial completion was indicated by a fixation cross, which remained on the screen until the onset of the next sequence330

identity cue (the intertrial interval varied between 0 and 6s).331

Two sessions were abbreviated due to technical challenges. In each case when a scan was cut short, participants332

completed four out of the five scan runs for a given session. We included behavioral data from these abbreviated333

sessions in this study.334

Behavioral apparatus335

In home train sessions, stimuli were presented with Octave 3.2.4 and Psychtoolbox 3 [85] on each participants’ laptop336

computer. During scanning sessions, stimuli were presented with MATLAB version 7.1 (Mathworks, Natick, MA) and337

Psychtoolbox 3 [85], backprojected onto a screen and viewed through a mirror. Key-presses and response times were338

collected using a custom fiber optic button box and transducer connected via a serial port (button box, HHSC-1 ×339

4-l; transducer, fORP932; Current Designs, Philadelphia, PA), with design similar to those found on typical laptops.340

For instance, the center-to-center spacing between the buttons on the top row was 20 mm (compared to 20 mm from341

“G” to “H” on a recent version of the MacBook Pro), and the spacing between the top row and lower left “thumb”342

button was 32 mm (compared to 37 mm from “G” to the spacebar on a MacBook Pro).343

Behavioral estimates of learning344

Consistent with convention, we defined the movement time (MT ) as the difference between the time of the first button345

press and the time of the last button press in a single sequence. We calculated MT for every sequence performed346

in home training sessions over the course of the 6 weeks of practice. Across all trials in home training sessions, the347

median movement time was, on average, 1.70 s (average minimum 1.03 s and average maximum 7.12 s), with an348

average standard deviation of 0.79 s. For each participant and each sequence, the movement times were fit with a349

two-term exponential model [86, 87] using robust outlier correction (using MATLAB’s function “fit.m” in the Curve350

Fitting Toolbox with option “Robust” and type “LAR”), according to the equation (1).351

MT = D1e
tκ +D2e

tλ, (1)
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where t is time, κ is the exponential drop-off parameter (which we refer to as the learning rate) used to describe352

the fast rate of improvement, λ is the exponential drop-off parameter used to describe the slow, sustained rate353

of improvement, and D1 and D2 are real and positive constants. The magnitude of κ indicates the steepness of354

the learning curve: curves with larger κ values decay more quickly than curves with smaller κ values. Therefore, κ355

indicates the speed of learning independently of initial performance or performance ceiling. The decrease in movement356

times has been used to quantify learning for several decades [88, 89]. Several functional forms have been suggested for357

the fit of movement times [90, 91], and variants of an exponential are viewed as the most statistically robust choices358

[91]. Given the vastly superior number of practiced trials in EXT sequences (Fig. S3), we estimate the learning rate359

for each participant as the average κ between both EXT sequences, consistent with previous work [18].360

In addition to movement time, we defined error rate as the number of incorrect button presses during the full361

execution of each sequence, and reaction time as the time between the onset of a trial and the first button press. We362

performed a linear fit on both of these additional measures and repeated our main analysis with both their intercept363

and slope terms (Fig. S8).364

MRI Data collection365

Magnetic resonance images were obtained at 3.0T on a Siemens Trio using a 12-channel phased-array head coil.366

T1-weighted structural images of the whole brain were collected from each subject (repetition time [TR] = 15.0ms;367

time echo [TE] = 4.2ms; flip angle: 90◦; 3D acquisition; field of view: 256mm, slice thickness: 0.89mm; 256 × 256368

acquisition matrix). Data from one resting state run (146 TRs), five experimental runs (variable number of TRs369

depending on how quickly the task was performed [18]), and a second resting state run (146 TRs) were acquired370

with a single-shot echo planar imaging sequence that was sensitive to BOLD contrast ([TR] = 2, 000ms; time echo371

[TE] = 30ms; flip angle: 90◦; field of view: 192mm, slice thickness: 3mm with 0.5mm gap; 64×64 acquisition matrix372

across 37 axial slices per TR).373

MRI Data preprocessing374

Cortical reconstruction and volumetric segmentation of the structural data was performed with the Freesurfer image375

analysis suite [92]. Preprocessing of the resting state fMRI data involved multiple steps: the first four volumes in376

each run were discarded to allow stabilization of longitudinal magnetization; sinc-interpolation in time was performed377

with AFNI’s [93] 3dTshift to correct for the slice acquisition order; orientation of all images was changed to Right-378

Posterior-Inferior using AFNI’s 3dresample; images were rigid-body motion corrected with AFNI’s 3dvolreg by aligning379

all volumes with the mean volume (estimated with AFNI’s 3dTstat) in each run; coregistration between structural380

and mean functional image was performed with Freesurfer’s bbregister [94]; brain-extracted functional images were381

obtained by applying Freesurfer’s brain mask on to images from each functional run using AFNI’s 3dcalc; global382

intensity normalization was performed across all functional volumes using FSL’s fslmaths [95] to ensure that all time383

series were in the same units; functional data was smoothed in surface space with an isotropic Gaussian kernel of384
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5-mm full width at half-maximum and in the volumetric space with an isotropic Gaussian kernel of 5-mm full width385

at half-maximum and, using Freesurfer’s mris_volsmooth; intensity and motion outliers were detected using Artifact386

Detection Tools (ART) [96] and removed from time-series using a regression approach; the six motion parameters387

(three for translation and three for rotation) estimated with ART, as well as the temporal derivatives, quadratic388

terms, and temporal derivatives of the quadratic terms had also their contribution removed from the BOLD signal; non-389

neuronal sources of noise (white-matter and CSF signals) were estimated by averaging signals within masks obtained390

with Freesurfer segmentation tools and by identifying voxel time series with high temporal standard deviations, and391

removed using the anatomical (aCompCor) and temporal CompCor (tCompCor) methods [97]; finally, a temporal392

band-pass filter of 0.01 Hz to 0.1 Hz was applied using AFNI’s 3dFourier. Global signal was not regressed out of voxel393

time series due to its controversial application to resting state fMRI data [98, 99, 100].394

Using the above processing pipeline, we expect to have been able to correct for motion effects due to volume-to-395

volume fluctuations relative to the first volume in a scan run. After this motion-correction procedure, we observed no396

correlation between any of the six motion parameters (x-translation, y-translation, z-translation, roll, pitch and yaw,397

calculated for each run and training session) and visual-motor connectivity (P > 0.05) across all scanning sessions.398

These results indicated that individual differences in motion were unlikely to drive the effects reported here.399

Parcellation scheme400

We used a volumetric-based parcellation scheme composed of 626 regions of interest (ROIs) that was formed by the401

combination of two separate atlases: (i) an AAL-derived 600-region atlas [63, 64], which subdivides the 90 AAL402

anatomical regions into regions of roughly similar size via a spatial bisection method, and (ii) a high-resolution403

probabilistic 26-region atlas of the cerebellum in the anatomical space defined by the MNI152 template, obtained404

from T1-weighted MRI scans (1-mm isotropic resolution) of 20 healthy young participants [95, 103] (note that this405

latter atlas is provided by SPM8). The combination of these two atlases provided a high-resolution, 626-region406

atlas of cortical, subcortical, and cerebellar regions. This volumetric atlas, which we call AAL-626 atlas, have been407

used previously [18]. The surface-based analyses used an automatic parcellation of human cortical gyri and sulci408

(Freesurfer’s aparc.a2009) [25].409

Functional Connectivity estimation410

In previous work, analyses of the task data from the same experiment yielded two sets of ROIs from the AAL-411

626 atlas based on the high probability that its regions were assigned to the same functional community by time-412

resolved clustering methods [18]. These two sets of regions broadly corresponded to (i) early visual cortex (which has413

been referred to as the visual module; Fig. 2a) and (ii) primary and secondary somato-motor regions (somato-motor414

module; Fig. 2a). A list of region labels associated with the two modules is displayed in Table 1. We extracted415

the average resting state time series across regions from each of the functional modules, calculated their Spearman’s416

rank correlation coefficient (a nonparametric measure of statistical dependence between two variables), and applied a417
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Fisher r-to-z transformation. We refer to this z-value as the visual-motor connectivity.418

Importantly, the removal of various signal components present throughout most of the brain (in particular by419

the tCompCor method) leads to a shift on the distribution of functional connectivity values, giving rise to negative420

correlations. We note that, while these approaches substantially improve the robutsness of our results by eliminating421

physiological noise from the data [104], our results remain significant with a less stringent noise removal pipeline that422

does not shift the range correlation values (Fig. S6).423

We confirmed that the modules identified from the task data were also modules at baseline by comparing the424

modularity quality [105] of the actual partition with the modularity quality of 10, 000 permuted partitions. The425

modularity quality is given by equation (2):426

Q =
1

4m

∑
ij

(
Aij −

kikj
2m

)
δ(gi, gj), (2)

where Aij is the functional connectivity matrix including all visual and motor regions, ki and kj are the strength427

of nodes i and j, m = 1
2

∑
i ki is the total strength in the network, and δ(gi, gj) = 1 if nodes i and j belong to428

the same module or δ(gi, gj) = 0 otherwise. We observed that the modularity quality of the actual partition into429

visual and motor modules was higher than the modularity quality of all 10, 000 permuted partitions (p = 0.0001),430

demonstrating that the separation of brain regions into motor and visual modules is an accurate representation of the431

network organization.432

A similar approach was performed for the surface-based analysis, which aimed to identify which specific functional433

connections within visual and somato-motor areas were most correlated with learning rate. We used broadly defined434

visual and somato-motor regions of interest (ROIs) and examined the correlations between each visual-to-motor435

connection and learning rate. The visual ROI was defined as composed of the entire occipital lobe, parieto-occipital,436

and occipito-temporal areas (Fig. 3a), and the somato-motor ROI was defined as composed of precentral, paracentral437

and postcentral sulci and gyri, and central sulcus (Fig. 3a). After projecting the BOLD time-series from each voxel438

into surface vertices in subject native space, we extracted the average activity within each of the surface-based parcels439

and calculated the Fisher r-to-z transformation of the Spearman’s rank correlation coefficient between the activity in440

each region of the visual ROI and each region of the somato-motor ROI.441

The fronto-cingulate cognitive control circuit of interest from Fig. 4a was defined from prior work [18], comprising442

data collected as participants performed the task inside the scanner and parcellated into 112 cortical and subcorti-443

cal regions using the Harvard-Oxford (HO) atlas of the FMRIB (Oxford Centre for Functional Magnetic Resonance444

Imaging of the Brain) Software Library [95, 103] (FSL; Version 4.1.1). The circuit was defined as the set of edges445

connecting non-visual and non-motor areas whose modulation in module allegiance over the 6-week period was sig-446

nificantly correlated with learning rate. It was composed of 180 functional connections distributed asymmetrically447

throughout the network, with few brain areas having most of the connections and most areas having only a few. We448

converted each connection of the circuit of interest from the HO atlas to the AAL-626 atlas by identifying the region449
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in AAL-626 with the largest volumetric overlap with each region of HO and connecting corresponding pairs of regions450

with the appropriate edge strength. A visualization of the sum of the weights of the edges emanating from each area451

in AAL-626 is illustrated in Fig. 4a.452

Measure of statistical relationship453

Spearman’s rank correlation was chosen as a measure of statistical relationship between any two variables with454

different units. This nonparametric statistic measures the extent to which two variables are monotonically related455

without a requirement for linearity. To assess the relationship between two variables with the same units, Pearson456

product-moment correlation was used.457
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Supporting Information657
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Figure S1: Trial structure and stimulus-response mapping.
(a) Each trial began with the presentation of a sequence-identity cue that remained on screen for 2 seconds. Each
of the six trained sequences was paired with a unique identity cue. A discrete sequence-production (DSP) event
structure was used to guide sequence production. The onset of the initial DSP stimulus (thick square, colored red in
the task) served as the imperative to produce the sequence. A correct key press led to the immediate presentation of
the next DSP stimulus (and so on) until the ten-element sequence was correctly executed. Participants received a +
as feedback to signal that a sequence was completed and to wait (approximately 0–6 s) for the start of the next trial.
This waiting period was called the intertrial interval (ITI). At any point, if an incorrect key was hit, a participant
would receive an error signal (not shown in the figure), and the DSP sequence would pause until the correct response
was received.
(b) There was direct stimulus-response mapping between a conventional keyboard or an MRI-compatible button box
(lower left) and a participants right hand, so that the leftmost DSP stimulus cued the thumb and the rightmost
stimulus cued the pinky finger. Note that the button location for the thumb was positioned to the lower left for
maximum comfort and ease of motion.
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experiment timeline

EXT (64 trials/sequence)
MOD (10 trials/sequence)
MIN (1 trial/sequence)

home training example

SCAN 1 SCAN 2 SCAN 3 SCAN 4

Resting State
(5 min)

Resting State
(5 min)

Resting State
(5 min)

Resting State
(5 min)

6 weeks of training

home training 1-10 home training 11-20 home training 21-30

”baseline training”
(50 trials/sequence)(50 trials/sequence) (50 trials/sequence) (50 trials/sequence)

Figure S2: Experiment protocol and timeline.
(a) The experiment protocol comprised of six weeks of training of six distinct motor sequences. Following a brief
explanation of the task instructions, a initial MRI scan session was held during which blood oxygen level-dependent
(BOLD) signals were acquired from each participant. The scan session began with a resting state scan lasting 5 minutes
where participants were instructed to remain awake and with eyes open without fixation. During the remainder of
the first scan session (baseline training), participants practiced each of six distinct motor sequences for 50 trials each,
or approximately 1.5 hour. They were then instructed to continue practicing the motor sequences at home using a
trainind module that was installed by the experimenter (N.F.W.) on their personal laptops. Participants completed
a minimum of 30 home training sessions, which were interleaved with two additional scan sessions, each occurring
after at least 10 home training sessions. A final scan session was held following the completion of the 6 weeks of
training. The same protocol was followed in each of the four scan sessions: a 5 minute resting state scan, followed by
approximately 1.5 hour of the DSP task, where each of six distinct motor sequences was practiced for 50 trials each.
(b) Most of the motor sequence training occurred at home, between scanning sessions. An ideal home training session
consisted of 150 trials with sequences practiced in random order (randomization used the Mersenne Twister algorithm
of Nishimura and Matsumoto as implemented in the random-number generator rand.m of MATLAB version 7.1). Each
EXT sequence was practiced for 64 trials, each MOD sequence was practiced for 10 trials, and each MIN sequence
was practiced for 1 trial.
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Figure S3: Number of error-free trials performed per session.
(a) Number of trials practiced in each scan session. Left panel: Extensive training (EXT) session; Middle panel:
Moderate training (MOD) session; Right panel: Minimal training (MIN) session. Box plot represents quartiles and
+ symbols represent outliers. The variability in the number of executed trials during scan sessions arose mainly from
software or hardware difficulties.
(b) Number of trials practiced in each home session. Left panel: Extensive training (EXT) session; Middle panel:
Moderate training (MOD) session; Right panel: Minimal training (MIN) session. Box plot represents quartiles and +
symbols represent outliers. The variability in the number of executed trials are due to some subjects training more
days than others between successive scanning sessions.
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Figure S4: Subject exclusion criterion.
(a) We aimed to identify corrupted resting-state data by sleep or poor data quality by tracking functional connectivity
outliers from our group norm. We calculated the average L2 distance between corresponding cells of the 626x626
functional connectivity matrices from all pairs of participants, summarized in the dissimilarity matrix of the figure.
(b) Average L2 distance between the RS-fc matrix of one participant and that from all others. With the exception
of subject 10, all subjects were within 1.5 standard deviations from each other. The resting state data from subject
10 differed on average by 3.6 standard deviations from the others and, therefore, was excluded from the remainder of
the analyses.
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Figure S5: Learning curves from individual participants.
(a) Time required to execute a complete motor sequence (Movement Time), as a function of trial number. Colored
curves are two-term exponential fits of the movement times from each participant. Learning happened for all partici-
pants, as evidenced by the reduction of movement times, but with large variability in the decay rates. Left and right
panels correspond to the two extensively trained sequences.
(b) Functional connectivity between visual and somato-motor regions estimated at rest reliably predicts individual
differences in learning rate for both EXT1 (left panel) and EXT2 (right panel) sequences.
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Figure S6: Replication of Fig. 2 with uncentered functional connectivity values
(a) Same as Fig. 2a: Visual (yellow) and somato-motor (purple) modules.
(b) Similar to Fig. 2b. The removal of various signal components present throughout most of the brain (in particular
by the tCompCor method) leads to a shift on the distribution of functional connectivity values, giving rise to negative
correlations (Fig. 2b). Here, we use a less stringent noise removal pipeline (same as original but without the tCompCor
method) that does not shift the range of correlation values. Similarly to our original results, we observe that functional
connectivity between visual and somato-motor modules, estimated at rest and prior to learning, reliably predicts
individual differences in future learning rate (ρ = −0.5280, P = 0.02174). The weaker statistical relationship is likely
a consequence of residual physiological noise [104].
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Figure S7: Correlation between visual-motor connectivity at various sessions and overall learning rate.
(a) Relationship between visual-motor connectivity estimated from the resting-state scan acquired in SESSION 1 and
overall learning rate. The Spearman correlation between these two quantities is ρ = −0.7158, P = 0.0008.
(b) Relationship between visual-motor connectivity estimated from the resting-state scan acquired in SESSION 2 and
overall learning rate. The Spearman correlation between these two quantities is ρ = −0.0772, P = 0.7537.
(c) Relationship between visual-motor connectivity estimated from the resting-state scan acquired in SESSION 3 and
overall learning rate. The Spearman correlation between these two quantities is ρ = −0.2000, P = 0.4100.
(d) Relationship between visual-motor connectivity estimated from the resting-state scan acquired in SESSION 4
and overall learning rate. The Spearman correlation between these two quantities is ρ = −0.3070, P = 0.2006. The
combined p-value across all four tests, calculated with Fisher’s method, is P = 0.0112.
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Figure S8: Statistical relationship between resting visual-motor connectivity and different behavioral
markers.
(a) Relationship between resting-state visual-motor connectivity estimated from the resting-state scan acquired in
SESSION 1 and each of the four parameters from the two-term exponential fits of the movement times. Notice the
marginal significance of the correlation between visual-motor connectivity and term d, suggesting that visual-motor
connectivity correlates not only with the faster drop-off parameter (term b), but also with the slower decay parameter
(term d).
(b) Relationship between resting-state visual-motor connectivity estimated from the resting-state scan acquired in
SESSION 1 and the fitted start movement time (left); similarly for fitted end movement time (right). Notice the
marginal significance of the correlation between visual-motor connectivity and movement time at trial 2000, suggesting
that participants with high visual-motor connectivity tend to have longer movement times.
(c) Relationship between resting-state visual-motor connectivity estimated from the resting-state scan acquired in
SESSION 1 and both parameters from a linear fit to the error rates.
(d) Relationship between resting-state visual-motor connectivity estimated from the resting-state scan acquired in
SESSION 1 and both parameters from a linear fit to the reaction times.
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Figure S9: Effect of removing trials from different portions of the learning curve.
(a) Effect of removing trials from different epochs of training on the estimated learning rates. Removing HOME 1
trials, corresponding to home training sessions between the first and second scan sessions, had the largest impact on
the estimations of learning rate using a two-term exponential fit.
(b) Effect of removing trials from different epochs of training on the correlations between visual-motor connectivity
and learning rates. Removing HOME 1 trials also had the largest absolute impact on the Spearman’s correlations
coefficients.
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